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We utilize the Hamiltonian approach to the light-front formulation of quantum 6eld theory to
study two- and three-body relativistic bound-state problems in a truncated Fock-space basis in
1+1 dimensions. The problem is numerically solved by diagonalizing the invariant-mass operator
in the truncated basis. We present results for binding energies, valence wave functions, and the
momentum distribution functions. We discuss the advantages of the present technique over the
usual integral-equation approach.

I. INTRODUCTION

Presently a great deal of effort is being devoted to the
study of relativistic bound states. So far very little pro-
gress has been made in solving the problems exactly. In
this regard the Bethe-Salpeter equation' (more precisely,
the 1adder approximation to the Bethe-Salpeter equation)
has received much attention. In this work we study the
two- and three-body bound-state problems in the Hamil-
tonian formulation of light-front field theory. We re-
strict our discussions to the theory in 1+ 1 dimensions
and we employ a discretized version of the theory. '

We construct the light-cone ladder approximation by a
truncation of the Fock-space basis. The problem is
solved exactly in the truncated basis by diagonalizing the
invariant-mass operator. Binding energies and wave
functions are calculated as well as the valence and the
nonvalence contributions to the momentum distribution
functions. We compare and contrast the present ap-
proach with the usual integral-equation approach.

For simplicity we study the self-interacting scalar
model. More specifically the interaction Lagrangian
density is chosen to be (A, /3!)P . It is well known that
the resulting Hamiltonian is unbounded and hence un-
suitable as a model for realistic interactions. On the
other hand, the perturbation theory is well defined for
this interaction. By solving the theory exactly, i.e., by
diagonalizing the invariant-mass operator in the "full"
Fock space, we readily identify the pathology since the
mass operator gives negative eigenvalues once the cou-
pling is raised above a certain value. On the other hand,
when treated within a truncated Fock-space basis, this
interaction does not reveal any pathology and readily
produces two- and three-body bound states in the weak
and moderately strong-coupling regions.

The present work is motivated by the current interest
in relativistic field-theory problems. We are interested in
building our intuition of the relationships between in-
teractions and the resulting spectra and wave functions.

This paper is organized as follows. In Sec. II we re-
view the light-front quantization of scalar field models.
Discretization is reviewed in Sec. III. The pathology of

the model when solved in the full Fock-space basis is
discussed in Sec. IV. In Sec. V we present and discuss
the results for the two- and three-body states in the trun-
cated Fock-space basis. Comparison with the integral-
equation approach and our conclusions are presented in
Sec. VI. The light-cone ladder approximation to the
Bethe-Salpeter equation is reviewed in the Appendix.

II. REVIEW OF LIGHT-FRONT QUANTIZATION

We start from the Lagrangian density

where

dx+

and

x+=x +x

X =X —X0 1

The metric tensor is given by g++ =g =0,
g+ =g + =2. The commutation relation is given by

[P(x+,x ),3+/( x+y )]
~ + i5(y —x——) .

The stress tensor is given by

The equation of motion and the commutation relation
are derived from Schwinger's action principle.

In 1+ 1 dimensions, the equation of motion is

t)+t) P+m P+ —,P =0 .

Here

8+ =2 d

dx

and
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Thus In terms of free field annihilation and creation operators
a and a t, the free field solution can be written as

and

Z'++ g+yg+y

(()0(x+,x )= f [a(k)e '"'"+a (k)e'" "] .+ 1 dk+
2m 2k+

T+ =m P+
3I

From the stress tensor T"" we construct the energy-
momentum operator P":

P"=—' dx T+"
2

We choose the interacting field P to coincide at x+=0
with the free field solution. Then the Hamiltonian
operator P in the continuum version is given by

P =Po +V

where

dk+ mI'0 = f a (k+)a(k+)
2m2k+ k+

V =—f [dk] [a (ki++kz+ )a(ki+ )a(k2+ )+at(k&+)at(k2+ )a(ki++k2+ )],A, 1

where

dk i+ dk 2+

[dk] =
2@2k j+ 2m2k2+

The momentum operator is given by

p+ dk+ k+a (k+)a(k+) .
2n.2k+

We shall return to the continuum version in the Appen-
dix where we discuss the relationship of our method to
the Bethe-Salpeter equation in the ladder approximation,

