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Geometrical representation of neutrino oscillations in vacuum and matter
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A simple formula from which a geometrical picture of neutrino oscillations with two flavors

may be constructed is derived from the equation of motion for the neutrinos. Applications of the
picture to the nonadiabatic as well as adiabatic Mikheyev-Smirnov-Wolfenstein eftects in the
solar-neutrino problem are given. A generalization of the picture to the three-generation case is

also briefly discussed.
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The neutrino oscillation can be described as the rota-
tion of a unit vector v (t) representing a neutrino of
flavor a around the mass eigenstate v;(t). This is analo-
gous to the precession of a magnetic dipole in a (steady
and varying) external magnetic field. The projection of
v (t) on v, (t) is related to the amplitude of finding v, (t)
in the state v (t). Although the geometrical representa-
tion of neutrino oscillation is a convenient way to under-
stand and analyze the oscillation problems, the represen-
tation itself is not unique. For example, Mikheyev and
Smirnov' (MS) have used an orthogonal basis with the
axes v&, Revz, and Imv2 to describe the oscillation of
two generations of neutrinos. In their picture, the Aavor
vector, e.g. , v, will rotate around v& with an angle 8
starting from the initial position v, (0)=Rev,
=(cos8, sin8, 0). For oscillations in rnatter, known as
the Mikheyev-Smirnov -Wolfenstein (MSW) effects, the
mass eigenstates v, and v2 in vacuum are replaced by the
effective (in matter) mass eigenstates vI, ' and v~z '. Al-
though this representation correctly describes the oscilla-
tions both in vacuum and matter, the choice of the or-
thogonal basis is somewhat arbitrary.

On the other hand, Messiah, and Kim, Nussinov and
Sze have recently discussed the use of a geometrical pic-
ture in three-dimensional Euclidean Aavor space deduced
from the two-valued representation in fiavor space of the
rotation group. They have independently applied this
picture to the case of adiabatic approximation of the
MSW effects in the solar-neutrino problem.

In this paper we present a clear and simple derivation
of the geometric picture discussed in Refs. 4 and 5 start-
ing from the original equation of motion for two genera-
tions of neutrinos. Applications of the picture to non-
adiabatic as well as adiabatic MSW effects in the solar-
neutrino problem are given. A generalization to the
three-generation case is also discussed.

We will start with the case of two neutrino Aavors.
Let P=(v, v ) be a neutrino state expressed in thee p
weak basis and normalized such that f /=1. The equa-
tion of motion for neutrinos in matter is given by

A —6 cosO

4E 5 sin20

where A =2&2G~N, E with GF the Ferini constant, N,
the electron number density in matter, and E the neutri-
no energy. Also in Eq. (1), h=mz —mi, the mass-
squared difference. In a vacuum, we have A =0. In this
case Eq. (1) is the equation of motion for the weak-
eigenstate neutrinos in a vacuum.

We will rewrite Eq. (1) in the form

i = ——Bg,. dP o
dt 2

where

(2)

Bo——( 5/2E)( —x sin28+ z cos28 ), (4)

by B=Bo—(A/2E)z. The negative sign on the right-
hand side of Eq. (2) is chosen such that Bo is almost
parallel to z for small 8 values. Multiplying Eq. (2) by

on the right, multiplying its Hermitian conjugate by
g on the left, and then taking their difference, we get

i—(yq')= qq', —B
dt '2

We can parametrize itg by a three-vector m defined by

+0
+—m

2 2
(6)

where o.0 is the 2)&2 identity matrix. The coefficient of
ao is —,

' by our assumption that g has unit norm. This
equation assigns a unique vector m to each given g.
Conversely, when m is given, P will be determined up to
an overall phase. It is readily seen that in this represen-
tation the pure electron-neutrino state corresponds to
m=z, while the pure muon neutrino state corresponds
to m= —z. With this parametrization Eq. (5) becomes

B=(1/2E)[ —xb, sin28+z(b, cos28 —A)],
when expressed in terms of the orthonormal unit vectors
(x,y, z) which define a right-hand coordinate system, and
the components of tr are the Pauli matrices. [We note
that the coordinate system in Ref. 5 is a left-hand one
which gives a positive x component for B. It can be ob-
tained by a similarity transform of Eq. (2) by 0 i followed
by an inversion. ] The vector B is related to its vacuum
value,
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Since the Pauli matrices are linearly independent of one
another, we obtain, from Eq. (7),

dm =m)& B,
dt

which is the equation of motion for a magnetic moment
rn with a gyromagnetic ratio g=1 precessing about an
external magnetic field B. This equation, together with
B=BO—[A (t)/2E]z, completely specifies the evolution
of the system. The precession frequency is co= —

~

B ~;
the negative sign means that m is precessing in the
clockwise sense when viewed from the direction of B.
The probability of P„of a neutrino in the state g being
detected as an electron neutrino at time t is given by

=tr(fg g„P„). Employing the parametriza-

tion given in Eq. (6) for g and f„,we see that this can
e

be written as tr[—,'(1+m z}cro+traceless parts]. Hence
we get

P„=—,'(1+m z) (9)

Starting from the identity
~ g f ~

=1 and proceeding in
a similar way, we deduce that m =1. That is, m is a
magnetic dipole moment of unit strength. Therefore
m z is simply the cosine of the angle between m and z.
If we call this angle 2a, then from Eq. (9) we immediate-
ly get P„=cos n.

