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We propose an explicit form for the long-range limit of the SU(N) Yang-Mills Lagrangian ex-

pressed as a function of the dual (color-electric) vector potentials. While we cannot rigorously
derive the Lagrangian, it can be made plausible that it follows from conventional Yang-Mills
theory. This dual long-distance QCD Lagrangian has many of the properties of a magnetic super-
conductor. It has classical solutions corresponding to confined tubes of quantized electric color
flux which result from a dual Meissner effect. However, the confining pressure is not produced by
a scalar Higgs field, as in ordinary superconductivity, but by a magnetic condensate field which
arises naturally from the nonlocal form of the dual Lagrangian. Within the classical approxima-
tion, we find the explicit distribution of color fields surrounding a flux tube. Semiclassical quanti-
zation around this solution can be expected to yield the QCD string, and the semiclassical expan-
sion parameter is 1/N, where N is the number of colors.

I. INTRODUCTION

Years ago 't Hooft' and Mandelstam pointed out that
many features of color confinement could be understood
if continuum Yang-Mills theory possessed some of the
properties of a magnetic superconductor. Since then this
qualitative picture has gained considerable acceptance,
but little or no progress has been made in either demon-
strating that Yang-Mills theory in fact is like a magnetic
superconductor, or in using the idea to compute any
quantities of physical interest. Indeed, the only substan-
tial progress toward understanding confinement has been
made in the context of lattice Yang-Mills theory, where
the natural variables are gauge-invariant Wilson loops
rather than the vector potentials A„' of the continuum
theory, and where the physical picture of the Yang-Mills
vacuum is difficult to see.

If the magnetic superconductor picture really is
relevant to continuum Yang-Mills theory one should ex-
pect that dual vector potentials C„' (i.e., electric vector
potentials), instead of the A„', are the natural variables
to use in the confining regime. Our principal purpose in
this paper is to explicitly construct the Yang-Mills La-
grangian as a function of the dual potentials in the long-
distance limit. The Lagrangian which we obtain does
indeed describe something very like a magnetic super-
conductor: there is a spontaneous symmetry breaking
leading to a nonperturbative vacuum in which color-
electric fields can exist only in tubes of quantized flux.

But while many of the features of Yang-Mills theory
are just like those of a magnetic superconductor, there

are also essential differences. Yang-Mills theory con-
tains no scalar fields; the nonperturbative vacuum is
characterized by a nonvanishing magnetic gluon conden-
sate instead of by the expectation value of a scalar Higgs
field. The gluon condensate arises from a new set of
dual tensor fields F„' which automatically appear be-
cause the Yang-Mills Lagrangian, as a function of C„', is
nonlocal.

The dual Lagrangian depends on two parameters, one
of which can be taken to be a dimensionless condensate
strength b and the other a mass scale, which we call
M/g, specifying the long-range regime. These parame-
ters can be determined from the experimental values of
the string tension and of Gz, the gluon condensate.
Once they are fixed, other quantities, such as the flux-
tube radius, the glueball mass, and the shape of the stat-
ic quark-antiquark potential can be predicted.

These results are obtained in the classical approxima-
tion to the dual Yang-Mills theory. The semiclassical
expansion about the classical flux tube has not yet been
worked out in detail, but we expect that it will lead to a
string theory with linearly rising Regge trajectories.

While our dual Lagrangian describes Yang-Mills
theory only in the long-range confining regime, it ap-
pears to define a renormalizable field theory at all
ranges, which is perhaps asymptotically free at short dis-
tances. This has only been partially checked in the one-
loop approximation, and the quantum aspects of the
theory have not yet been systematically treated.

Some of the topics we treat here have been partially
described (though with significant differences) in previ-
ous publications, but we have nevertheless elected to
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make this paper essentially self-contained at the risk of a
small amount of repetition.