III. DISCRETIZATION

One also introduces operators K and H such that

and

p+ 2'
L

P = H.2'
Thus E is the dimensionless momentum operator and H
is the Hamiltonian operator with dimensions of mass
squared. In the discretized version, the momentum
operator EC and the Hamiltonian operator H are given by

Z'= y nata„

It is convenient to introduce the dimensionless variable

Then

L

In this section, following the conventions of Ref. 2, we
construct the light-front momentum and Hamiltonian
operator in the discretized version. Discretization is in-
troduced by the replacement

k+~k+= n, n =1,2, 3, . . . , A .+ 2'
n

and

H =Ho+Hi,
where

—a„a„m z

n

1
Hi ——

v'4g 2 „,
a/, a(a +a a$ aI,

&klm
6I+m, k

—'k+x =ng .
2

The interacting field P at x+ =0 is given by

P(g)= —g —(a„e '"~+a„e'"~) .
&4m, &n

a„and a obey the commutation relation

[a„,at ]=5„

IV. SOLUTION IN THE FULL
FOCK-SPACE BASIS

In this section we discuss the solution in the full
Fock-space basis and the manifestation of the pathology
of the interaction under study.

We adopt the notation that the states are identified by
their A, =O structure. We present the mass gap as a
function of K for different values of coupling in Fig. 1.
Here we have chosen the mass parameter in the La-
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grangian m =1.0. As has been discussed before, ' '

K~ po gives the continuum limit. For fixed coupling
one detects the pathology of the P model by observing
that the square of the mass gap becomes negative with
increasing K. Small values of K are in fact sufficient to
detect this pathology by taking a large value of the cou-
pling. For example, at A. =7.09, the square of the mass

gap becomes negative already at K=2. As is obvious we
have to go to higher values of K to detect the pathology
for smaller values of the coupling.

It should also be noted that in this calculation the
mass gap is defined with respect to the perturbative vac-
uum. To solve a field theory one should first determine
the dynamical vacuum. In the light-front scheme, how-
ever, if we neglect 1+=0 states the vacuum decouples
from all the other states. Thus the instability of the
ground state can manifest itself only indirectly. This
also indicates the dangers of introducing a fixed mass

gap with respect to the perturbative vacuum.
For the problem we consider, the truncation of the

basis states yields bound states whose behavior con-
verges well for increasing K.

V. THE TWO- AND THREE-BODY PROBLEM
IN THE TRUNCATED SECTOR

For the study of the relativistic bound-state problem,
one approach is to solve the Bethe-Salpeter equation.
However, in practice, one solves this equation by invok-
ing one or more approximations. Usually one adopts the
ladder approximation which is the lowest-order approxi-
mation. Second, one converts the four-dimensional
equation to a three-dimensional one by means of either
covariant or noncovariant reductions. Thus whatever
confidence we have in the resulting solutions is limited
to the weak-coupling limit. Further, one may question
the reliability of the whole scheme when the exact solu-
tion differs drastically from the approximate one even in
the weak-binding case. In this work we set aside all
such well-founded worries. One of our aims is to show

the utility of the Hamiltonian matrix diagonalization as
opposed to the integral equation approach in solving the
approximated problem. We are particularly interested in
solving this model in order to develop some intuition for
the relative contribution of nonvalence states to the
momentum distribution function as we move from weak
to moderately strong couplings.

The utility of the light-front scheme (more precisely,
the infinite-momentum approach) to the study of the
two-body scattering equation was first discussed by
Weinberg in the case of P interaction in 3 + l dimen-
sions. For the model of two massive scalar particles ex-
changing a massless scalar particle, Feldman, Fulton,
and Townsend calculated the eigenvalues of the integral
equation for the bound state (in the infinite-momentum
frame) in the weak-coupling limit. The relation between
the light-cone bound-state equation and the Bethe-
Salpeter equation has been discussed by Brodsky, Ji, and
Sawicki. ' For recent work on the light-cone ladder
equation see Ji and Furnstahl" and Ji. ' For related
work of interest, see Celenza, Ji, and Shakin. ' In this
work we restrict our discussion to 1 + 1 dimensions but
we expect the general features of our results to persist
into higher dimensions.