For oscillations in vacuum, the vector B is a constant
vector equal to Bo since A is identically zero. To see
that in this case Eq. (9) reduces to the usual formula in
neutrino oscillations, let us pick another set of coordi-
nate vectors (io, jo, ko) so that ko is parallel to Bo.

electron density implies a large A value for neutrinos of
high enough energies. This means that B will have a
negative z component for neutrinos of energies higher
than a certain critical value E, . In fact, for small 8
values, B is almost antiparallel to z if E &E,. Initially
m is equal to z, corresponding to the fact that the neu-
trino is born an electron neutrino, and the opening angle
of the precession cone is close to 180'. (We have to im-
agine a cone turned inside out here. ) Alternatively m is
precessing about —B in the counterclockwise sense with
an opening angle close to zero; the point is that nl gets
anchored to the axis defined by B and will try to follow
the shift of the axis if it can catch up. As the neutrino
emerges out of the Sun, the A value decreases, causing B
to migrate to the vacuum position Bo. If the migration
is slow enough, m will follow the motion and finally ends
up precessing around Bo, still with an opening angle
close to 180'. It means that in the final configuration m
is almost parallel to the —z direction, and the corre-
sponding neutrino state is dominated by the v„com-
ponent which escapes detection. This is the case of adia-
batic transition. It should be contrasted with oscillation
in a vacuum in which m always precess about Bo with a
small opening angle.

It is easy to quantify the preceding argument includ-
ing the case when the migration of B is fast, i.e., nonadi-
abatic processes, and get the expression for P„ in terms
of the relevant angle variables. Again we pick a set of
unit vectors (i, j,k) such that k is along the B direction.
In this case, however, B is time dependent; thus (i, j,k)
determines a moving coordinate system. The transfor-
mation between (x, y, z) and (i, j,k) can be obtained from
Eq. (10) by replacing (io, jp kp) and 8 by (i, j,k) and the
effective mixing angle P, respectively,

x = iocos20 —kosin28,
A ~

z = iosin26j+ kocos28 .

(10)

x=i cos2$ —k sin2$,

z=isin2$+kcos2$ .

(12)

Here we want to solve Eq. (8) subject to the initial condi-
tion m(t =0)=z. The solution can be written as

m =kocos28+ sin28( iocoscuot +j osi ncoot ),
where coo= —

~
Bo

~

= 6/2E is the va—cuum value of co.

This equation shows that m describes the surface of a
cone with axis B and an opening angle 20. Note that in
our picture the angle between the axis B (which is in the
direction of the mass eigenstate v, ) and the z axis is 28
instead of 8. This is due to the fact that Eq. (8) is ex-
pressed in the flavor O(3) space whereas Eq. (1) is in the
flavor SU(2) space, i.e., a result of the well-known
Caley-Klein parametrization.

Substituting the above into Eq. (9) and inserting the
value of coo we get P„=1 —sin 28sin (bt/4E) which is
the familiar result for neutrino oscillations in vacuum.
In the solar-neutrino problem, one is only interested in
the time average of the probability given by (P„(t)).

Qualitatively the precession picture of the MSW effect
can be understood as follows. Within the core of the
Sun where the electron neutrinos are produced, the high

Since B always remain in the x-z plane, the problem is
simply a two-dimensional one. For subsequent calcula-
tions the expression of i and k in terms of x and z as
given by

i=x cos2$+zsin2$,

k = —x sin2$+ z cos2$,
(13}

will be useful. From these we readily obtained the ex-
pression for the time rate of change of i and k:

di dk = —COm 1 (14)

m=k cos2p+sin2p[i cos24(t)+j sin24(t)], (15)

where 2P is the opening angle of the cone swept out by
m and

where the migration frequency co is defined to be
d (2P)/dt

The solution to Eq. (8) at any instant can be written in
a form similar to Eq. (11) as
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24(t) = a)(r)dr+
0

