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Photons can mix with low-mass bosons in the presence of external electromagnetic fields if these
particles—not necessarily of spin 1—couple by a two-photon vertex. Important examples are the
hypothetical axion (spin 0) and graviton (spin 2). We develop a formalism which is adapted to study
the evolution of a photon (axion, graviton) beam in the presence of external fields. We apply our re-
sults to discuss the possibility of detecting axions by a measurement of the magnetically induced
birefringence of the vacuum. We also discuss photon-axion (graviton) transitions in pulsar magnetic
fields. The QED-induced nonlinearity of Maxwell’s equations causes magnetic birefringence effects
which are much stronger than the axion-induced effects in the range of axion parameters allowed by
astrophysical constraints. Also, this QED effect induces an index of refraction for photons in vacu-
um which is so large near pulsars that photon-axion (graviton) transitions are strongly suppressed.
However, this QED effect can be canceled by plasma refractive effects, leading to degeneracy be-
tween photons and axions so that resonant transitions can occur in analogy with the Mikheyev-
Smirnov-Wolfenstein effect. The adiabatic condition can be met only in spatially extended systems,
possibly in the magnetosphere of magnetic white dwarfs. Our conclusions differ substantially from
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several recent discussions of various aspects of these mixing phenomena.

I. INTRODUCTION

A particle, if it has a two-photon vertex, may be creat-
ed by a photon entering an external electromagnetic field.
Furthermore it may be that this particle is very light or
has zero mass, leading to a near-degeneracy with the pho-
ton. In this case we expect a “mixing” phenomenon be-
tween the photon and the particle, where a coherent su-
perposition of the two arises, as is familiar from the
famous K%meson system.! Since the external field is
present, angular momentum for the beam need not be
conserved and the superposition can contain components
with various spins and polarizations. This is in sharp
contrast to the K system or with neutrino-flavor-mixing
effects’ where only states of equal spin and polarization
mix. In particular, photon mixing with spin-0 or spin-2
particles is possible. In the first case there is the much
discussed axion>* which is supposed to couple to two
photons in analogy with the neutral pion. Although
many astrophysical® and cosmological® arguments have
severely constrained the interaction parameters and mass
of the axion and similar hypothetical particles, their pos-
sible existence or nonexistence remains an open question
with far-reaching consequences for particle physics, as-
trophysics, and cosmology. For spin 2 there is the gravi-
ton, which also—as is shown ‘“experimentally” by the
bending of light by the sun—must have a two-photon
vertex. The spin 1 case is more subtle since the Landau-
Yang theorem’ prohibits the coupling of two real pho-
tons to a spin-1 state. What remains unobtainable, of
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course, is mixing with nonintegral spin particles. Strong,
large-scale magnetic fields exist in the laboratory as well
as in the astrophysical context, so we will concentrate our
attention on external magnetic fields.

Since we are dealing with cases of near degeneracy, one
has to consider otherwise small effects which can be im-
portant in lifting the degeneracy and so cause a severe al-
teration of the problem. Even in vacuum, there will be
an effective index of refraction for the photon due to
QED effects® ! which will play an important role, par-
ticularly in the strong magnetic fields near pulsars. The
neglect of this point, we believe, has lead to errors in a
number of papers.'''> We shall take account of this
point by using the Euler-Heisenberg effective Lagrang-
ian,'* which is the lowest-order expression of the non-
linearity of Maxwell’s equations in vacuum. Its effects
are characterized by the parameter

E=(a/457)(B, /B o) ,
where!*
B =ml/e~4.41x10" G

is the critical field strength. This parameter & will always
be small, although not necessarily small compared to our
other small parameters, the axion or graviton couplings
to the photon.

We shall discuss three types of problems, principally:
production of axions and gravitons by photons (or vice
versa) in strong fields'"!>1516 and indirect effects as in
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sensitive laboratory tests!””!® of photon propagation in

strong magnetic fields. In addition there is the conver-
sion of axions into electromagnetic power in a resonant
cavity, as suggested by Sikivie!® in his original paper. He
suggested that this method can be used to detect the hy-
pothetical galactic axion flux that would exist if axions
were the dark matter of the Universe. This method has
been further discussed?® and a detector of this sort has
produced first negative results,”' at a level, however, not
yet significant compared to the theoretical prediction.
Our approach is not well suited to treat this case and we
have nothing to add to this discussion.

Our method is very well adapted, however, to cope
with the conversion of beams. An example is the possi-
bility of detecting the solar axion flux.!®?? Also, axions
might be detectable by “shining light through walls,” i.e.,
by propagating a laser beam through a magnetic field,
blocking it halfway by a “wall” and measuring the re-
emerging photons due to the axion component which
penetrates the obstacle.!’ Since the quoted discussions are
adequate treatments of these questions, we will apply our
mixing formalism in some detail only to those cases
where the existing discussions, we believe, contain some
errors: The problem of axion-induced birefringence of
the vacuum,!’ and axion-photon transitions in pulsar
magnetic fields.'"!?> Other points we shall touch on are
the use of periodic external fields to enhance the
birefringence effect and the influence of matter on these
effects, including the possibility of resonant oscillation
effects due to cancellations between the plasma and vac-
uum refractive effects.

We begin our discussion in Sec. II with the derivation
of a suitable wave equation to describe the axion-
(graviton-)photon system. The main ingredient will be a
matrix of the refractive index which, in the presence of
an external magnetic field, is nondiagonal in the particle
states. In Sec. III we discuss the evolution of a photon-
axion beam in the presence of various external field
configurations. In Sec. IV we apply these results to a dis-
cussion of experimental possibilities to detect axionlike
particles by measurements of magnetically induced
birefringence. Section V is devoted to axion-photon and
photon-graviton transitions in stellar magnetic fields. In
Sec. VI we summarize our conclusions.

II. EQUATIONS OF MOTION
IN THE PRESENCE OF EXTERNAL FIELDS

A. The axion-photon system

We begin our discussion with a derivation of the equa-
tions of motion for the axion-photon system where the
term “axion” stands generically for any light pseudosca-
lar particle. We shall see later that a very similar equa-
tion is found for the graviton-photon system so that the
following discussion is generic to the whole class of prob-
lems that we wish to address. A suitable Lagrangian den-
sity is given by
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1 _
_ v 2.2y, 1 v
-L—‘%F;WFH +45(9,a0%a —mga®)+ 4MF,WF” a
a? (F,.F*)Y? 4+ 1(F f:'uV)2] (1)
+ 90m:[ uv +7 Hv ’

where a is the axion field, m, its mass, F e the elec-
tromagnetic field tensor, and F uv = 7€uypoF P’ its dual.
The third term describes the CP-conserving interaction
between the pseudoscalar and the electromagnetic field
where the energy scale M is a phenomenological parame-
ter to characterize the interaction strength. The most re-
cent discussion of the evolution of red giants in connec-
tion with observational data on the number of “clump”
giants in open clusters gives the rather firm bound®
M > 10'° GeV, independently of specific model assump-
tions concerning the axion or any similar particle. We
anticipate that in the photon-graviton system M will be
replaced by essentially the Planck mass Mp,. The last
term in Eq. (1) is the Euler-Heisenberg effective Lagrang-
ian'3 arising from the vacuum polarizability [Fig. 1(a)].
It describes photon-photon interactions in the limit
where the photon frequencies are small in comparison
with the electron mass m, and all field strengths are weak
in comparison with the critical field strengths.