Section II of this paper begins with a brief review of
how dual potentials can be defined in a non-Abelian
gauge theory. It is not possible to express them explicit-
ly in terms of the ordinary potentials; therefore the ex-
plicit form of the exact Yang-Mills Lagrangian as a
function of the C„ is unknown. Nevertheless it is possi-
ble to show that this Lagrangian is invariant under dual
gauge transformations (the magnetic gauge group) and
to argue that in the long-distance confining regime it can
be explicitly constructed. The construction of this long-
distance limit, denoted by X(C), is based on the fact that
in a confining theory the dual Wilson loop obeys a per-
imeter law so that the dual potentials have only short-
range correlations, which in turn implies that the dual
potential propagator has a mass. The quadratic part
X' '(C) of the dual Lagrangian is thereby determined.
Since the C fields are small at large distances, the
minimal extension of X' '(C) necessary to make it com-
patible with dual gauge invariance suffices to specify
uniquely X(C) at long range.

Confinement, however, should be a consequence of
Yang-Mills theory and not an extra assumption. There-
fore it should be possible to derive X' '(C) directly from
the ordinary Yang-Mills Lagrangian in the A language.
Since X' '(C) is quadratic in C, it is also Abelian, and
for an Abelian theory the translation between A and C is
easy. The Lagrangian corresponding to L' '(C) in the A

language turns out to describe an ordinary gluon with a
propagator 6'„' behaving in momentum space as 1/q as

q ~0. This behavior is known to arise from solving a
truncated set of the Dyson equations and Ward identi-
ties of conventional A language Yang-Mills theory. ' "
The 1/q behavior is a consequence of the resulting
self-consistency which eliminates the perturbative Lan-
dau ghost pole in the gluon propagator at spacelike
momentum.

6'&', however, cannot be used as a starting point for
any long-distance iteration scheme in the A language,
since higher-order terms have low-momentum singulari-
ties even stronger than 1/q . In the C language, the re-
verse is true. The propagator h~c', which is the transla-
tion of 6'„', is smooth at long range, and describes the
same physics as b, '„'. From hp' we construct X~u'(C)

and then, by dual gauge invariance, X(C). This consti-
tutes a convergent long-range expansion starting with

It is important to emphasize that X(C) has no sim-

ple expansion as a function of A: the exact A propaga-
tor does not behave as 1/q (we do not know how it
behaves, or even if it exists). The exact C propagator, in
contrast, does behave as b,&', which confirms our state-
ment that higher-order corrections in C are small at long
range.

In summary, we can derive X(C) directly from Yang-
Mills theory without assuming confinement if the dual
version of the solution of the truncated Dyson
equation/Ward identity system is taken as the starting
point for the long-range expansion in the dual language.

The long-range dual Lagrangian we obtain in Sec. II is
nonlocal. In Sec. III we express it in local form. This

introduces a set of tensor fields F„', as well as new ghost
fields in addition to the usual Faddeev-Popov ghosts.
Renormalizability of X(C) requires the introduction of
two counterterms proportional to F and F, which we
denote by —8', and we write down the explicit form of
W for SU(N) gauge theory.

Section IV is devoted to showing that the equations of
motion following from X(C) have classical solutions
describing static cylindrically symmetric tubes of color
electric flux quantized in units of e /N, for SU(N), pro-
vided that the function 8 has a nontrivial minimum as a
function of F„„. (e is the Yang-Mills coupling constant. )

The value F o of F at the minimum gives the gluon
condensate in the classical approximation and W(FO) is
the nonperturbative vacuum energy density. The
coefficient of the quadratic term in 8' is given by the
trace anomaly, and that of the quartic term is deter-
mined by the gluon condensate G2. In order for flux-

tube solutions to exist it is necessary that Gzp0, and
therefore the nonperturbative vacuum must be a magnet-
ic, not an electric, condensate.

A number of physically interesting quantities, such as
the string tension, the flux-tube radius, and the 0++
glueball mass are estimated for SU(N) gauge theory in
Sec. V. We also, in this section, study the large-N limit,
from which we recover the usual results of the large-N
diagrammatic analysis of Yang-Mills theory. In particu-
lar, as N~(x, the flux tube becomes a string. Further-
more, the semiclassical expansion is the same as the
large-N expansion, and the semiclassical expansion pa-
rameter is 1/N.