(16)

where the ellipsis denotes the parts of 4 due to the
motion of the i-j-k coordinate system. In the vacuum
case 24=toot and p—:8, so we get back Eq. (11). For so-
lar neutrinos, on the other hand, the effective mixing an-
gle is initially equal to 0 . Consequently the initial
value of P is given by P; =8 . As B migrates towards
Bo, p will in general vary with time, eventually attaining
some final value p' when B settles down to Bo. Thereaf-
ter we have m =kocos2p'+ sin2p'(iocos2toot + josin2toot).
(An unimportant additive phase to coot has been
dropped. ) As we will see later, except for the adiabatic
case, p' depends on the resonance time ttt and has to be
averaged over. This averaging over the resonance time
tR, which is necessary because neutrinos with different
energies correspond to m with different precession fre-
quency and hence different tz, is not to be confused with
the averaging over the detection time t, which is always
implicitly taken in solar-neutrino calculation. Noticing
that the average of cos2coot with respect to t is zero,
the averaged value of m z can be obtained as
cos28(cos2p'), =cos28 cos2pf. Here the angular

R

brackets with tz as subscript denotes the averaging with
respect to ttt . Moreover we have defined pf, the
effective final P value, by cos2Pf ——(cos2P'), . So finally

R

we have

P„=—,'(1+cos28cos2pf ) . (17)

Comparing with the formula given by Parke, we obtain
the expression for the Landau-Zener probability P
which describes the transition between the mass levels:

P„=sin y . (18)

We have just seen that the extreme adiabatic case corre-
sponds to pf ——p;, so y and P„both vanish. This is the
case if A (t) is a slowly varying function of t.

In the other extreme when the transition is instantane-
ous, A (t) will be a step function assuming its initial
value until t =tz when it drops abruptly to zero. In this
case B will retain its original position at an angle p; =8

Thus the problem reduces to the calculation of pf.
In the adiabatic case, the migration rate of B is always

infinitesimally small compared with the precession fre-
quency of m. This means that m can always catch up
with the shift in B, and p stays equal to its initial value
throughout. Therefore both pf and p, are equal to 8
Substituting this back to Eq. (17) we get

P„=( 1+cos28 cos28 )/2,
which is the well-known result.

In general, the angle pf will be different from p;. We
will define another parameter y by writing
cos2Pf =—cos2y cos2P, . The significance of y can be seen
by substituting this expression for cos2pf into Eq. (17) to
get

P„=[1+(1—2 sin2y )cos28 cos28 ]/2 .

for t &t„. At time tR, (i, j,k) will switch to align with

(io, jo, ko). Right after, the m "sees" the new magnetic
field Bo and precesses about it instead. The angle be-
tween m and Bo appropriately averaged over as de-
scribed below, will give 2pf. Recalling that ko is the
unit vector along Bo, we can see that the cosine of the
angle included by m and Bo is simply given by m ko.
The average of this cosine will give cos2pf, and its eval-
uation is similar to the calculation of the average of
m z earlier. Namely, from ko=isin2(8 —8)
+kcos2(8 —8) and (cos2cuttt ), =0 we get cos2pf
=(m ko), =cos2(8 —8)cos2p;. Comparing with the

definition of y we readily obtain y =8 —0 and
P„=sin2(8 —8). In almost all cases 8 is practically
equal to n/2 and. consequently P„=cos 8.

In the more general case which is neither of the two
extreme, we can evaluate pf by solving the differential
equation for p, at least in principle. To this end we note
that since cos2p is given by m k, to get an expression for
dp/dt is to start with the equality

d—cos2P= —(m k) .
dt Ct

(19)

The left-hand side of the above is simply equal to
—2sin2p(dp/dt). Furthermore, from Eqs. (8) and (14)
we have

—(m k)=(mXB) k —t0 m i . (20)

Since k is taken to be parallel to B by definition, the first
term (m XB) k vanishes identically. Also we have
m i=sin2pcos24 from Eq. (15). Substituting all these
back into Eq. (19) and taking out the common factor
sin2P on both sides we get

dp ~m
cos24,

dt 2
(21)

which describe the evolution of p in t. However, the
right-hand side of this equation involves 4 whose time
dependence we are yet to find out.