We stress that Eq. (1) is written in terms of natural, ra-
tionalized electromagnetic units?* (natural Lorentz-
Heaviside units) where #i=c=1 and the fine-structure
constant is given as a=el/4r= - These units are

commonly employed in field theory and have been used

(@)

Electron loop

(b)

FIG. 1. (a) Feynman diagram for the refractive index of a
photon propagating in an external magnetic field. The sources
for this field are denoted by crosses ( X ). (b) Feynman diagram
as in (a) for the axion contribution. Both contributions lead to
magnetically induced birefringence effects of the vacuum. In (b)
the axion can be replaced by a graviton or any other particle
with a two-photon vertex.
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in the axion literature. In the literature concerning
the Euler-Heisenberg Lagrangian and its applica-
tions,” %1325 unrationalized (Gaussian) units have been
used where a=e?~ ;. Therefore care must be taken
when comparing our results with those in this literature.
In Ref. 17, both systems of units have been used simul-
taneously, leading to numerical errors when results writ-
ten in the two different systems are compared.

Since it is central to the following, we begin with a dis-
cussion of the role of the external magnetic field B, in
giving a refractive index to the photon. This problem has
been studied by a number of authors,” '° we follow the re-
sults given by Adler.!® It is found that the two states of
linear polarization parallel (||) and perpendicular (1) to
the external field are the eigenstates of propagation and
have the following (different) refractive indices:

n,=1+4£sin’0, n =1+1£sin’@ , 2)
where
E=(a/457)(B, /B )? 3)

and the critical field strength is'* B, =m2/e. In con-
trast to Adler,!” we follow the usual convention and take
the photon polarization vectors to represent the direction
of the electric field of a plane wave. The angle ® is the
angle between the external field direction and the photon
momentum, cos®=B,-k. Furthermore, although the ||
and | states correspond roughly to the usual linear polar-
ization states in vacuum, the E and B fields are not neces-
sarily transverse to the direction of propagation, e.g., in
general V-Es£0. This nontransversality is proportional
to § and we shall neglect it in our mixing couplings since
it always appears multiplying another small factor.

In order to have mixing we need a transverse external
field component for the following reason. The conversion
from a free photon to a spin-0 axion or a spin-2 graviton
involves a change in the azimuthal (J,) quantum number
of angular momentum. The photon has J, =*1, and the
axion or graviton have J, =0 or J, ==*2, respectively. A
longitudinal field, i.e., one which gives the problem an
azimuthal symmetry, however, cannot induce a change in
J, and so will give us no transitions.

In principle, the mixing problem is multichannel, in-
volving the two polarization states of the photon with the
axion or with the two states of the graviton, yielding a 3
or 4 channel problem. It may be seen, however, that CP
simplifies the problem, at least in the absence of matter,
so that only one of the photon polarization states couples
to one of the other states, giving in effect a two-channel
mixing problem. The argument is as follows. Let the
parity operation be defined as a reflection x;, — —x, in
the plane containing the external magnetic field B, and
the beam direction k. This operation induces E,(x ,x )
——E (—x,,x)) and E(x,x)—E (—x,,x,), where
the component 1 of a vector is the component per-
pendicular to the plane of reflection while the ||
component stands for the two components in this
plane. The magnetic fields transform as B (x,x)
—B,(—x,,x;) and B(x,,x,)—>—B(—x;x;) and
a(xl,x” )——al—x,x) for the pseudoscalar axion field.
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In particular, the external field B, will reverse sign. The
interactions under consideration are P and C invariant, so
we apply the C operation to reverse B, again. If B, is
sufficiently slowly varying with x, the Lagrangian Eq. (1)
is invariant under P and CP, and since for these condi-
tions B, is invariant under CP, our wave field solutions in
the presence of B, can be classified into eigenstates of this
CP operation. The plane-wave photon states 1 and || are
even and odd, respectively (this remains true when the
small longitudinal components are taken into account!?),
while the plane-wave axion states are odd. Thus only the
|| photon state mixes with the axion.

We then find the following stationary wave equation
for particles propagating along the z axis:

Q, 0 0 A,
0*+32+ |0 @, Bow/M|||4,|=0, )
0 Bo/M —m? a

where B, is the transverse part of B, and is, in general, a
slowly varying function of the space coordinates. In vac-
uum, Qj =2w%(n ;— 1) where the refractive indices n ; are
given by Eq. (2), and these quantities also vary in space.
A4,, A, and a are the amplitudes of the 1 and || photon
states and the axion, respectively.

In general we may assume that the variation of the
magnetic field in space occurs on much larger scales than
the photon or axion wavelength. Then we use the expan-
sion w?4+82=(w+i3,(w—id,)=(w+k)Nw—id,) for
propagation in the positive z direction. The dispersion
relation can be expressed as kK =n o with the refractive in-
dex n, and since in our case always |n —1| << 1 we may
approximate w +k =2w. Therefore in all practical cases
it is convenient to use the linearized form of the wave
equation,

A, 0 0 A,
o+ |0 A, Ay |—id, | |4, |=0, 5)
0 Ay A, a

where
A =20Esin’®, Aj=losin’®, A,=—m}/20. (6)

These quantities are the momentum differences of the
respective modes compared to photons of the same ener-
gy in field-free vacuum, A; =k; —w. Using refractive in-
dices, kj =n;o so that nj=1 +Aj /. The axions are as-
sumed to be relativistic, m, <<w. The off-diagonal com-

ponent is
Ay =(B,/2M)sin® . (7

The inverse quantities Aj'l are the natural length scales
of the problem and have, as will become clear shortly, a
very graphic interpretation as oscillation lengths.