The asymptotic fields, in space and color, far from an
SU(N) flux tube are explicitly constructed in Sec. VI.
We note in Sec. VII than the electric field F; does not
vanish exponentially asymptotically unless an additional
term is added to W. Such a term is in fact present as a
quantum correction to the classical approximation,
though since it is not divergent it is not required by re-
normalizability as a counterterm.

We next arrive at Sec. VIII, where the classical flux-
tube equations are solved explicitly, at all distances, for
SU(2). The string tension is calculated as a function of
F o. The value of M/g is fixed in terms of the experi-
mentally measured string tension and the gluon conden-
sate. We then predict the flux-tube radius.

In the ninth and last section we briefly discuss the
static potential V(R) between a heavy quark and anti-
quark. This requires the introduction of quark sources
into X(C). The resulting equations are too complicated
to solve exactly; however we can calculate V(R) in a
magnetic superconductor approximation to X(C). This
yields a Coulomb potential at short range with a rapid
transition to a linear potential at long range. We also
calculate V(R) using a baglike approximation to the
field equations. This potential agrees well with that ob-
tained in the magnetic superconductor approximation
provided the string tension is taken as a free parameter.
Finally we note that making the same baglike approxi-
mation to the equations of the magnetic superconductor
approximation to X(C) yields the equations for the static
potential in the MIT bag model. '
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II. CONSTRUCTION OF THE DUAL
YANG-MILLS LAGRANGIAN

The Yang-Mills Lagrangian is

Xv~ ——2 Tr( 4F—„„F""),
where

(2.1)

In Appendix A we give more details of how X(C) is
obtained from Yang-Mills theory.

Wc (1)—:exp 4E (1)
e

(2.12}

We call g the magnetic Yang-Mills coupling constant.
Evidently in an Abelian gauge theory 4M coincides with

the usual definition of magnetic flux.
In Abelian theories, one can define a dual Wilson loop

Wc(l) in terms of the electric flux 4E(l) passing through
the loop by the equation

and

F„„=Bq A „—B„A„ie—[ A „,A „] (2.2)
The electric flux @z(l}in turn is defined in terms of the
electric displacement vector D as

4~(1)=f dS D, (2.13}
S

A„(x)=g A„'(x)T, . (2.3)

The A„'(x) are the Yang-Mills fields and T, are the gen-
erators of the color gauge group in the fundamental rep-
resentation. They satisfy the commutation relations V D=O (2.14a)

where S is any surface bounded by the loop 1. The elec-
tric vector potential C„ is defined by writing the solution
of the two Maxwell equations

[T„Tb]=if,q, T, ,

and are normalized so that

2TrT, Tb =5 b

(2 4) and

(2.5) as

V && H —BOD =0, (2.14b}

We denote the Yang-Mills coupling constant by e; that
1S, and

D=-VxC (2.15a)

a, =e /4n. (2.6) H= —8 C —VC (2. 15b}

is the minimal Lagrangian invariant under the
non-Abelian gauge transformation

A„(x) 0 '(x)A„(x)Q(x)+ —0 '(x)B„Q(x),
e

(2.7)

where Q(x) is an element of the color gauge group.
In this section we will first review the definition of

electric vector potentials C„given by Mandelstam. We
then explain why they should be useful for studying a
confining theory and finally how the long-distance La-
grangian can be constructed as a function of C„ from
the dynamics of Yang-Mills theory.

To study confinement it is convenient to introduce the
Wilson loop operator W„(l):

W„(l)—=TrP exp ie f ( dx„A "(x)
r

(2.8)

where 1 is any closed curve and the symbol P represents
path ordering. Let

~

0) be the vacuum state. If Yang-
Mills theory confines, then, for large loops,

Then combining Eqs. (2.12), (2.13), and (2.15},we obtain
r

Wc(!)=exp ig f, dx„C"(x) (2.16)

which is the dual of Eq. (2.8) for an Abelian theory.
In the non-Abelian case we cannot introduce electric

vector potentials via (2.14) and (2.15). Nevertheless, 't
Hooft was able to define the operator Wc(1) in SU(N)
gauge theory by specifying its commutation relations
with W„(1) as a natural generalization of the corre-
sponding commutation relations in the Abelian theory.
Subsequently Mandelstam used the non-Abelian gen-
eralization of (2.16),

Wc(l ) =TrP exp ig f &
dx„C"(x) (2.17)

to define C„(x). The dual Wilson loops Wc(l) are in-

variant under gauge transformations:

C„(x) n '(x)C„(x-)n„(x)+ 'n '( x)a—„n„-( x) .

