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Because of recent improvements in the quality of the P-state splittings of the Y system, we decid-

ed to reexamine some of the basic assumptions underlying an important recent calculation of the

properties of the system by Gupta, Radford, and Repko (GRR). In particular, we want to examine

the strategy chosen to determine the renormalization scale parameter. It is also of interest to know

if one can develop a method for including Liischer or Liischer-type corrections to the form of the

confinement potential that is consistent with some of the accomplishments of perturbation-theory

potentials and the data. To this end, we have developed an abbreviated form of the GRR potential,

which gives a fit to the measured energies that is somewhat better than the original GRR potential.

By introducing a join radius, where the running coupling constant stops running, we are able to in-

clude a Coulomb term in the confinement potential. The amended Luscher coefficient is determined

from a continuity condition at the join radius. Its value is found to be near 0.55, which is consistent

with a recent calculation of Olsson and Suchyta.

I. INTRODUCTION

In 1981 Eichten and Feinberg' (EF) took an important
step forward in formulating the implications of QCD for
the form of the spin-dependent parts of the
heavy —quark-antiquark (QQ ) potential; they were able to
relate the spin-dependent parts of the potential to corre-
lation functions of the color-electric and -magnetic fields.
Assuming that the long-distance behavior of the static
potential is uniquely determined by the longitudinal com-
ponent of the color-electric field, a viewpoint often called
electric confinement, they argued that the magnetic
correlations were short range. Thus, one might expect
the one-gluon-exchange (OGE) contribution to suffice for
the spin-spin and tensor portions of the potential. Be-
cause of the presence of the classical spin-orbit term and
the Thomas precession term, the derivatives of the static
potential play a role in the spin-orbit force. However, the
sign of the contribution of the long-range potential to the
spin-orbit force obtained by EF was in error, as originally
pointed out by Buch muller. Buch muller's essential
physical observation was that in the center-of-mass frame
magnetic flux contributions to the confining force will
also be important because of the velocities associated
with rotations of the quark-antiquark pair. These argu-
ments were given a convincing foundation by Gromes. '

Moxhay and Rosner ' (MR) adopted much the same
viewpoint at EF for their calculations of the energies, lep-
tonic widths, and dipole transition rates of charmonium
and the Y system. They were able to include some im-
portant relativistic corrections to the spin-independent
potentials and decided to use Richardson's form for the
static potential instead of the linear plus Coulomb poten-
tial. McClary and Byers (MB) explored more of the
consequences of relativistic effects and chose a scalar po-
tential for the confining potential. The sign of the spin-
orbit contribution from the scalar potential is the same as

that resulting from Buchmuller's rotating flux-tube model
and Gromes's analysis. '

Gupta, Radford, and Repko (GRR) have applied per-
turbation theory to both the spin-independent and the
spin-dependent parts of the QQ potential. They include
the effects of OGE as well as all one-loop corrections and
thus obtain a potential correct to the second order, which
is expected to have increased validity over OGE at small
distances. They introduce a renormalization scale pa-
rameter whose magnitude is chosen in order to minimize
the effects of higher-order renormalization-group im-
provements of the potential. Their treatment of the
confining potential is equivalent to the effects of a scalar
exchange. In at least two recent reviews, ' '" their results
for the fine-structure splittings of the Y system have been
cited as being superior in giving the magnitudes of the
spin-orbit and tensor matrix elements. Their calculations
of the E1 transition rates are a problem, however,
disagreeing with the charmonium measurements by a fac-
tor of 2 or 3 (Refs. 12 and 13).

Recently the experimental results for the photon ener-
gies emitted in transitions among the Xb and Xb
states"' ' have been improved, and thus the fine-
structure splittings are now known to a precision of about
1 MeV (Ref. 16). Further, the character of the observed
splittings has changed somewhat, away from a more or
less equal-spacing scheme. ' These new experimental de-
velopments immediately raise the question of whether the
GRR calculation wi11 be as successful in dealing with the
new splittings as in dealing with the older ones. Another
exciting question, posed by Pantaleone, Tye, and Ng, ' is
whether the new data will support a nonperturbative con-
tribution to the spin-orbit potential.

The question of the form of the QQ potential at large
distances, where confinement effects must come into play,
has long been a subject of intense theoretical interest.
Most of the recent calculations of heavy-quarkonium
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properties have been based on the linear potential. How-
ever, recent Monte Carlo lattice gauge (pure gauge)' cal-
culations by Otto and Stack have shown that the
confining potential should also include a Coulomb term:
namely,

V, (r) = Ar a/r—,

where 3 is the string tension and a=0.25+0.02. The
parameter a is not the same as the strong-interaction
coupling constant as.