We stress that A, <0, while, in vacuum, A, ;>0 so
that the presence of the magnetic field enhances the split-
ting between axions and photons. Therefore, in vacuum,
“level crossing” where the axions and photons become
degenerate cannot occur. The positive sign of A, | can be
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physically understood if one recalls that the relevant pho-
ton frequencies are below the energy of the intermediate
e te ~ state whence the frequencies are below the relevant
resonance, like light in ordinary materials. For massless
particles (gravitons) and for propagation along the field
lines, Ai,”=0, and degeneracy occurs even in vacuum,
but then also A, =0 and no mixing effects arise.

In practice, a perfect vacuum does not exist either in
the laboratory or in the astrophysical context. Therefore
the A, |, terms in Eq. (5) should be extended to represent
the total refractive indices. If a separation of the two
contributions is necessary we shall use the notation A*¢
for the vacuum contribution Eq. (6) and A#* for the gas
contribution so that n =1+ (AY*° 4+ A%) /w. The A® are
functions of density, temperature, chemical composition
of the gas, and magnetic field strength. We emphasize
that Af*5£Af*, the difference giving rise to the Cotton-
Mouton effect, i.e., the birefringence of gases and liquids
in the presence of transverse magnetic fields. This effect
is usually accounted for by the relationship?®

(AFS— AF*) /o =(n¥* —n$)oy=CAB/] , (8)

where C is the Cotton-Mouton constant and A the wave-
length of the light. We note that, in the presence of lon-
gitudinal magnetic field components, there are also off-
diagonal gas contributions which couple the || and 1
modes (Faraday effect). We finally note that the case of a
scalar instead of a pseudoscalar particle is fully analogous
with the exchange of the roles of the || and L modes.

B. Gravitons

Whatever the ultimate fate of a quantum theory of
gravity, it seems safe to assume that at low energy com-
pared to the Planck mass Mp ~10" GeV and in weak
gravitational fields, there is a field quantum, the graviton.
It couples as a massless spin-2 particle to the energy-
momentum tensor, in particular to that of the elec-
tromagnetic field. There is therefore a two-photon vertex
of known structure by which transverse gravitons could
be produced by photons in a magnetic field. It is an intri-
guing thought that this might be possible in the strong
magnetic fields of pulsars, although we will find that, as
for axions, these effects will be very small.

The two states of the graviton can be represented’’ by
transverse, symmetric, traceless tensors € and €* where,
for graviton propagation in the z direction, €},
=—¢) =1, €, =¢€,;; =1, and all other components are
zero. The space parts of the electromagnetic energy-
momentum tensor are T;;=E,E;+B;B;—16,(E*+B?)
so that the coupling is of the form €;;(E,E; +B;B;) where
a summation -over repeated indices is implied. The
relevant coupling constant is the inverse Planck mass.
Given an external magnetic field B,, only its transverse
part B, couples, and taking B, in the x direction, B, of a
photon couples to €, while B, couples to €. Therefore
€™ couples to the 1 photon mode, while €* couples to the
|| mode. This result can also be derived with our above
CP argument because the tensor components €,, and €,

y
are even under the CP operation defined above, while ¢,,
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and €, are odd so that €™ is even and €* is odd under
this CP operation. Therefore we find a linearized wave
equation of the form

A, Ay, O 0 4,
Ay O 0 O G,

@t 1o 0 A Ay |T0%||4, |70 O
0 0 A, O G,

where G, and G, are the amplitudes of the states €™
and €%, respectively, and, aside from factors of order uni-
ty,

Ay =(B,/Mp)sin® . (10)

Therefore this problem is fully analogous to the axion-
photon system which we shall use as our generic case.
The main difference is that the graviton is strictly mass-
less so that the diagonal entries for G | and G ,, are zero.

III. EVOLUTION OF A PHOTON BEAM
IN MAGNETIC FIELDS

We now turn to a general discussion of the evolution of
a light beam in a magnetic field region. We will focus on
our generic case, the mixing of photons with light pseu-
doscalar particles to which we refer as “axions.” In other
words, we will explore several important specific solu-
tions to the wave equation Eq. (4). The interpretation of
these solutions in the context of specific experimental or
astrophysical scenarios is left to Secs. IV and V.

A. General solution in a homogeneous magnetic field

If the external field B, is homogeneous the first equa-
tion in (5) may be easily Fourier transformed in order to
obtain the dispersion relation k =n 0. The lower part of
Eq. (5) can be diagonalized by a rotation to primed fields:

4] 4

a’ a

cosd  sind

— sind  cosd

(11)

The strength of the mixing is characterized by the ratio
of the off-diagonal term in Eq. (5) to the difference of the
diagonal terms:

Ltan20 =4, /(A —4,) . (12)

We have | tan2d = for 4 << 1, the “weak mixing case.”
Turning to the dispersion relation for the diagonal fields
A and a’ we find

A”—i-Aa A”—Aa
+
2 T 2cos2d’

where the plus sign refers to A} and the minus sign to A,.
The refractive indices of the mixed modes are given as
n'=14+A"/w.

Now consider a beam of frequency @ propagating in
the z direction. Our discussion is simplified if we measure
the phases of all modes relative to the unmixed 4, com-

. (ot —wz—A)2)
ponent, neglecting a common phase e . Then
the component 4, develops as

’

(13)
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A.(z)=e LT L (0) (14)  gence. For the mixing components we find
1\2)= 10
A,(z) A4,(0)
=M(z) , (15)
The phase in this solution represents the QED-induced a(z) a(0)
and Cotton-Mouton contribution to magnetic birefrin- where
J
cosd —sind | e " HITHE 0 cos?  sind
M= lsing  cosd 0 o ii=apz | [ —sind cosd | - (16)

With Egs. (6), (12), and (13) these equations completely
solve the wave equation Eq. (5). These formulas apply for
an arbitrary direction of B, in the case of vacuum, or for
a transverse B, when matter is present. The general case
of B, with longitudinal components plus matter can be
handled by diagonalizing the analogous 3 X 3 matrix.

B. Weak mixing case and applications

We now take the external homogeneous field to be
sufficiently weak so that ¢ << 1 and the weak mixing case
applies. The mixing matrix Eq. (16) can be written as

M(2)=M(2)+ M, (2)+FMy(2) . (17)

We must work to second order in the small mixing angle
& in order to exhibit the back reaction on the incoming
channels as given by /I, [see also Fig. 1(b)]. We also in-
troduce the notation

Aosc=A1)—Aa (18)

for the momentum difference between relativistic axions
of energy w and photons in the state 4, of the same ener-
gy. Furthermore, it is convenient to measure the beam
path z in units of Ay!, which is the only natural length
scale of the problem:

E=A8uZ - (19)

Then we find for the expansion of the mixing matrix,
where one must be careful to work to the relevant order
in {4 in the exponentials also,

M) 0 it ML) =(1—e'¢) (1) (1) )
(20)
—it—(1—e®) 0
MyE)= 0 (l—ei§)+i§e"§} .