( 0
~
W„(I )

~

0 ) —e """'" (2.9) (2.18)

W„(l)—:exp @~(1) (2.10)

where

g—:2~/e . (2.11)

where area(l) is the area enclosed by the loop l.
The operator 8'z (1) is gauge invariant. One may

therefore define a gauge-invariant magnetic flux 4~(l}
passing through the loop by the equation

Mandelstam called the group of transformations (2.18)
the magnetic-color gauge group to distinguish it from
the usual electric-color gauge group, under which
transforms according to (2.7). Note that the coupling
constant g determining the transform ations of the
magnetic-color gauge group is inversely proportional to
the Yang-Mills constant e. Any physical quantity, when
expressed in terms of C„, must be invariant under the
magnetic gauge group, just as it is under the electric
gauge group when expressed in terms of A„(Ref. 13).
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From a kinematical point of view Yang-Mills theory is
symmetric between electric and magnetic quantities.
However, there is no simple relation between C„and A„
in non-Abelian gauge theory, in contrast with Abelian
theory. Thus there is no dynamical electric-magnetic
symmetry and although the C„Lagrangian is invariant
under the magnetic gauge group, its explicit dependence
upon the fields C„ is in general unknown. Indeed we
should expect it to be a very complicated function of C„
since XvM(A) is a simple function of A„and the rela-
tionship between A„and C„ is indirect and evidently
complicated. Nevertheless we will argue that the long-
range limit of the C„Lagrangian can be explicitly con-
structed.

We begin by recalling the following result of 't Hooft.
Using the definition of Wc(1) via its commutation rela-
tion with Wz (I), he showed that if W„(1) obeys the area
law, then Wc(1) necessarily satisfies a perimeter law; i.e.,

for large loops

W (1) e (Perimeter(I)
C (2.19)

This perimeter law arises naturally if the dual potentials
C„are weakly coupled at large separations. For, sup-
pose that the long-distance behavior of the dual propa-
gator

hcb„„(x,y) = (0
~
[C„'(x)C„(y)]+

~
0), (2.20)

is that of a free massive particle, i.e, , suppose that for
small q its Fourier transform b,c(q) has the behavior

&()- 1
c

q —M
(2.21)

where M is some nonvanishing mass. Suppose further
that the higher-order dual Green's functions have a cor-
responding weak-coupling long-distance behavior. Then
the dual loop Wc(1) will obey Eq. (2.19), just as for any
weakly coupled massive field theory.

't Hooft's result is a precise way of saying that the
vacuum of a confining theory has the properties of a
magnetic superconductor. In an ordinary superconduc-
tor there are vortices of confined magnetic flux

4M ——f dS B producing a linear confining potential be-

tween monopoles and antimonopoles. The magnetic
field B=V& A falls exponentially with the distance of
penetration into the interior of the superconducting re-
gion and the magnetic vector potential A thus acquires
a mass. In a magnetic superconductor, correspondingly,
there are tubes of quantized electric fiux, 4z ——f d S D,
and consequently a linear potential between quarks and
antiquarks. The electric displacement D = —V X C
penetrates only exponentially into the magnetic super-
conductor, and the dual potential C acquires a mass; in
other words, the dual propagator has the long-distance
behavior given by Eq. (2.21).

This suggests that electric vector potentials C„are the
natural variables for describing long-distance Yang-Mills
theory. Let us denote the part of the C„Lagrangian
which is relevant for long distances by X(C). Since
X(C) does not describe Yang-Mills theory at all dis-

tances it is not equivalent to XvM( A ). We will see that
by limiting ourselves to describing long-distance Yang-
Mills theory we will obtain a simple X(C) which is
equivalent to a complicated A„Lagrangian. This con-
trasts with the impossible task of describing Yang-Mills
theory at all distances in terms of a hopelessly compli-
cated C„Lagrangian equivalent to XvM( A ).