The flux-tube (string) model affords another opportuni-
ty to derive a potential of the form of Eq. (1). Indeed,
Luscher was able to derive a value of m/12=0. 26 for a
by considering transverse oscillations of the flux tube. '
In spite of the agreement between the lattice gauge and
the string calculations, the magnitude of the coefficient a
that should be used in heavy-quarkonium calculations is
an open question because one would expect substantial
modifications from vacuum-polarization loops. Olsson
and Suchyta used the model of Poggio and Schnitzer
to show that vacuum polarization may effectively double
the coefficient a.

Below we report two calculations of the leptonic
widths and energies of the Y system. The first is an ab-
breviated GRR calculation where we keep the as correc-
tions to the static energy but ignore these corrections for
the spin-dependent parts of the potential. Originally, our
motivation for this calculation was to warm up for the
second calculation. However, as our experience with it
grew we realized that there were several important
reasons for doing the calculation. Among these were the
following.

(1) To have an independent means of checking parts of
GRR's calculation. Their results are based upon a varia-
tional approach, but ours are based on the numerical
solution of the Schrodinger equation.

(2) To compare our results with GRR to see how much
additional accuracy results from including the as terms.

(3) To examine the strategy used by GRR to determine
the renormalization scale parameter.

Our second calculation is undertaken to incorporate
some of the latest thinking about the form of the
confinement potential into a model that is based on the
abbreviated GRR potential. We divide the space be-
tween the two quarks into a small-r region where the re-
sults of perturbation theory are expected to be valid and a
large-r, or asymptotic, region where the QQ potential is
assumed to be adequately represented by the confinement
potential. These two regions are separated by the join ra-
dius RJ. We examine the consequences of choosing suc-
cessively smaller values for the join radius. With this
procedure for setting up the potential it is straightfor-
ward to extract values of the asymptotic Coulomb
coefficient a near 0.5 or 0.6, close to the value suggested
by Olsson and Suchyta. With our procedure it would be
impossible to extract a value near the Luscher value of
0.2 or 0.3 for a without violent disagreement with experi-
ment. In summary, our motivation for doing the second
calculation is the following: (1) to see if reasonable values
of the join radius lead to reasonable values for the asymp-

totic Coulomb coefficient a; (2) to see if a more compli-
cated form for the confinement potential opens the pros-
pect of any improvement of GRR-based results with ex-
periment.

II. THE ABBREVIATED GRR POTENTIAL

Our calculations are based on a Hamiltonian that in-
cludes a relativistic form for the kinetic energy operator
E, a confining potential V&, a short-range spin-
independent potential Vs„and a short-range spin-
dependent potential VsD, that is,

H =E + V~+ Vs) + VsD . (2)

Since the Y system is believed to be primarily a nonrela-
tivistic system, it suffices to retain only the first three
terms in the expansion of the kinetic energy operator:
namely,

K =2m+p /rn —p /4m + (3)

where m is the mass of the bottom quark and p is its
momentum in the center-of-momentum frame.

We follow the lead of GRR (Refs. 9, 12, and 13) in

choosing the form of Vs& and VsD but do not include all

of their as corrections. Our choice for the Vs& may be
written as a sum

VSI VNR + VSI

where the nonrelativistic potential includes the most im-
portant as corrections

4as 3as as
VNa ——— 1 — + (33—2nf )[ln(pr )+y& J3r 2~ 6m

(5)

—6m.
A=p exp

(33—2nf )as

One means of viewing the complications of the
second-order terms in Eq. (5) is to think of them as giving
an explicit expression for the running coupling constant
as(r). At sma11 values of r, its effect is to soften the cou-
pling constant since the expression in large parentheses is
negative there.

The term Vs& of Eq. (4) includes some important rela-
tivistic corrections to the potential as well as a contact
term, that is,

14as 8~as
Vsr = VNR(p'/m') —,+

9mr 3m

In Eq. (5), the quantity nf denotes the number of quark
degrees of freedom which we take to be 4, yE ——0.5772,
and p denotes the renormalization scale parameter. Its
relationship to the QCD scale parameter A depends upon
how one handles certain higher-order vacuum-
polarization effects. The usual expression is based on a
geometric series of iterated one-loop vacuum-polarization
bubbles, i.e.,
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4as s& rs2 r —3s) sp
+

m r
(8)

Since all of the terms of Eq. (8) are just reductions of
OGE terms, the spin-spin and tensor parts of Eq. (8) are
the same as their counterparts in EF's works. We refer
to the potential of Eq. (5), (7), and (8), as our abbreviated
GRR potential.