First we present our results for the two-particle bound
state. We consider the mass operator squared M in the
discretized version and diagonalize this operator in the
restricted Fock space of two and three particles for
different values of the coupling. The mass of the lowest
state as a function of even values of K is calculated and
extrapolated to large K in order to obtain an estimate of
the invariant mass of this state. For A, =1.0 and 3.0, the
invariant mass is estimated to be 1.94 and 1.29, respec-
tively. For the values of the coupling constants we con-
sider here, the results we present appeared to be well

converged at K=30.
Next let us consider the wave function and the

momentum distribution function for these states. The
state vector

~

4 ) is given by

Xc,

1,0
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FIG. 1. The mass gap as a function of K for different values

of the coupling constant A, . m is chosen to be 1.0. Smooth
lines are drawn through results obtained at even values of K.
The curves correspond to the following values of A, : dotted
{0.5), dashed {1.0), dotted dashed {2.0), and solid {3.0).
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FIG. 2. The two-particle amplitude of the two-body wave
function at K=30 as a function of x =x& —x&. Dashed and
solid lines correspond to X=1.0 and 3.0, respectively.
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where the
~

(l)J ) are the Fock-space basis functions and
the coefficients C s result from matrix diagonalization.
Let us introduce the variable x; which denotes the light-
cone momentum fraction carried by the ith constituent:
x, =k,-+/K. For simplicity we present the two-particle
(valence) component of the many-body wave function for
the two-particle state. This amplitude is defined by

xi»2)=(0
I
a(xi)a {x2)

I
+)

F(x)M = g C~ (P~ ~
a„a„~P~ )

J J

where X is the number of particles in the Fock-space
component

~
PJ. ) and x =n/EC. Thus

F(x)hx =K g C (P
~

ata„~ P) )
J J

i.e.,

=gC (O~a(x, )a(x )~(l) ) .
J

This choice of the momentum distribution function leads
to unit normalization which is written in the continuum
limit as

This amplitude is shown in Fig. 2 for coupling strengths
A, =1.0 and 3.0 at X=30 as a function of the relative
momentum fraction x =x, —xz. As expected this am-

plitude is broader for a strongly coupled state as com-
pared to a weakly coupled state. As A, ~O we expect
this amplitude to approach a 5 function at x=0.

Next we look at the momentum distribution function
for the bound states as the coupling goes from weak to
strong. The momentum distribution function F(x) is
the probability density to find a parton in the bound
state with momentum fraction between x and x+dx.
Thus

F xdx=l.
0

The momentum distribution function is plotted in Figs.
3(a) and 3(b) for coupling strengths )L.=1.0 and 3.0, re-
spectively. The function F(x) is peaked around x=0.5,
irrespective of the value of the coupling. The three-
particle Fock space or "nonvalence" contribution to
F(x) is significant only in the region x&0.4. Also the
contribution due to the nonvalence component increases
as coupling increases. For example, for A, =1.0 the non-
valence states contribute about 2.4%%uo to the normaliza-
tion integral, whereas for A, =3.0 this contribution is
about 17.2%%uo.
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FIG. 3. The momentum distribution function for the two-
body state at I( =30 as a function of the light-cone momentum
fraction x. Dashed line denotes the valence and solid line
denotes the full distribution. (a) /%. =1.0, (b) A, =3.0.
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FIG. 4. Same as in Fig. 3 but for the three-body state.
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Next let us consider the three-particle bound state.
Here we diagonalize the mass operator in the restricted
space of three and four particles for K values which are
integer multiples of 3. For A, =1.0 and 3.0, the invariant
mass of the lowest state in the continuum limit is es-
timated to be 2.90 and 1.47, respectively. The associated
momentum distribution functions evaluated at I( =30
are shown in Figs. 4(a) and 4(b), respectively. Here as
may be expected they peak about x = —,'. The nonvalence
contribution again dominates the low-x behavior. The
nonvalence contribution to the normalization integral is
5.3%%uo and 25.6%%uo for A, =1.0 and 3.0, respectively.