We turn to the construction of X(C). Let us denote
the quadratic terms in X(C) by X' '(C). Being quadra-
tic in C„, X( '(C) is invariant only under magnetic
Abelian gauge transformations. Furthermore because of
the weak coupling at short distances the "free" C„prop-
agator ~(cop(„generated by X(o)(C) has the same long-
distance behavior, Eq. (2.21), as the exact C„propagator
except for mass and wave-function renormalization. We
will show shortly that this requirement determines
X' '(C). The Lagrangian X(C) can then be obtained
from L' '(C) by adding the minimal terms necessary to
make it invariant under the non-Abelian transforma-
tions, Eq. (2.18), of the magnetic gauge group. Any non-
minimal terms in X(C) are not relevant at long dis-
tances. Thus our problem is reduced to constructing
X( '(C) and explaining its origin in Yang-Mills theory.

We first note that an Abelian gauge theory describes
the dynamics of a linear relativistic dielectric medium.
Such a medium is characterized by a momentum-
dependent dielectric constant e(q ) and magnetic per-
meability (tt(q ), which are related by the equation

e(q )p(q )=1 . (2.22)

The equations of motion of this medium are Eqs. (2.14),
along with

V B=O, V)&E+8 B=O,

and the constitutive equations

D=eE and B=pH .

(2.23)

(2.24)

where

6„'"=B„C,—8 C„,
and where

(2.26)

p(x —y) = f e'~(" «'p(q ) .(~ )

(2m )
(2.27)

Equation (2.26) is just the covariant form of Eqs. (2.15)
and hence the Maxwell Eqs. (2.14) are automatically
satisfied. In the Landau gauge the C„propagator gen-
erated from Eq. (2.25) is

max~c„.(q)—
q (M(q)

This discussion suggests how to write down X( '(C).
We choose p(q ) so that the corresponding C„propaga-

In the C„representation, Eqs. (2.23) and (2.24) are ob-
tained from an action S,„(C)given by

S,„(C)=——,
' f f G '"""(x)(Lt(x —y)G„;"(y)dx dy

(2.25)
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tor b P„' (q) has the structure given by Eq. (2.21). Setting

Mp(q')= —,+1 (2.29)

in Eq. (2.28} gives the desired result:

qpqv

q

The corresponding Lagrangian X' '(C), determined from
Eqs. (2.25), (2.26), (2.27), and (2.29) is

(2.30)

2r"'(c)=—,(a„c„—a„c„),+1 (a~c"—a"c~) .

(2.31)

X(c) is then constructed as the minimal (magnetic}
gauge-invariant extension of X' '(C), in the same way
that XvM( A ) is obtained as the minimal (electric)
gauge-invariant extension of the Maxwell Lagrangian.
Using the usual prescription along with expression (2.31)
for X' '(C) we obtain the following expression for X(C):

T

MX(C)= ——,'G„„z + 1 G„„,
2) (C)

(2.32a}

where

and

G„=a„c„—a„c„ig[c—„,c„]=G„',T, ,
—

2)„(c)=a„ig[c„—, ] .

(2.32b)

(2.32c)

1 qpqv

q E(q) q
(2.34}

Equations (2.22), (2.29), and (2.34) then show that the
Lagrangian X' '(C) yields an A„propagator 6'„„' (q)
having the long-distance behavior'

[p) M 1&,„.(q) — —,+
q

qpqv
~P~ 2

q
(2.35)

The matrices C„are related to the non-Abelian fields

C&(x) in the usual way:

C„=gC~(x)T, .
a

[For simplicity we will denote the dual covariant deriva-
tive 2)„(c) simply by 2)„ in the rest of this paper. ] We
propose Eq. (2.32) as the Lagrangian appropriate to
long-distance Yang-Mills theory.