In this section and the next, our confining potential has
the form

LS
V, (r)= Ar+C-

2m r
(9)

where the sign of the spin-orbit term is taken from the.
work of Buchmuller. The spin-orbit contribution to Eq.
(9) is the same as that resulting from a scalar exchange.
Its physical origin may be traced to the Thomas preces-
sion term. Below we examine the extent to which the
measured P-state splittings support the presence of this
term. In Eq. (9) the quantity C denotes an overall con-
stant. Because of the minus sign in front of the spin-orbit
term in Eq. (9), one often speaks of "scalar" confinement
although there is no fundamental scalar present in QCD.

Our basic approach for obtaining the eigenvalues and
eigenfunctions of major energy levels is based upon a nu-
rnerical solution to the Schrodinger equation and the use
of perturbation theory to calculate the spin-dependent
splittings and some small spin-independent terms. Thus,
the unperturbed eigenvalue equation may be written

In the contact term of Eq. (7) we have chosen to keep
only the lowest-order term since it is the most important
contribution to this rather small term.

For the spin-dependent potential we retain only the
leading contributions, that is,

32&as 2as L S
VsD ——

2 s, s25(r)+
9m m r

where J denotes the total angular momentum. The per-
turbing potential includes a kinetic energy contribution,
the spin-independent terms of Eq. (7), and the entire
spin-dependent potential of Eq. (8},that is,

H' =K'+ Vs) + VsD . (13)

A =0.188 GeV, as ——0.269,

m =4.78 GeV, @=3.75 GeV .
(15)

Our values for A and as differ by less than 10%%uo from
GRR's. Below we shall study the effects of allowing p to
vary.

III. NUMERICAL RESULTS
FOR THE ABBREVIATED GRR CALCULATION

Thus, the expression for the total energy of the system
may be written in the form

E(nLJ)=E (nL)+(JMLSn
I

H'
I
JMLSn &, (14)

where the expectation value includes all of the improve-
ments of first-order perturbation theory.

We adopt the following strategy to determine numeri-
cal values for our parameters. Since the calculated ener-
gies are not overly sensitive to the value of m (provided
that it is not allowed to vary too far from about half the
Y mass}, we simply use the GRR value of 4.78 GeV.
GRR did not treat p as a free parameter. It was chosen
in such a manner that it minimized the effects of higher-
order renormalization-group improvements of their per-
turbative potential. For a preliminary orientation we
have adopted their value (p=3.75 GeV). We determine
the string constant A and the strong coupling constant
as by fitting the differences of the centers of gravity of 1P
and 2P states with the S energy of the lowest state at
9.460 GeV. In summary, our initial parameters for the
abbreviated GRR calculation are

Ho I fo("L)& =~o
I
Po(nL} & (10}

After separating the angular part of the wave function
of Eq. (10), the radial equation takes the form

where n is the radial quantum number and L is the orbit-
al angular momentum quantum number and

Q L(L+1)
m V(r) mE+— Q

dr r 2
(16)

p 4 as 3as as
Ho —— + Ar —— 1 — + (33—2nf )

m 3 r 2m 6n

&&[»(Vr)+rz]

where V= VzR+ Ar, which includes the most important
part of the confining potential and the running coupling
constant potential of Eq. (5). Equation (16) is the general
form

d Q =F(r)u (r), (17)

E(nLJ) =2m +C+e(nLJ ), (12}

The relationship between the total energy of the system
and the eigenvalue e is often encountered in numerical work in physics.