VI. DISCUSSION AND CONCLUSIONS

the three-body problem, one has to solve a multidimen-
sional integral equation. In the present method, howev-
er, one evaluates the matrix elements of the Hamiltonian
and solves by matrix diagonalization. The limit of our
approach is governed by the size of the Hamiltonian ma-
trix required to obtain a good estimate of the continuum
limit.

In this work we have dealt with a toy model which
has its own inherent limitations. We note that this
method has been applied to a gauge theory before but
the role of higher Fock-space states has not been dis-
cussed. For pedagogical and practical reasons one even-
tually hopes to calculate the structure function of mul-
tiparticle states in models involving fermions.

Using an interaction which is attractive in the two-
body sector we are able to study the two- and three-body
relativistic bound states in the discretized version of the
light-front Hamiltonian approach. One should note that
since we are dealing with a relativistic field theory, the
qualifiers "two body" and "three body" only refer to the
composition of the state at zero coupling. Once we
make restrictions on the allowed Fock-space states for a
given value of the mass parameter m and coupling A, we
are able to extract the invariant mass of the state
without further approximations. We are driven to the
restriction on Fock-space states only because we are
dealing with an unphysical interaction. In general we
need not put any restrictions on the Fock-space states.
The valence and the nonvalence states are visible at each
stage of the calculation, which enables us to separate out
the contribution of these states to the momentum distri-
bution function. We are unable to study the very-
strong-coupling limit only because of the present choice
of the unphysical interaction.

We may compare our approach with the conventional
integral-equation approach (see the Appendix). For the
two-body problem in the latter method one eliminates
the three-body wave function in terms of the kernel and
the two-body wave function to arrive at an integral
equation. Thus the information on the nonvalence com-
ponent of the wave function is no longer explicit. For
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APPENDIX

The derivation of the integral equation for the bound
state starting from the light-front Hamiltonian has been
discussed before by Brodsky and collaborators. ' ' For
completeness of discussion we outline this derivation
here.

The state vector
~
g) for the two-particle bound state

obeys the eigenvalue equation

P+P
i
t() =M

i
tP) .

Here P+ is the light-front rnomenturn, P is the light-
front Harniltonian, and M is the invariant mass of the
bound state. We choose P+=1. Here P =Po + V
Then we have

(M' P; ) ~Q)=V—- ~f) .

We expand the state vector
~
g) in terms of Fock-space

states:

dk &+ dk 2+
~

1( ) =f, ~

k I+, k ~+ )g( k '+ k '+
)5( 1 —k ', + —k 2+ )

dk'+ dk 2+ dk ~+
+

~

k +,k'+, k'+ )P(k'+, k'+ k'+ )5(1—k'+ —k'+ —k'+ )+ .
2+2k i+ 2+2k2+ 2+2k'+

Here P(k'&+, kz+ ) is the valence wave function of the two-body bound state and so on. We neglect the higher Fock-
space components in the following and utilize the expressions for Po and V given in Sec. II.

Multiplying the wave equation from the left by (k ~+, k 2+
~

we arrive at

2M—
k+

2 dk '+ dk 2+ dk q+
f(k~+, k~+ )=

k 2+ 2m2k )+ 2m2k 2+ 2m 2k ~+

x(k+ k+
~

V
~
kI k2+kq+)f(+k'(+, k'+, k~+ )5(1—k')+ —k2+ —kq+ ) .
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Multiplying the wave equation from the left by (k ~+, k 2+, k 3+
~

we arrive at

2
2 m

k+

2 2 dk 4+ dk 5+

(k+ k+ k+ )=
k+ k+ 2m2k4+ 2n.2k~+

«k &', k', k 3'
I

~-
~
k,+,k,+ )q(k+, k5+ )S()—k+ —k+ ).

El™nating the "nonvalence" wave function using the above equation we arrive at the light-cone ladder equation

dx 3 dx4
P(x, ,x2) = f 5( ~ X3 X4)f(X3 X4 )K (M, m, x &,x2, X3 X4 )

X) X2 4'IT' x3 x4

where

8(x, —x3)K=
X) —X3

1

2 2
M2 m m

X3 X2

m2 g(X2 X4) 1

X1 +3 +2 +4 2 m mM—
X4 X)

m

X2 —&4

Here x; =k,+ /P +.
The three-dimensional version of this equation has been discussed in Refs. 9—14.
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