This result can be used to discuss some applications of
the mixing formalism.

1. Photon birefringence effects

We begin with laboratory experiments where small
effects on the photon polarization state are investigated.
We assume that some residual gas is present in the ap-
paratus and the field B, is transverse. In the absence of
axions, the magnetically induced phase shift between the

r
modes A, and A is simply given from Eq. (14) by
¢:(AH_A1)Z'=¢QED+¢CM' The QED and the Cotton-
Mouton contributions are, respectively,

2a’B?

—I—S——Twz, dcem(z)=27CB2z . (21)
me

$qen(2)=

We emphasize again that these results are expressed in
natural Lorentz-Heaviside units.?*

These phases represent the magnetically induced
birefringence. The eigenmodes are 4 and A, whence
this effect causes a linearly polarized beam to develop a
small elliptical polarization component. The effect is big-
gest when the initial linear polarization is at an angle?®
45° to B,. The resulting ellipticity (ratio of minor to ma-
jor axis) is | ¢qep+@Pcm | /2, a possibly measurable quan-
tity.2> A rotation of the plane of polarization would be
obtained if the eigenstates of refraction were the circular-
ly polarized modes (helicity states) of the photons as is
the case in optically active media or for photon propaga-
tion in a medium along the magnetic field lines (Faraday
effect). In order to measure ¢opp the apparatus must be
sufficiently evacuated so that ¢cy <<dqep Which, as we
shall see, can be achieved.

In the presence of axions, there is an extra contribution
¢, from the imaginary part of the upper diagonal term in
M(z). We find for the total phase ¢=dqep +dcm+9,>
where

b, (2)=— ImM ;=02 A,z — sinA . z) . (22)

If this contribution were of similar order as the QED
effect one could prove the existence of axionlike particles
from a measurement of the magnetic birefringence of the
vacuum as was first pointed out by Maiani, Petronzio,
and Zavattini'’ —see also Ref. 18.

The term JM;, also has a real part which deviates
from unity by the amount

e(z)=1— ReMy,,=28*sin?(A .z /2) . (23)

Assuming initially a(0)=0, the magnitude of 4, will be
reduced by the factor 1—e&(z) due to the conversion of
photons into axions. Therefore the plane of polarization
will be rotated by an angle £(z)/2, assuming initially 45°
against B,. This effect could also be used to detect ax-
jons.!” There are, then, two axion-induced effects, both
of order 9?2, an extra phase shift for 4 I and a reduction in
its magnitude. We will study these effects in the context
of a specific experimental proposal in Sec. IV.
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2. Photon-axion production

The photon-axion or axion-photon transition ampli-
tude is given by the off-diagonal terms in /. The transi-
tion probability is

plyy—a)=| M, | *=497sin* (A2 /2)=2e(z) . (24)

If the beam path is a multiple of /=27 /A, the tran-
sition rate is zero so that / . is to be interpreted as the
axion-photon oscillation length.

These transitions can be used to possibly measure
cosmological or astrophysical axion fluxes.'*?*?2 One
could also produce axions and detect them by their
reconversion into photons (“shining light through
walls”).!>162° The quoted discussions offer an adequate
treatment of these problems and we shall not consider
them any further although we feel that our mixing for-
malism is a more elegant approach. In Sec. V, however,
we will study the problem of axion-photon and photon-
graviton transitions in pulsar magnetic fields because the
existing discussions,'"!? we believe, are erroneous due to
their neglect of the A" contribution to A, leading to er-
rors in the calculation of ¢ and /. by many orders of
magnitude.

C. Maximum mixing and “level crossing”

We also consider the case of maximum mixing, large ¢,
where /M has a particularly simple form. In vacuum, ax-
ions and photons can never be degenerate as discussed
above. In a medium, however, one might have A" <0and
specifically A|=A, so that maximum mixing with 3=45°
occurs. The momentum difference between the mixed
eigenmode A4 | or a’ with photons in field-free vacuum is,
in this case, A'=A,+ Ay =A£A,. Then we find for the
mixing matrix Eq. (16) the result

10 01
Myeg(z) = 0 1 cos(Ayz)—i 10 sin(Ayz) . (25)

We stress that the diagonal terms are purely real so that
no axion-induced birefringence (or ellipticity) effects
occur while the € (or rotation) effect remains. The transi-
tion rate is

p(yu—m):sinz(AMz) (26)
and the oscillation length is
Ideg=1r/AM=27TM/Be ’ (27)

assuming a purely transverse field. In this case a com-
plete transition between photons and axions is possible.
In practice, it does not seem possible to precisely adjust
the properties of the medium such that the degenerate
case would occur. It is conceivable, however, that the
beam passes through a region with a shallow gradient of
the density of the medium so that initially A, <A, and at
a later position A, > A,, or vice versa. This would be the
case, as we shall see later, for axions passing through the
surface layers of a pulsar. Then at some intermediate
point “level crossing” occurs. If the gradient is so shal-
low that this crossing occurs adiabatically, photons
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would completely oscillate into axions (gravitons) or vice
versa. This is fully analogous to “resonant” neutrino os-
cillations that have been proposed to solve the solar-
neutrino problem [Mikheyev-Smirnov-Wolfenstein
(MSW) effect].*

The gradient is sufficiently shallow if the degeneracy is
maintained for a distance larger than /,.,. More precise-
ly, we require that the rate of change of the mixing angle
at resonance, | dd/dz |, be less than the oscillation wave
number at resonance, 27 /14, =2A,. This translates into
the condition

L(Aﬁas—{—Aﬁac)

7 <8A% . (28)

If at resonance Af*(z) varies much faster than Aj*(z)

this condition may be rewritten
-1

4 InN, | > |14y /879" | =(Ta/180m)(wM?/BY;,) ,

dz

(29)

where 3"°=A4,,/(A|**—A,) is the small mixing angle in
the absence of the medium. We have assumed that
Af* < N,, the local electron density.

We stress that these conditions are necessary but not
sufficient for resonant transitions to occur. The presence
of the medium will cause the photon component of the
beam to be scattered. Substantial oscillations occur only
if the photon mean free path exceeds the oscillation
length /.