Thus, solutions to Eq. (16) may be generated by applying
the Fox-Goodwin difference formula, ' that is,

Q2 Q2
u (r+6) 1 — F(r+6) =2[1+—'F(r}]u(r)— 1 — F(r b, ) u(r —5)+—

12 12 12
(18)
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du )(r)
dp'

dug(r)
u, (r)

rc~ "r u2(r)
r =R ICR

(19)
may be used to determine the eigenvalue. To implement
the search for the eigenvalues, it is helpful to think of the
mismatch of the two logarithmic derivatives as a function
of the trial energy e. Then one can view the search for ei-
genvalues as the problem of finding the zeros of the
mismatch function. Since the denominators of Eq. (19)
have zeros at the nodes, it is important to keep the value
of R&cz away from the nodes. The effect of choosing
R &cz near one of the nodes is to make the range of initial
values of e that converge to the eigenvalue small. In

Because of the symmetry of Eq. (18) under the inter-
change A~ —b and the fact that the coefficients have
been chosen to eliminate fourth-order terms, corrections
to Eq. (18) are of order b, . For our numerical work we
choose 6=0.01—0.02 GeV ' and thus errors resulting
from the use of Eq. (18) should be completely negligible,
provided that we stay away from the singular points of
Eq. (16) where numerical instabilities associated with ad-
mixtures of irregular solutions are a problem. Equation
(18) may be used either for forward integration or for
backward integration. The interval for the numerical
work was taken to be [0, 20.0 GeV '].

Equation (16) has singular points at r =0 and at r = ao,
and it is important to respect the behavior of the solu-
tions near these points in devising a strategy to solve for
the eigenfunctions and eigenvalues. In order to minimize
the problems associated with the appearance of irregular
solutions, we used a method that involves both integrat-
ing in and integrating out. Equation (18) is used as a for-
ward difference formula to integrate from the origin to an
intermediate value of r, which we call the integration
continuity radius (ICR). Then Eq. (18) is used as a back-
ward difference formula to integrate from large r down to
ICR. The requirement of a continuous logarithmic
derivative at ICR, namely,

practice, we found that choosing R,c~ ——2.0 GeV ' or
3.0 GeV ' would always suffice to find the eigenvalue.

When the potential VN~ is set equal to zero, the eigen-
value problem of Eq. (16) for S states reduces to the well-

known linear potential problem. Its solution may be ex-
pressed in terms of Airy functions, ' that is,

u (r) =N, Ai[( mA )'~ (r —e/A )], (20)

where X, is a normalization constant. In this case, the
eigenvalues are related to their zeros of the Airy. function

by the expression

E =x (A /m )'~3 (21)

8as 4

(nS
/

Vso
/

nS) = /R(0)
/

(22)

where x„=2.34, 4.09, etc. The analytical expressions of
Eqs. (20) and (21) provide an opportunity to check over
eigenfunctions and eigenvalues for S states. We found
that our results for these eigenvalues were accurate to
four or five decimal places and thus our eigenvalues for S
states should be accurate to better than 0.1 MeV, which
is more than adequate for comparing theory and experi-
ment. When L&0, our prototype problem does not have

an analytic solution. In this case we compared with the
results for the lower P, D, and F states given in Table I of
Gunion and Willey and obtained satisfactory agree-
ment. Of course, we also carried out some of the stan-

dard numerical checks by changing the step width and by
choosing different values for the integration continuity
radius. All of these checks gave a consistent picture of an

accuracy of about 0.2 MeV for our numerical results.
Because of the 5 function in Eq. (8), the spin-spin in-

teraction contributes only to the energy shifts of the S
states. The relevant matrix elements are thus related to
the values of the wave function at the origin and are
given by

TABLE I. Energies of the Y system for different renormalization scale parameters (MeV).

State

1 S)(Y)
2 S& (Y)
3 S, (Y)
1 P(X)

3p
3p

1'P,
2 'P, (X')
2 Pl
2'P,
2'P,

@=3.75
A =0.188

as ——0.269

9 460
10010
10 357
9 907
9 895
9 875
9 900

10 266
10255
10239
10 260

p =3.00
A =0.181
as=0 29

9 460
10011
10 355
9 909
9 895
9 873
9 900

10266
10254
10236
10 259

p =2.50
A =0.180
as ——0.312

9 460
10015
10 361
9 910
9 894
9 870
9 900

10270
10256
10236
10 261

@=2.00
A =0.170
as =0 350

9 460
10018
10 360
9911
9 893
9 866
9 900

10269
10254
10 232
10260

Expt.

9 460'
10023
10 356
9913
9 892
9 860

10 269
10256
10 231

Q5' (MeV'}

'PDB (Ref. 16).
CUSB Collaboration (Ref. 14).

514 377 228 87
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TABLE II. Energies of the f system (MeV).

