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Critical dimension of strings with an extrinsic curvature
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The conformal anomaly is calculated by using the path-integral method to determine the critical
dimension for a string theory with an extrinsic curvature by appropriately defining the first-order
form of this Lagrangian. The critical dimension, defined by the vanishing of the Liouville kinetic
term, is found to be D =26, the same as for the ordinary bosonic string theory.

A new type of string theory has been recently pro-
posed' whose actions depend on the extrinsic curvature
of the world sheet. This model is proposed with the
hope that the Nambu-Goto action with this term added
can describe "smooth" strings for QCD hadrons. The
reciprocal of the coefficient for this extrinsic-curvature
term is found to be perturbatively asymptotically free,
which realizes the "smooth" phase. The classical prop-
erties of this theory have been extensively studied since
its proposal, especially in regard to the mass spectrum,
but the quantum aspects of this theory have not yet been
well understood. One aspect of the quantum feature is
the critical dimension: i.e., in which dimension does a
consistent quantum theory exist? Can this be D =4 to
describe QCD appropriately, or again D =26'?

There are several methods to determine this critical di-
mension. Here we will adopt the method taken by
Fujikawa: i.e., the path-integral method. In Ref. 4,
Fujikawa fixed the gauge of the two-dimensional general
coordinate invariance, quantized the Lagrangian for a
bosonic string in the manner of Becchi, Rouet, and
Stora (BRS), fixed the functional measure so that there
arises no BRS anomaly, and calculated the conformal
anomaly. Vanishing of the conformal anomaly is neces-
sary to make the conformal degree cease to be another
dynamical degree of freedom, and determines the critical
dimension. For strings with extrinsic curvature, it is not
necessary for the conformal anomaly to vanish as it is al-
ready broken at the tree level. Nevertheless, it is of in-
terest to investigate the coefficient of the Liouville mode
for this case. In order to perform this procedure, we
need to construct the first-order form including the ex-
trinsic curvature so that we can quantize this Lagrang-
ian following Ref. 6. Let us do this first.

The original form proposed in Ref. 1 has taken, as a
first term, the Nambu-Goto area-law action in the
second-order form:

I,= f d'g&g, —g.„=a.x~a,x„, (l)

whose first-order form is well known to be

I,= ,' f d'g &g g—'"a—.x&a,x„. (2)

That is, by taking the variation in g', one can recover
Eq. (1). The term involving the extrinsic curvature has
the form (the other forms are equivalent to this up to a
total divergence)

I& ————f d g&g (t) X) (3)

where a is a constant and 8 X is defined to be

a'x~= a. (&g g "a,x~) .
v'g

(4)

The first-order form of the action is taken to be the sum
of Io and I, in which both the metric and X" are treated
as independent. In Polyakov's formulation the action is
the sum of (3) and a term

LGF =BOA +B)A

LFp ico[(c't),——+ —,'t)eC')A +(t)tc +Bee')A '

+(a,C' —a,C') A ']
+tC [«'~. +-,'B.C')A '+(g, C'+g, Ct)Ao

+(a,C' —a, C') A '~,

(6)

where B, are auxiliary fields, C' and C, are the
Faddeev-Popov (FP) ghosts, which are denoted as g and

(, respectively, in Ref. 4 and
T

gab g gab
—1/4

A'+ A'

A A' —A

Here we have changed some notations so that there
occurs no confusion with other papers. We work in
Minkowski space while Fujikawa has worked in Euclide-
an space. The BRS transformations for fields do not

I3 —— ,X" bXp —gab Cr,

where A,
' is a constraint field that fixes the induced

metric g, t, to be equal to t),x"t)bx„. It is shown that if
one considers A,

' as a fixed background field of the form
—,'v gg', then our formalism is equivalent to Polyakov's.
The effect of "fast" fluctuations of background fields is
shown to renormalize the coupling a and thus does not
affect our anomaly calculations.