D. Perturbative solution in inhomogeneous fields

Our previous formalism, although conceptually very
useful, breaks down for inhomogeneous fields. Of practi-
cal interest are the spatially varying fields near pulsars or
periodic field configurations in the laboratory. In this
case one may consider a perturbative solution of the
linearized wave equation Eq. (5). To this end we rewrite
Eq. (5) as a “Schrodinger equation” with the z coordinate
playing the role of time:

i0, A=(Ho+H)A , (30)

where A=(4,,4,a) and the “Hamiltonian” 3 X3 ma-
trices are

A(z) 0 O
Hoz)=0+ | 0 Afz) 0|,
0 0 A,
(31
0 o0 0
Hi(z)=10 0 Aylz)
0 Ay(z) O

For M — « we have A,,—0 and this equation is solved
exactly by A(z)=U(z) A(0) with

Uz)= exp |—i [3Holzdz’ |-
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This includes the QED-induced phase shift and the
Cotton-Mouton effect as in the homogeneous case with
the substitution Bjz — [iB2(z')dz’.

We then use the “interaction representation” by means
of the transformation AimzﬂJ' A. In terms of these
transformed fields our Schrodinger equation is
19, Ay, =Hint Aiy Where Wintzﬂ*ﬂﬂl. The complete
solution is now obtained order by order from the usual

iteration:
ALl z)=—i fozdz'ﬂim(z')Ai"m(z’) : (32)

This iteration is started with the zeroth-order solution
Al (z)= A(0).

For the photon-axion transition rate we find, from the
first-order solution,

plr—a)=| [Fdzby(z)

X exp

z' 2
id,z =i [T A(z"dz" |

(33)

We stress that this result crucially depends on our ““dis-
torted wave function” approach where part of the pertur-
bation, the terms A“ and A, have been absorbed by the
unperturbed “Hamiltonian” #, Had we considered
these terms as part of the perturbation 7, a higher-order
expansion would have been necessary to obtain this re-
sult. All previous discussions'""!>!° have effectively used
this latter approach without expansion to higher order
because these authors were unaware of the existence of
the term A}*. In laboratory fields and for the range of
interesting axion parameters this omission is not impor-
tant because the argument of the exponential is dominat-
ed by A,z’. In pulsar magnetic fields, however, Az’ is
entirely negligible and the previously derived results!'!!?
require substantial corrections.

For the axion-induced phase shift we find, from a
second-order expansion,

¢,(z)=1Im [fozdz’ fOZIdz"AM(z’)AM(z”)

X exp [iAa(z’——z")

—i fz’: dzlllA“(zIII) ] ] .
(34)

In laboratory fields typically |A;| << |4, | so that the
second term in the exponential is negligible.

For homogeneous fields we recover our previous re-
sults of the weak mixing case. Of course the maximum
mixing case and level-crossing effects cannot be treated
with these perturbative methods so that the earlier mix-
ing formalism is a necessary tool to treat these cases.

E. Resonant effects in periodic fields

It is possible to consider providing the missing momen-
tum transfer between the channels 4, and a from a spa-
tially periodic B, field. When the oscillation period
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matches | A, | =m2/2w there will be resonantlike effects
in analogy with the Rabi resonance in spin resonance ex-
periments. Therefore we consider a sinusoidal field
configuration:

B,(z)=BjycosAyz . (35)

This field is assumed sufficiently weak that in Eq. (33) and
(34) the argument of the exponential is dominated by A, z.
Then we find for the transition rate, keeping only the
iz —ibyz
resonant term of cosAygz =(e ° +e )/2,

ply,—a)=(Byz/2M)%({) , (36)
where {=(A, —Aj)z and
g(&)=¢"2sinX(£/2) . 37

We note that for a constant field, A;=0, this result is
identical to our previous result for homogeneous fields
Eq. (24) aside from an extra factor 4 which occurs be-
cause we have kept only the resonant contribution of the
periodic field. On resonance g(§)=1, see Fig. 2.

For the axion-induced phase shift we find, again keep-
ing only resonant terms,

é,(2)=(Byz /2M)2f(£) /4, (38)
where
f&)=¢1—¢%sing . (39)

On resonance, ¢, =0 as in the degenerate case. Near res-
onance, however, there is a strongly enhanced effect, see
Fig. 2.

All resonant effects occur for =1 so that the width of
the resonance is about &4, ~z~!. In other words,
strongly enhanced effects occur near m, =120l in a

mass interval of width 8m,~(w/m,)z ~! where z is the

0'4 T T T T

=T -5 0 5 10

FIG. 2. Effects in periodic fields. The axion-photon transi-
tion rate is proportional to g({) as defined in Eq. (37) while the
axion-induced birefringence effect ¢, is proportional to f({) as
defined in Eq. (39).
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length of the periodic field region. We stress that near
resonance ¢, « z> while dgpp, o z.

IV. BIREFRINGENCE EXPERIMENTS
TO SEARCH FOR AXIONS

Conversion experiments to search for axions have been
extensively studied in the literature,!>16:19:20.22.29 the re.
sults agree with our Eq. (24) and we have nothing essen-
tial to add to these discussions. We merely remark that
implicit assumptions concerning the neglect of vacuum
and residual gas refractive effects have neither been stat-
ed nor justified in these papers, although the approxima-
tions made tend to be appropriate for the most
interesting—but not the full—range of axion parame-
ters. The applicability of various approximations be-
comes much more transparent, we believe, in our mixing
formalism. The existing discussion'” of possible measure-
ments of the axion-induced birefringence of vacuum,
however, needs some correction and does not include the
possibility of periodic fields. Since these experiments are
interesting even for the QED contribution alone, we now
discuss the range of axion parameters to which such ex-
periments might be sensitive.

A. Homogeneous fields

1. Approximations for laboratory conditions

Assuming transverse B, we begin our discussion by an
estimate of the relative importance of the Cotton-Mouton
contribution. To this end we use the value of C for oxy-
gen given in Ref. 26 and scale it down to a residual pres-
sure of 107! Torr. We find C~—5x10"%° G2
cm~'=—2.6Xx10"3! eV~3, whence for w=2.4 eV we
have |dcm/doep | =7X 1073, slightly larger but in
essential agreement with the corresponding ratio ob-
tained in Ref. 25. It is certainly small enough to assure
that the Cotton-Mouton contribution may be neglected
subsequently for the phase shift between 4, and 4.

In order to estimate the mixing angle we recall that,
from Eq. (12), in the weak mixing case,

200,
9= :
2081+ 20A8° +m}

(40)

A typical value for the frequency of the laser beam would
be (Ref. 25) w=2.4 eV while the magnetic field might be
as strong as B,=10° G. With these values we find
20A=1.1X 102 eV2. A typical residual pressure in
the experimental apparatus may be (Ref. 25) 10~!! Torr,
and scaling the refractive index of air at 760 Torr,
n—1=3%x10"% to this low pressure we find
(n —1)=10"", corresponding to 2wA®=10"1¢ eV?2
This is substantially larger than the AJ* contribution.
Note that although the total refractive index of the resid-
ual gas is much larger than the vacuum contribution, the
difference of the refractive indices between the || and 1
modes is much larger for the vacuum term so that,
indeed, ¢qep >>dcm- We shall be interested only in axion
masses far exceeding 10~8 eV so that we may approxi-
mate
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3=~B,0/Mm? . (41)

The weak mixing approximation then translates, for the
quoted values of w and B,, into the requirement
M >>B,0/m2=(4.7x10"% GeV) [(1 eV)/m,]*. This
condition is easily met for the range of interesting
(M,m,) values. For these conditions we may also ap-
proximate A, .=A —A, = —A,=m}/20.