State

1 SI( f )

1 So(gb )

2 SI
2'S,
3 S,
3'S,
1'P2(x)
13P,
1 PO

1 'PI
2 P2(g')
2 PI
2 PO

2'P,

MR(83)

9 460
9 403

10020

10 350

9 914
9 903
9 877
9 906

10264
10256
10237
10257

0RR(86)

9 460
9416

10013
9 987

10 356
10 336
9 910
9 894
9 869
9 901

10268
10254
10233
10260

GRR(82)

9 462
9 427

10013
9 994

10 355
10339
9 910
9 893
9 868
9 900

10266
10252
10232
10258

FUL(87)

9 460
9 417

10018
9 992

10 360
10 339
9911
9 893
9 866
9 900

10269
10254
10232
10260

Expt.

9 460'

10023

10356

9913
9 892
9 860

10269
10256
10231

+5 (MeV )

'PDB (Ref. 16).
CUSB Collaboration (Ref. 14).

517 203 205

where R(r)=u(r)lr and the column vector notation is
used to combine the shifts for the triplet (top) and singlet
(bottom) states. Hence, in our treatment the triplet-
singlet splitting is directly proportional to the leptonic
width

4a eg
I „= /R(0)/

M (QQ)
(23)

where a is the fine-structure constant, e& denotes the
charge of the quark, and M is the mass of the Y system.

The results of allowing p to vary through a succession
of smaller values are shown in Table I, where the effects
of scalar confinement are also included. In each case the
values of A and a& are obtained by fitting the 1P-1S and

2P-1S splittings. As a measure of the quality of the
overall fit to the experimental data we compute the sum
of the squares of the differences of the theoretical and ex-

perimental results. These are listed in the last row of
Table I. From the values of +5 there, it is apparent
that decreasing p from the value used by GRR leads to a
uniform improvement in agreement between theory and
experiment. The best fit to the data occurs when p=2. 0

GeV. Using this value and a& ——0.350 we find A=232
MeV for the QCD scale parameter of Eq. (6). It is in-

teresting to note that our value for A differs only slightly
from the value of 227 MeV obtained with the parameter
set of Eq. (15). Similar calculations with the other values
of p and az in Table I support a value of A near 230
MeV. Thus, the effect of allowing p to vary is compen-
sated for by a variation of az which keeps the value of
the QCD scale parameter A constant, and the results of
Table I support the existence of a single QCD scale pa-
rameter.

It is conceivable that the fit to the energies may be-
corne even better if p is allowed to become smaller. How-
ever, we did not pursue this calculation further because
the larger values of a& associated with smaller values of p
give rise to repulsive effects of the potential of Eq. (5)
near the origin. These are already beginning to appear in
the wave function near the origin when p=2. 00 GeV.
Such effects probably arise because the form of the term
in the large parentheses of Eq. (5) overcompensates for
the effects of asymptotic freedom when a& is large.

Our results for the f energies when p=2. 00 GeV are
compared with the calculated results of GRR and MR in

1 P STATES OF THE UPSILON SYSTEM 2 P STATES OF THE UPSILON SYSTEM

EXP (MeV)

POBI84I BERI86l PBSI86I
9940—

9920—

9900- zl
9880-

98BO-

THEORY (MeV)

FULI87l 6RRI86I MRI83I IBI83l EFI81I

EXP (MeV) THEORY (MeV)

10260—
J

10240—

10220—

POBI84I BERI86I CUSBI86I FUll&TI SRR(86I MRI83I IBI83I EFI81I

10280—

r 091 071 066 0.69 0.64 0.42 0.45 1.04
r 0.89 0.81 0.51 0.89 0.66 0.42 0.48 1 0

FIG. 1. Recent history of experiments and calculations for
the 1P states of the T system.

FIG. 2. Recent history of experiments and calculations for
the 2P states of the Y system.
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TABLE III. Leptonic widths of low-lying S states of the Y system (keV).

State

Y(1S)

Y(2S)

Y(3S)

MR(83)

(2S/1S) =0.41

(3S/1S) =0.29

GRR{86)

1.64
1.11'
0.84
0.57'
0.61
0.41'

GRR(82)

1.29

0.62

0.46

FUL(87)

0.85

0.44

0.33

Expt.

1.22+0.05

0.54+0.03

0.40+0.03

'Includes radiative correction.

Table II and Figs. 1 and 2. Roughly speaking, from the
viewpoint of g 5, the GRR results are about a factor of
2 better than the MR results and our results are about a
factor of 2 better than the GRR results. Results from the
calculations of MB and EF are also included in the
figures. Our agreement with all the S- and P-state ener-
gies below the threshold for 88 production is very good.