To summarize, the form of X' '(C) was determined by
the assumption of confinement and 't Hooft's result, Eq.
(2.19). X ( C) was then constructed as the minimal
gauge-invariant extension of X' '(C), since nonminimal
terms in the C„Lagrangian are suppressed at long dis-
tances.

It remains to find the dynamical origin of X '(C) in
long-distance Yang-Mills theory. This is in principle
possible since X' '(C) describes an Abelian gauge theory.
For an Abelian theory, in the A„ language, the propaga-
tor b, „'„"„(q)is given by

III. PROPERTIES OF X(C)

The Lagrangian X(C) is nonlocal. This indicates that
the theory contains extra degrees of freedom correspond-
ing to auxiliary fields which must explicitly be intro-
duced in order to render X local. To find the local form
of X we begin with the vacuum generating functional

Z= C„'exp i d x C+ gf+ gh (3.1)

Here X f and X „„, are the usual gauge-fixing and
Faddeev-Popov ghost terms necessary to specify Z in a
non-Abelian gauge theory. The nonlocal factor in Z can
be written as

We emphasize that 6„' does not give the long-distance
behavior of the exact A propagator of Yang-Mills
theory, because the A fields are not weakly coupled at
long range. This is in contrast with the C language,
where 6c' does, at long range, coincide with the exact

since the C fields couple weakly. Long-distance
properties are complicated in the A language, and we do
not propose to derive the exact long-distance behavior of
Yang-Mills theory in terms of A. Instead we only need
an approximation to long-distance Yang-Mills dynamics
which is sufficient to obtain the nonperturbative zero-
order propagator 6'~' to serve as the starting point for
an iteration scheme in the dual language.

Such an approximation can in fact be found and
indeed was our original motivation for suggesting Eq.
(2.32). It is described in Appendix A. A truncation of
the Schwinger-Dyson equations combined with the Ward
identities of conventional A language Yang-Mills theory
produces a nonlinear integral equation for the gluon
propagator. The solution of this equation, for small q,
coincides with b,f'' The. origin of the M /q is the fol-
lowing: because of asymptotic freedom, perturbation
theory for the vacuum polarization yields a propagator
having a pole for spacelike q (the Landau ghost). By
imposing self-consistency and compatibility with gauge
invariance, through guaranteeing the Ward identities,
the position of the Landau ghost is moved to q =0 (Ref.
15).

It is difficult to make use of this result in the A

language. If one attempts to calculate the corrections to
the propagator coming from the terms neglected by the
truncation, using 6'„' as input, one finds singularities
stronger than M /q as q ~0. The truncation is only
the first term in a nonconvergent expansion; there is no
consistent way to calculate corrections. (See Appendix
A. ) The singular behavior of the A fields at long range
destroys any systematic iteration scheme. Instead, the
dual potentials C provide the avenue to evaluate the
corrections systematically. From the first tenn 6'z' we
construct b, 'c' and hence X' '(C). The extension of
X' '(C) to L(C) then incorporates the higher-order
terms. The long-distance behavior of 5c coincides with
that of hc', and corrections are calculable. '
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'ab
MGa Gpvb d4& de 2 3(W —1) F a exp & d4& F a Gpva+ t F a 2 ahF pvb

4 14v ~2 PV P,v g PV

(3.2)

where the color indices a run from 1 to N —1 for SU(N), and the fields F„„are antisymmetric in the Lorentz in-
dices. There are then 6(N —1) fields; each of them yields a factor (detS )

' upon performing the functional in-
tegration in (3.2) after completing the square.