The authors of Ref. 17 also mentioned the case of
massless “‘axions”, i.e., true Goldstone bosons. In this
case the dominant contribution to the denominator of Eq.
(40) comes from the residual gas in the apparatus so that
a discussion of this case is much more complicated. We
have made no attempt to consider this case in any detail.

2. Single- vs multiple-beam-path experiments

In a practical experiment one would reflect the laser
beam back and forth N times between two mirrors so as
to accumulate a larger effect with a field region of given
size. We assume that the distance between subsequent
reflections is / so that the total beam path in the magnetic
field is L =NI. In the proposed experiment to measure
the QED effect?> the specifications are  =4m, N =500
and therefore L =2 km. Obviously any physical mirror
will be transparent to axions so that only the photon
component of the beam can be reflected. Therefore each
reflection effectively acts as a “filter”” which sets the axion
component of the beam back to zero. The compound
effect is ¢(L)=N¢(l) where, in general, Nd(/)=£¢d(NI) be-
cause ¢(z) is, in general, not linear in z. Therefore we
find, for the QED and axion contributions,

i
$qep(L)= 15m:w ,
(42)
¢, (L)=3*[1—(sinA /) /A 1AL ,
and
e(L)=29*N sin} (A1 /2) . (43)

These results disagree with the corresponding con-
clusions of Ref. 17 where the fact has been ignored that a
physical mirror will act as an “axion filter” and will,
therefore, not preserve the composition of the beam.
Aside from problems concerning the use of electromag-
netic units, the results of Ref. 17 would be correct for a
single-path experiment with N=1and L =1.

Considering now the case of very small axion masses,
Al << 1, these results may be expanded as

(B,m, ) | B} |
¢, (L)=N——->1D, e(L)=N——1". 44)
480M 8M

We believe®! that this result replaces Eq. (16) of Ref. 17.
[Note that in the second formula of their Eq. (16) ap-
parently k? should read k or, in our notation, ».] From
this result it is clear that experiments looking for ¢, with
massless particles that mix with the photon is inappropri-
ate because, to lowest order, the effect vanishes for
m, —0.
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3. Range of measurable effects: large m,

In the case when the distance between two reflections
is large compared with the oscillation length (A ./ >>1)

we neglect sinA/ against A ¢/ and find

¢,(L)=(B,/m,M)*oL . (45)

This case would apply to relatively large axion masses.
Then it is easy to compare the QED and axion contribu-
tions. The requirement ¢, > dqgp translates into

m,M <(15m2/2a>)'? . (46)

So far our discussion has been completely independent
of any specific assumptions concerning the relationship
between m, and M. However, for the actual axion mod-
els discussed in the literature, there is a definite relation-
ship between these quantities:

M=R(0.7x10'° GeV)[(1 eV)/m,], (47)

where R is a numerical factor of order unity.* In these
models, aside from model-dependent numerical factors
M = f,/a where f, is the axionic decay constant. Then
our result Eq. (46) is R < 107> for a measurable effect to
occur. Therefore R would have to take on a rather ex-
treme value in these models for axions to be visible in this
type of experiment. Even relaxing our requirement to
¢4 >0.1¢qep leaves us with the requirement R S 10~*
which is more restrictive than the R <1073 of Ref. 17.
We mention in passing that neutral pions satisfy Eq. (47)
with R of order unity because m,f, =m_f_, a formula
which reflects the fact that axions have a nonzero mass
due to their mixing with the 7 °, the mixing angle being
approximately f_/f,. Pions, then, do not contribute to a
measurable effect.

4. Range of measurable effects: m, arbitrary

We now evaluate Eq. (42) in more detail without
recourse to specific assumptions concerning the value of
Ay l. For the ratio of the axion and QED effect we find

ba 15m;
.=

= = 22
a ¢QED 4a°M ma2

20 . mazl

— sin
m2 2w

(48)

We note that this ratio depends critically on the length /
of the optical resonator, but not on the absolute value of
B, or L, although these numbers are, of course, instru-
mental for the absolute magnitude of the effect.

Taking the specifications of Ref. 25 as an example
(B,=10° G, w=2.4 ¢V, L =2 km, | =4 m, and N =500),
we find ¢oep=0.96x10""". With the optimistic as-
sumption that ¢ can be measured with a 109% precision,
axions can be seen if 7, > 0.1. In Fig. 3(a) we have shaded
this area, i.e., where ¢, >0.1dqep, or, given the above
numbers, where ¢, 2 107!2. We also show the curve
which would border this region if / =40 m, keeping L =2
km constant.

The region of (M, m,) values to which this experiment
is sensitive extends to largest M values for m2=2nrw/I
[the “nose” of the curves in Fig. 3(a)]. At this m, value
we find

1=(25.8 km)r,M} 0.y , (49)

where M ;=M /(10'° GeV) and o,y =w /(1 V). In other
words, even if r, can be measured to the 0.1 level, one
needs a cavity length in the km range to improve on the
astrophysical bound?} of M > 10'° GeV even in a narrow
range of masses. It is remarkable, however, that it is
quite feasible to ‘‘beat” the solar bound (Ref. 23)
(M >4x10® GeV) since for ©=2.4 eV and r, =0.1 only
! =10 m is required.
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FIG. 3. (a) In the shaded area the phase shift ¢, would
exceed 10% of ¢qep for a beam frequency w=2.4 eV and a cavi-
ty length /=4 m. The second curve gives the same result for
/=40 m. (b) In the shaded area the rotation of the plane of po-
larization would be measurable (e > 10~'?). It is assumed that
w=2.4¢eV, B,=10"” G, L =2 km, and a cavity length /=4 m.
The second curve gives the same result for / =40 m while keep-
ing L fixed at 2 km.
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5. Rotation of the plane of polarization

For completeness, finally, we follow Ref. 17 and as-
sume that the rotation of the plane of polarization of the
laser beam was also measurable at the same level of pre-
cision as the ellipticity. The requirement that € as given
in Eq. (43) exceeds the value 1072 for the above experi-
mental data translates into the shaded area of Fig. 3(b)
which indicates the range where a measurable effect may
be hoped for. Again, our results differ from those of Ref.
17. They are similar, aside from problems concerning the
use of electromagnetic units, for /=L. The oscillatory
pattern in our result reflects the fact that for sufficiently
large axion masses the oscillation length becomes shorter
than the optical cavity and may then fit an integral frac-
tion of /. We recall that a measurement of € amounts to a
measurement of the photon to axion transition rate and
that the ‘“‘shining light through walls” possibility appears
to be a more practical approach to this problem.'