%e are not as successful in the calculation of the lep-
tonic widths, which are displayed in Table III. The cause
of the discrepancy can be traced to the repulsive effects of
the potential of Eq. (5). These effects tend to suppress the
value of the wave function at the origin and thus lead to a

reduced value for the leptonic width. Using the parame-
ter set of Eq. (15) we were able to reproduce the GRR
(82) values of the leptonic width to within 5 —7%, an im-

portant confirmation of the technical correctness of their
calculation and ours. In order to eliminate this artificial
behavior near the origin, we would require an improved
parametrization of the potential.

Since our spin-spin term contains a 5 function, it does
not contribute to nonzero angular momentum states.
Thus the perturbation theory splittings of the P and D
states may be computed with the expression

b E(trip; L + 1)

EE( trip; L )

&nL
I VSD lnL &= bE(t„p L 1)

b,E(sing;L)

2czs
&nL

l

r
l

nL ) —
& nL

l
r '

l
nL )

m 2m 2 —L —1

4as
&nL

l
r 3

l
nL )

3m

—L
2(2L +3)

1

2

(L +1)—
2(2L —1)

0

(24)

M(trip;L + 1)—M(trip;L )r=
M (trip;L) —M(trip;L —1)

(25)

If there is no tensor force then r =2 for all P states. Also,
if there is no confinement contribution to Eq. (24), then
r=0.80, another universal value for all P states. As a
general rule, the "scalar" confining potential will make r
smaller than 0.80 because of the negative sign in Eq. (24).

where the prime in the original matrix element denotes
that we have included the spin-orbit part of the confining
potential. In analyzing the spacings of the splittings of
Eq. (24) it is often convenient to use the value of the ratio
r, which is defined by

In their important work, Pantaleone, Tye, and Ng'

have adopted the viewpoint that no nonperturbative con-
tribution to the spin-dependent potential is necessary. In
the context of our calculation, this means that the A-

dependent term in Eq. (24) is not present, and thus the P
state splittings are given by OGE alone. %e pursue this

question in Table IV where the results of omitting the A-

dependent term are compared with those obtained by in-

cluding it. In each case, the g 5 computed with OGE is

smaller than when the "scalar" confinement contribution
is included in Eq. (24). However, it would be premature
to conclude that the data clearly supports OGE over
OGE plus "scalar" confinement because the r values ob-
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tained with "scalar" confinement (0.7) are closer to exper-
iment than the values (0.8) obtained with OGE alone. In
order to obtain the answer to this exciting question it will
probably be important to improve experimental precision
and to sort out the contributions of higher-order (as)
terms to the spin-dependent potential.

Another interesting question about the P states that
may soon be subject to experimental scrutiny is the loca-
tion of the singlet P states. Because of our assumption
that the spin-spin part of Eq. (8) contains a 5 function the
location of all singlet P states in the tables is the center of
gravity of the triplet P states. However, if the spin-spin
potential has a finite range, then the singlet P would be
shifted away from the center of gravity, as emphasized in
the recent study of Gupta and Ram.

Do
Do —— , Di ——

80a m 14m
(28)

and

A=
1+8m.aDO

(30)

The result of transforming all equations to
configuration space is to give the following form for the
confining potential in the large-r region:

Vc(r) = Ar —(a+a )/r + .

where A is related to the gluonic sector string constant a
by

IV. CONFINING POTENTIAL
%ITH ATTRACTIVE COULOMB TERM

v=16aD) A = =0.20,9A
70m-m 4

(31)

Using the model of Poggio and Schnitzer, Olsson and
Suchyta were able to investigate the effects of vacuum-
polarization loops on the quenched interquark confining
potential. After carefully defining the confining potential
in the purely gluonic sector, where no fermion loops are
allowed, they were able to sum the effects of the finite
chain of vacuum-polarization bubbles and obtain the ex-
pression

V, (q) = VG(q)[1 —q Il&(q) VG(q )] (26)

for the renormalized confining potential V, in momentum
space. In Eq. (26) the quantity VG denotes the interquark
potential that includes (only) gluonic interactions (and
self-interactions) to all orders. The quantity q II, is the
gluonic self-energy that results from inserting the one-
fermion vacuum-polarization bubble. This form for the
self-energy is obtained after the renormalization con-
stants are determined to vanish. Because 0, satisfies a
dispersion relation one can obtain the leading coefficients
in the small-q expansion,

II,(q) ~DO D,q— (27)

from the imaginary part of the self-energy correction.
Using the Poggio-Schnitzer model, one may determine
these coefficients in terms of the light-quark mass m,
that is,

if m is chosen to be 0.300 GeV (Refs. 34 and 38). Thus,
the result of Olsson and Suchyta for the effects of vacuum
polarization is almost to double the coefficient of the
Coulomb term.