The time derivative of 4 can be obtained in a pro-
cedure similar to that outlined above by starting with
the equality [see Eq. (15)]

d d—(sin2Pcos24)= —(m i) .
dt dt

(22)

The expansion of the left-hand side of this equation is
straightforward:

d d@—(sin2P cos24 ) = —2 sin2P sin24
dt dt

d+cos2p cos24
dt

(23)

On the other hand, the right-hand side of Eq. (22) can be

from the z axis for t & tz, flip to Bo at t =t~, and stay
ti&ere afterwards. Hence we have the picture of m origi-
nally precessing about B and described by the equation

m=k cos2p;+sin2p;(i cos2cot +j sin2cot)
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evaluated from Eqs. (8) and (14) as

d—(m i)=(mXB).i+co m k .
dt

(24)

1
U =C3+ —C8,v'3

1
U = —C3+ C8,P

(29)
The second term is just oi cos2p. The first term can be
reduced by recalling that B=—cok, from which we have
(m XB) i= —co(m X k) j. This can be further simplified
as —oem (kXi)= —tom j. Since m j is just sin2psin24,
the first term of Eq. (24) is equal to —cosin2Psin24.
Substituting Eqs. (21), (23), and (24) back to Eq. (22) we
get

—2 sin2p sin24 +co cos2p cos 24d% 2

dt

2
U =—,—C8v'3

That is, the three vectors u„u„, and u, span an equila-

teral triangle. Proceeding in similar fashion as in the
two-generation case we get the following equation,
which is identical in form to Eq. (8) except that here m
and B are eight-vectors:

=co cos2P —co sin2P sin24 .

After further reduction we finally arrive at

(25) dm
dt

=m&(B . (30)

d4 co ~m

dt 2 2
sin24 cot2P . (26)

Equations (21) and (26) furnish a coupled set of equa-
tions from which P and 4 can be solved.

We will conclude with a brief description on the gen-
eralization of the above formalism to the case of three
neutrino flavors. ' In place of Eq. (2) we have the fol-
lowing:

The cross product is defined by (mXB); =fJkmJBk, f Jk
being the structure constants of the SU(3) algebra in the
A. basis. Again B is related to the vacuum field B0 by
B=Bo—( A /2E)u, . Note that since e3X es ——0 there will

be no precession of the vector m with m(t =0)=u, if B
lies on the c3&e8 plane, which corresponds to the case
when the mass-square matrix is diagonal. The probabili-
ty P„ is given by

i = ——Bg.. dg A,

dt 2
(27)

(31)

Here A, has as components the Gell-Mann SU(3) ma-
trices, B is a vector in an eight-dimensional space, and
g = ( v, v„v, ) is the normalized neutrino wave func-
tion. Defining A,o to be &2/3I&, where I& is the 3X3
identity matrix, Eq. (6) will be modified to

~0 A,—+ 'm
v'6 2

(28)

It can be verified that we always have
~

m
~

=2/&3.
Let (e;), with i ranging from 1 to 8, be a set of unit
coordinate vectors corresponding to the X, . Further-
more denote the vectors corresponding to v„v„, and v,
states by u„u„, and u„respectively. Then we have

which is similar to the two-generation case, except that
the constant term is —,

' instead of —,'. This means that in

the case of "maximal mixing" when m does not have
any preferred orientation with respect to u„u„, and u,
so that m. u, averages to zero, we will have P„=—,

' as ex-

pected.

One of the authors (J.K.) wishes to thank the Depart-
ment of Physics and Astronomy, the Johns Hopkins
University for the hospitality extended to him and ac-
knowledges the M.O.E. of Korea and Korea Science and
Engineering Research Council for partial support. This
research has been supported in part by the National Sci-
ence Foundation.

'On leave of absence from the Department of Physics, Seoul
National University, Seoul 151, Korea.

S. P. Mikheyev and A. Yu. Smirnov, in '86 Massive Neutrinos
in Astrophysics and Particle Physics, proceedings of the XXI
Rencontre de Moriond (VI Moriond Workshop), Tignes,
France, 1986, edited by O. Fackler and J. Tran Than Van
(Editions Frontieres, Gif-sur-Yvette, 1986), p. 355.

2S. P. Mikheyev and A. Yu. Smirnov, Yad. Fiz. 42, 1441 (1985)
[Sov. J. Nucl. Phys. 42, 913 (1985)].

L. Wolfenstein, Phys. Rev. D 17, 2369 (1978);20, 2634 (1979).
4A. Messiah, in 86 Massive Neutrinos in Astrophysics and Parti-

cle Physics (Ref. 1).

5C. W. Kim, W. K. Sze, and S. Nussinov, Phys. Rev. D 35,
4014 (1987).

S. J. Parke, Phys. Rev. Lett. 57, 1275 (1986).
7L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener,

Proc. R. Soc. London A137, 697 (1932).
This is called the "slab approximation" in S. P. Rosen and J.

M. Gelb, Phys. Rev. D 34, 969 {1986).
T. K. Kuo and J. Pantaleone, Phys. Rev. Lett. 57, 1805 (1986);

Phys. Rev. D 35, 3432 {1987).
C. W. Kim and W. K. Sze, Phys. Rev. D 35, 1404 (1987); C.
W. Kim, S. Nussinov, and W. K. Sze, Phys. Lett. B 184, 403
(1987).