B. Birefringence in periodic fields

In Sec. III we have shown that the phase shift ¢, will
be enhanced for a certain range of masses in a periodic,
transverse magnetic field while ¢qpp remains essentially
unchanged. Therefore the ratio r,=¢,/¢qep is
enhanced. One may again reflect the beam back and
forth through the same magnetic field region (containing
now a periodic field) in order to accumulate a larger total
effect while r, remains unaffected by this approach. We
stress that the resonance does not become ‘‘sharper” if
the beam is reflected more often, although the photons
“see” more periods on their path. This is again due to
the transparency of any mirror to axions.

For the ratio r, of the axion and QED birefringence
effect in a sinusoidal B, field we find from Eq. (21) where
we substitute B2— B2 /2 and, from Eq. (38),

d, 15m}
r = —
¢ ¢QED 16(12M Zw

Ifg), (50

where, again, / is the length of the optical cavity, not the
total beam path, and {=(A, —Ay)l. The extreme values
for f are approximately +0.32 (see Fig. 2) so that we can
estimate the necessary cavity length in order to obtain a
measurable signal:

=(5.1 km)r,M3 0.y - (51)

Therefore one still needs a cavity length in the km range
to improve on the astrophysical bound?® of M > 10'° GeV
even in a narrow range of masses. The periodic external
field, therefore, does not improve on the maximum M
value which is reachable for a given cavity length, it rath-
er shifts the m, value at which the maximum result is ob-
tained.

In summary we find that the performance of a
birefringence experiment to measure the QED effect
would be sensitive to a large range of axion parameters.
This range can be enhanced by a periodicity of the mag-
netic field. In view of practical limitations, however, it
does not appear possible to probe a range of parameters
not already excluded by astrophysical considerations.
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V. AXION AND GRAVITON CONVERSION
IN STELLAR MAGNETIC FIELDS

A. Axion conversion in pulsar magnetospheres

Axions could be abundantly produced in the interior of
neutron stars from bremsstrahlung emission in nucleon-
nucleon collisions.?? This could, indeed, constitute the
dominant cooling mechanism for these stars, a fact which
may be used to set useful bounds on axion parameters.>
Recently Morris!! has proposed that this axion flux may
be detectable through the secondary photons from axion
conversion in the exterior magnetic field of these compact
stars. The energy of these x rays would be characteristic
of the internal temperature of the star (typically 50 keV)
while the thermal x-ray emission from the surface would
rather lie in the 1-keV range or below.

The magnetic field strength can be taken on the order®*
4 10" G, the axion energy as 10 keV, and for the cases
considered by Morris'! one would have M on the order
10'2-10"® GeV so that there is a strong axion flux, yet
not so strong that the pulsar cools too fast to have any
internal thermal energy left. Then the axion masses,
given Eq. (47), are in the range 1072-1073 eV. Therefore
we obtain, in our mixing matrix Eq. (5),

|A, | =1078-10"10 ¢V (52)
while the off-diagonal term is
Ay =~10"10-10""1 ev . (53)

If one sets A =0, the mixing angle would turn out some-
where in the range 3=A,/|A, | =107'-1072, a for-
midable value which gives rise to the large conversion
rate discussed by Morris.

To estimate the actual value of A, we begin with the
vacuum contribution which, according to Eq. (6), turns
out roughly

Aj*=10"2eV . (54)

This is much larger than |A,| whence axions can be
treated as effectively massless particles, A, =0. Concern-
ing the contribution of free charges in the pulsar magne-
tosphere we emphasize that this environment cannot be a
perfect vacuum.’> Estimating the electron density we use
the expression®’

N,=(7x10"2 cm™3)[B, /(1 G)][(1 sec)/P], (55)

where P is the pulsar period and B, is the magnetic field
component along the rotation axis in the specific model
of the aligned rotator for the pulsar magnetosphere that
was used to derive this expression. With the expression
a)[z,1=47raNe /m, for the plasma frequency we can esti-
mate

Aﬁ”z—wgl/Za)z—leO'M eV, (56)

where P=1 sec and B, =4 X 102 G has been used. This
is the smallest of all contributions to the mixing matrix.
Hence the mixing angle will now be on the order
d=Ay /Afl’“z 108, about six or seven orders of magni-
tude smaller than previously thought. Since p(a—vy)
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~?, the transition rate is down by 12—14 orders of mag-
nitude. Although in a detailed calculation of the axion-
photon conversion rates the inhomogeneity of the field
must be properly included as in our perturbative solution
Eq. (33), it is clear that the conversion is now dramatical-
ly suppressed due to the magnetically induced vacuum in-
dex of refraction. Given this suppression it is difficult to
imagine the occurrence of observable effects.’®

B. Photon-graviton conversion near pulsars

Although we can see from the preceding section that
the possibility of substantial photon-graviton transitions
in a stellar magnetic field will be very small it is very in-
structive to consider this case explicitly because gravitoas
are massless and the Planck scale is a known number so
there are no free parameters in the problem besides the
magnetic field. We may neglect all effects of the gas near
the pulsar surface and find for the mixing angle

4

O S (57
a’MpB,0

m

where we have neglected factors of order unity. For
o=1 keV, typical for blackbody photons at the pulsar
surface, and for B, =10'2 G this is 3~ 107!, The oscil-
lation length is approximately

4

me
I°SC:21T/A"z;5}§Ta; . (58)
For the present conditions this is / ,,~107> cm so that
many oscillations take place before the photon passes
even one scale length of the magnetosphere. Therefore
ply —>grav)=~9*=10"%,

Using smaller magnetic fields yields larger values for &4
but also larger oscillation lengths. Taking magnetic
white dwarfs with B,=10® G as an example and for
©=10 eV we find 9~10"% and I, ~1 km, so that
ply —>grav)=98?=~107'%. For objects with still weaker
magnetic fields, such as the Sun, finally the oscillation
length would far exceed the length scale R of the system.
Then one may estimate the transition probability as

p(y —grav)=~49?sin (AR /2)~B2R*/M3, .  (59)

Hence the transition rate decreases with decreasing field
strength as naively expected. Of course, it is not obvious
that the presence of gas can be neglected in these cases of
very weak magnetic fields. We have considered, for ex-
ample, photon-graviton mixing in the galactic magnetic
field where the momentum difference between these chan-
nels is dominated by refractive effects of the interstellar
gas. The transition rate is very small.