Because the light-quark mass that appears in Eq. (31) is
not very well determined from experiments, it is highly
desirable to have a means of determining the coefficient
of the Coulomb term of Eq. (29) that is more closely con-
nected with experiment. Now we develop a means of
determining this coefficient that is based on a continuity
argument.

One expects the perturbation approach of GRR to be
valid at small values of r. Among the reasons for this is
that the running coupling constant in the large
parentheses of Eq. (5) serves to soften the effects of the
OGE potential in this region which is consistent with the
requirement of asymptotic freedom. However, at larger
values of r the effect of the running coupling constant is
to enhance OGE. On the other hand, the coefficients in
Eq. (29) are supposed to be constants. Thus, the running
coupling constant should stop running at some distance,
which we call the join radius RJ. Equating the confining
potential of Eq. (29) to the interior potential [from Eq. (5)
and the linear part of Eq. (9)] leads to an expression for
the coefficients of the Coulomb term in the asymptotic
realm, that is,

TABLE IV. P-state splittings of the Y system for different renormalization scale parameters.

State

1'P2(x)
1 3P

1 PQ
2'P2(X')
2 3P

2 PQ

p=3.75

9 910
9 892
9 870

10269
10254
10235

p=3.00

9911
9 892
9 868

10268
10252
10232

p=2. 50

9 912
9 891
9 866

10 271
10254
10233

p =2.00

9 914
9 891
9 862

10271
10252
10229

Expt.

9 913'
9 892
9 860

10269
10256
10231

g 8 (MeV')

g 52 (MeV2)c
129
344

86
232

50
139

30
46

'PDB (Ref. 16).
CUSB Collaboration (Ref. 14).

'From Table I.
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4 3+s as
aAL as 1 — + (33—2nf )[ln(pRJ )+1'L ]3 2m 6m

(32)

We refer to this coefficient as the amended Liischer
coefficient. Our procedure for determining the amended
Liischer coefficient is depicted in Fig. 3 where the join ra-
dius is 2.0 GeV . From Fig. 3, it is apparent that extra-
polating the GRR potential into the large-r region yields
a potential that differs somewhat from the purely linear
form. Adding the amended Liischer term has the effect
of allowing us to introduce a potential that joins to VGA&
at RJ and that approaches the purely linear form at large

It is interesting to note that the potential of Eq. (29)
has the same form as the EF potential' and thus the
amended Liischer coefficient should be compared with
the EF coefficient E. Of course, the difference is that the
EF potential is assumed to be valid for all values of r and
hence does not behave as one would expect from asymp-
totic freedom. Thus, in some sense, our introduction of
the join radius allows a synthesis of the GRR and EF po-
tentials, in a manner that incorporates the strengths of
both.

Our results for the Y energies as the join radius is de-
creased from 2.0 GeV ' to 0.75 GeV ' are listed in
Table V. In each case the parameters A and as, which
are listed in Table VI, are determined from the energy
differences of the centers of gravity of the 1 P and 2 P
states from the 1 S state. Since we are primarily interest-
ed in exploring the qualitative features associated with
the introduction of the join radius, we use the GRR
values of m and p. As RJ varies from 2.0 to 0.75 GeV
the parameters A and us follow approximate linear
trends. The uniform decrease in the value of as is of in-

terest because our values of as necessary to fit the data in
Tables I and II are substantially higher than those de-
rived from the two-gluon decay rate of triplet' ' P states
(0.17) or the three-gluon decay rate of triplet" S states
(0.16). Of course, some of this difference can be account-
ed for by recalling that the renormalization method of
GRR is different from the modified minimal subtraction
scheme underlying the decay rate calculation. The con-
nection between the two coupling constants is given by

p o~i
4 6

r(GeV ')

GRR PARAMETERS
A = 0.189 GeV

p, = 3.75 Gev
as= 0.269
RJ = 2.0 GeV '

FIG. 3. The GRR potential and the confining potential with
the amended Liischer term (dashed line).

a
(as )GRR =as 1+ (6+ —— nf)—4. (33)

Using Eq. (33) to solve for as yields as ——0.28 if 0.35 is
used as input for (as)GRR. Values for the amended
Luscher coefficients are calculated [Eq. (32)] once as is
determined.