The action is invariant under two-dimensional general
coordinate transformations; hence, we can follow the
quantization procedure employed in Ref. 4. That is, the
gauge-fixing term for two-dimensional general coordi-
nate invariance can be taken to be the same as in Ref. 4
and hence so can the Faddeev-Popov term:
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change by adding Eq. (3) and are given in Ref. 4. The
functional measure which is the origin of all anomalies,
if there are any, is given by

Now the partition function

Z = dp exp /' d x Lo+L~F +LFp

d p =dX dC 'dC, dB,d A ' . (9)

Here the fields X and C' are defined so that there is no
BRS anomaly arising from the measure (9):

X~=g'"X~, C'=g'"C'.

is invariant under the BRS transformation due to the
two-dimensional general coordinate transformation and
is locally invariant under the Weyl (local scale) transfor-
mation at the tree level. To get the conformal anomaly
we integrate over B„A, and A ' to obtain the
simplified Lagrangian as

Z= f dA dXdC'dC, exp ——' f d x X„(HO+ aHo)X "+i f d x Cp' Q(p
2

(12)

where i'= —ialr)o+cr&B, with the Pauli matrices cr; and p'~ =g'~ = A . The original kinetic operator for the field
X is simply Ho and is given by

—1/2g2 —1/20= —p (13)

which is a Hermitian operator and hence the total kinetic term Ho+aH0 is also Hermitian. Now we calculate the
anomaly contribution from the field X, which is the only difference between Ref. 4 and our work. Following carefully
the procedure taken in Ref. 4, the anomaly is expressed in the path-integral method and is obtained, after tedious but
rather straightforward calculations, as

lim f e '""exp[ —(Ho+aH&)/M ]e'""
M- (2rr)

= 1 2 1
3 1~+ lim M dz exp

00

24m 477 M~00 0

aM
Z —Z

lim 1 —(1+2aM ) f dz exp
1 . 5 00

47T M~00 aM 0

aM
Z —Z p (14)

(15)

which is the same form as the one obtained in Ref. 4.
On the other hand, if one first lets M~ oo, keeping the
coupling a finite, then it becomes

(16)
M~ a) 4v 2rra

where we have kept the coupling a and a cutoff M finite
within the limit M ~ oo. The third term in (14) vanishes
if we take the limit M ~ Oo irrespective of the value of a.
However, the second term in (14) becomes different ex-
pressions depending on which limit is taken first. If one
first lets a ~0 within the limit M~ oo, the second term
becomes

M 2p

26 —D
A wqy)

= r) lllp (17)

which appears in the anomalous Ward-Takahashi identi-
ty

where one cannot take the limit a ~0. The order of two
limits, M~ 00 and a ~0, is not interchangeable. This
means that the theory with a =0 cannot be analytically
connected to the one with a finite a. In any case, howev-
er, those two divergent expressions, (15) and (16), can be
absorbed by the counterterm of the form p p as in Ref.
4. Finally, the total conformal anomaly, together with
contributions from the FP ghosts included, is given by

f dpp = f dp A„,„,+ f dp' —f d gp 'i) (X/&p9 (Xl&p)e' f dp'e'
5p

(18)

where S is the effective action of the field p, S is the total
action appearing in Eq. (12), the dp'=dXdC'dC, . The
second term in Eq. (18) exists because of the explicit
breaking term given by Eq. (3). If we require that the

quantum correction to the Ward-Takahashi identity van-
ish, the critical dimension does not change since the first
term in Eq. (15) is the same as the one obtained in Ref. 4
without the I& term, Eq. (3). It is again given by D =26.
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This result may be anticipated from the original form
of the extrinsic curvature term, Eq. (3). When we substi-
tute the conformal gauge g„,=pq„, into Eq. (3), we no-
tice that this term is directly proportional to p
without replacing X„with X„ in Eq. (10). That is, this
term already breaks the two-dimensional conformal in-
variance, which is implicitly shown by the dimensional
parameter a in Eq. (3) and is explicitly shown in Eq.
(18). An explicit breaking term may not contribute to
the anomaly just as the fermion mass term does not con-
tribute to the chiral anomaly.

Recently, Pisarski has analyzed the perturbative sta-
bility of smooth strings. He has calculated the Liouville
term directly by computing the path integral. Our pro-
cedure in this paper has been to calculate the contribu-
tion of the extrinsic curvature to the Weyl anomaly.
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