C. Level crossing near the pulsar surface

In the interior of neutron stars, axion-photon transi-
tions are suppressed by plasma effects which give the
photon an effective mass, not by the vacuum refractive
index. Taking, for example, even a very low electron
density such as 10 cm™3, the corresponding plasma
frequency would be about w§,=104 eV? so that
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AR~ —wlz,]/Zw is the dominant scale in the mixing ma-
trix. The detailed dispersion relation in a strongly mag-
netized plasma would be much more complicated than is
indicated by the simple k’=w’—wo}, because resonant
transitions between the Landau levels of the electrons are
possible. The magnetically induced vacuum index of re-
fraction for photons is larger than unity, while plasma
effects tend to reduce it to values less than unity. There-
fore we have the situation that the photon refractive in-
dex in the interior of the neutron star is substantially
below unity, in the exterior it is substantially above unity
so that somewhere near the surface a crossover must
occur, photons and axions or gravitons would be degen-
erate. Therefore one can imagine that adiabatic “level
crossing” transitions could occur near the pulsar surface,
as discussed in Sec. III C.

Near the pulsar surface, the electron density varies
much faster than the magnetic field so that we may apply
our criterion Eq. (29) for resonant effects to occur. We
find, for the oscillation length from Eq. (27),

l4eg=(0.64 km)M (B ;' , (60)

where M,,=M /10'° GeV and B,=B, /102 G. Furth-
ermore,

FC=A, /A*=1.1X10"°M g'B ;' oey | (61)

where w,.y=w/keV and axions have been treated as
massless particles. Therefore,

| Lyeg /879 | =(2.4X 10° km)M}y 0,0y (62)

independently of B, and far beyond the scales over which
the electron density varies. Therefore the adiabatic con-
dition cannot be met for the axion and the situation is
even worse for the graviton.

Most recently, Yoshimura'? has independently pointed
out the possibility of resonant level-crossing effects be-
tween axions and photons in the magnetosphere of a pul-
sar. Unfortunately, he has neglected the QED contribu-
tion to the photon dispersion relation. Therefore all of
his numerical estimates are incorrect by many orders of
magnitude. His scenario is that of a binary pulsar where
a shallow gradient of matter is obtained from an accre-
tion flow. We do not believe that resonant effects would
occur in this scenario.

D. Level crossing in magnetic white dwarfs

It is not unthinkable, however, that resonant level-
crossing effects occur in larger systems where the electron
density changes on scales larger than that given by Eq.
(62). An example would be magnetic white dwarfs. For
0=10 eV, we find ly,/9"**=600 km M3,0,), where
w1 o=w/10 eV. Since typical white dwarf radii are on the
order of 10* km, a dilute atmosphere with a scale height
in the 1000-km range appears possible. The magnetic
field would be in the 10%-G range, and we shall assume
that axions have sufficiently small masses that the vac-
uum mixing angle is still given by Eq. (61). The photon
dispersion relation is very complicated for the conditions
at hand because atomic binding energies are also in the
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eV range. Furthermore, even for free electrons, the spac-
ing of the Landau levels is (e/m,)B=(1.16 eV) By
where By=B /10® G so that these magnetic resonances
cannot be ignored for photons in the eV range.

We parametrize the effect of the gas as

AF*= —(w}/20)F(0,T,B) , (63)

where T is the temperature of the magnetosphere of the
star, possibly much larger than the surface temperature
so that the medium could be fully ionized. The plasma
frequency is given as w3 =4maN, /m, where N, is the lo-
cal electron density. Neglecting A,, degeneracy occurs
for Aj* 4+ Af*=0, i.e., for

_ 14a B%0*
¢ 90 m}

F(o,T,B)"!

=(1.34x10% cm—*)B2w?,/F . (64)

In other words, if F=~1 the medium must be extremely
dilute. Parametrizing the photon scattering cross section
with the Thomson cross section as

o=(87a’/3m?)G(w,T,B) (65)
the mean free path is
(6N,)"'=(1.12X 10" km)B;2w*F /G (66)

far exceeding all relevant length scales. We conclude that
for M near the astrophysical bound of 10!° GeV resonant
oscillations of photons into (massless) axions may possi-
bly occur in extended systems such as magnetic white
dwarfs. In practice, it would be very difficult, of course,
to find observational evidence for these oscillation effects.

VI. CONCLUSIONS

We have provided a detailed discussion of mixing phe-
nomena between photons and light bosons of spin 0 or 2
in the presence of external magnetic fields. Our study is
complementary to several recent discussions of axion-
photon mixing phenomena.!!"1215:16.19.20.29 e g6 beyond
this previous work by including the spin-2 case (gravi-
tons), and by developing a mixing formalism for these
phenomena. We also give a perturbative approach for
the resulting multicomponent wave equation, and by in-
cluding the QED-induced nonlinearity of Maxwell’s
equations we take into account an important effect in the
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lifting of the near degeneracy of the mixing particles. We
identify the range of parameters where vacuum and
matter refractive effects are important for photon-axion
or graviton transitions and for photon birefringence
effects. In detail our conclusions are as follows.

(a) Photon birefringence experiments. Experiments to
measure the QED-induced birefringence of the vacuum
in an external magnetic field could exclude a large range
of axion parameters. These, however, are already exclud-
ed by astrophysical bounds.”® Even the use of periodic
field configurations, while enhancing the effect for a cer-
tain range of axion masses, would not give a measurable
effect. However, since this type of experiment is impor-
tant in its own right it is worth noting that it would yield
independent insight into the question of axion parameters
as a by-product.

(b) Photon-axion conversion experiments. The most
promising approach to measure this effect appears to be
“shining light through walls” as described in Ref. 15.
Optimistically, there appears to be a range of parameters
not excluded by astrophysical evidence where a measur-
able effect is possible, although this parameter range is
very small and does not overlap with the predictions of
any existing axion model—see Ref. 15. Again, this type
of experiment would yield independent evidence on the
range of allowed axion parameters.

(c) Photon-axion (-graviton) conversion near stars. The
transition rates appear to be always very small, mainly
because the QED-induced photon refractive effects
strongly suppress these effects. This QED effect could be
canceled by plasma refractive effects, possibly leading to
resonant oscillation phenomena. However, near pulsars
the adiabatic condition cannot be met because the generic
length scales of the system are far too short. In more ex-
tended systems such as magnetic white dwarfs, however,
resonant transitions may possibly occur, although a for-
tuitous combination of axion and white-dwarf parameters
is required.
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