The average values and the squares of the wave func-
tions listed in Table VI are all very close, with typical
variations on the order of one or two precent. This lack
of variation is perhaps surprising. It does suggest that
the leptonic widths are not very sensitive to the value
chosen for RJ.

The results of Tables V and VI suggest two criteria for
determining the join radius RJ. The sum of the squares
of the differences between calculated and experimental
energies, that is g 5, starts to increase strongly as R~ de-
creases below 1.50 GeV '. Because the difference be-
tween g5 at RJ ——2.0 GeV ' and RJ ——1.50 GeV ' is

TABLE V. Energies of the Y system for different potential join radii (MeV).

State R =2.0 GeV RJ= 1.5 GeV ' RJ ——1.0 GeV ' RJ=0.75 GeV Expt.

1 Sl
2 S,
3 S,
4 S,
1 D„

9 460
10012
10 353
10 625
10 168

9 460
10017
10 364
10641
10 172

9 460
10011
10361
10645
10 165

9 460
10004
10 354
10639
10 156

9 460'
10023
10 356

g 8' (MeV')

'PDB (Ref. 16).

157 169 365
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TABLE VI. Selected Y system properties/parameters for di8'erent potential join radii.

Property
/parameter

~ (GeV')
as
aAr

(r), (GeV ')

(r)3s (GeV ')

~

R )s(0)
~

(GeV')
C (MeV)

RJ =2.0 GeV

0.172
0.273
0.658
1.11
3.51
4.36

110

RJ ——1.5 GeV —'

0.184
0.259
0.576
1.11
3.47
4.28

44

RJ ——1.0 GeV

0.196
0.244
0.487
1.11
3.45
4.26

—35

RJ ——0.75 GeV

0.201
0.240
0.448
1.11
3.44
4.34

—75

rather small, it is not clear if there is a local minimum
near 1.5 GeV or if the data are insensitive to RJ as
long as RJ) 1.5 GeV '. Another criterion that one
might use is to require the value of the overall constant C
to vanish, thus eliminating one of the parameters. This
occurs near RJ ——1.25 GeV ', where C =7.0 MeV. Both
of these results are consistent with a value of RJ between
1.50 and 1.25 GeV

The results listed in Table V show that the triplet D-
state energies vary by 10-15 MeV as RJ varies. These
differences are large enough to be observable and would
furnish a good means of examining the properties of the
confining potential. Thus the experimental determination
of the D states should be given a high priority. One
would expect the D states to be a better means for study-
ing the confining potential than the lower angular
momentum states because the larger angular barrier is
more effective at preventing the wave function from
penetrating the region where short-range effects are im-
portant.

V. CONCLUSIONS

Our abbreviated GRR calculation described in Secs. II
and III generally supports the values that GRR obtained
in their variational calculations. However, we found that
their procedure for determining the renormalization scale
parameter p did not seem to be the optimum one. Intro-
ducing a little more freedom into their model by allowing

p to vary allowed us to obtain substantially better fits in
the context of our abbreviated GRR model. It is espe-
cially noteworthy that all of our different values for the
renormalization scale parameter p lead to a value of
about 230 MeV for A, the QCD scale parameter.

By introducing a potential join radius we were able to
incorporate some of the modern thinking about the role
of quantum fluctuations of the flux tube into the function-
al form for our confining potential. The join radius is
defined as the distance at which the running coupling
constant stops running. Thus, it separates the region
where one might expect perturbation theory to have
some validity from the region where one needs a
phenomonological potential, such as the EF potential.
The coefficient of the EF term in the confining potential,
which we call the amended Liischer coefficient, is deter-
mined from a continuity condition at the join radius.
From the viewpoint of agreement of calculated energies
and experimental energies values near RJ =1.50 GeV
are preferred. The trends of some of the parameters sug-
gest that a join radius in the interval 1.25 to 1.50 GeV
would be reasonable. Such a value for the join radius
leads to an amended Luscher parameter aAL=O. 55. This
value agrees with the recent result of Olsson and Suchy-
ta, who considered vacuum-polarization corrections to
Luscher's calculation. Our procedure for determining
aAL would not allow values as small as those originally
determined by Luscher.
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