The determinants in (3.2) can be rewritten by introducing another set of ghost fields (in addition to the usual
Faddeev-Popov ghosts) f; and P;, with i =1,2, 3. There are thus 3(N —1) fields f; and 3(N —1) fields g;, and
they are anticommuting Grassmann variables. Thus

(de~2)3( N—i) f cgya f ~qateXp i f d4X pat(&)Q)2)ahab(X) (3.3)

We choose a generalized Landau gauge, so that

X r
————(8"C' )gf 2

Denoting the Faddeev-Popov ghost fields by 7' and 7't, we have

=X'a"2)abXb
ghost P

Finally, putting all of this together we may rewrite (3.1) as

Z= f nc„' f nF„', f nq f nq; f nX' f nX'exp i f d xX(CFQ', QX', X)

(3.4)

(3.5)

(3.6)

where the complete Lagrangian is

~(C F yt q yt y) F a
guava ~F a (cg2)abF 14vb ] ga gpva+yat(~2)abyb+yafgp~abyb '(gpCa )2 (3.7)

—(2) )' F =MG'
PV Pv (3.8)

obtained by varying the fields F „' in the Lagrangian
(3.7) are just the non-Abelian generalization of the con-
stitutive equations (2.24). The non-Abelian magnetic H'
vector and the electric displacement vector 0' are the
non-Abelian generalizations of Eq. (2.15), i.e.,

+k =GOk& Dk 2&kgj G&j (3.9)

where G„', is given by Eq. (2.32b). Equation (3.8) can
then be written as

Eb=D, (+ ' gb=H',
M M

(3.10)

Aside from the gauge-fixing parameter A, , this Lagrang-
ian contains two coupling constants: M and g. It is in
the dual language that part of the quantum Yang-Mills
Lagrangian relevant to long-range physics; that is, Eq.
(3.7) is the translation of the ordinary Yang-Mills La-
grangian (2. 1) from the A language to the C language,
where only the terms surviving at long distances have
been retained.

The fields F „'„appearing in the local Lagrangian (3.7)
represent explicitly the additional degrees of freedom
that were implicit in its original nonlocal form. The
physical interpretation of the variables F„' follows by
noting that the equations of motion

provided we identify

M
jF j (3.1 1)

(~ )abF" —()P,V (3.12)

In this situation we have no reason to identify F„with
the color electromagnetic field tensor since its spacetime
indices are not coupled to a Lorentz tensor in X(C).
Transformations which rotate the space-time com-
ponents of F„' are then "internal symmetries" of X.
Equation (3.12) indicates that the theory might contain
massless particles created by the operators F „' . Howev-
er one can show that the contribution to graphs contain-
ing only C„' external lines arising from internal F „' lines
are canceled by a corresponding contribution of internal

Equation (3.10) has the form of the constitutive equa-
tions (2.24) with the "non-Abelian dielectric constant"
&2/M2, which shows that the fields defined by Eq. (3.11)
can be interpreted as non-Abelian color-electric
and -magnetic fields. ' Since "the dielectric constant"
S /M is a differential operator the constitutive equa-
tions are equations of motion. Hence it is natural that
the components F „' of the color field tensor appear as
independent variables rather than as quantities which at
the outset can be eliminated in terms of the potentials
C„.

What happens if we set the parameter M in Eq. (3.7)
equal to zero? Equation (3.8) then becomes
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ghost lines P;. and f; .This is evident from the sym-

metric way the variables P;, g;, and F „'„appear in X
when M =0. Thus, solutions to Eq. (3.12} for F„', do
not induce massless singularities in processes containing
only C„external lines and hence correspond to unphysi-
cal gauge excitations. Of course the fact that the La-
grangian with M =0 describes only pure Yang-Mills in-
teractions of the C„quanta is evident by setting M =0
in the original nonlocal form (2.32). The ghost fields g;
and P; in X(c}implement this requirement in the local
form of the theory. The term (M/2)F „'„G""' in X(C)
breaks the symmetry between F „' and the ghost fields

and, in the case of the free theory, where g =0, provides
a mass for the C„' field.

The kinetic energy terms in the Lagrangian which in-
volve the fields E' and B' have opposite signs. That is,

1F a (cg2} baF p bv1 F a (g)2)abF b + 1F a (~2}abF b
Ok OA:

I3b+ i Ea. } Eb
2 M2 2 M2

(3.13)

The contribution of the magnetic field B' to the La-
grangian has the normal sign, while the color-electric
fields E' are negative metric fields. The origin of this
negative sign is the indefinite nature of the Lorentz
metric which of course also appears in ordinary electro-
dynamics. We have not yet studied the general problem
of possible violations of unitarity due to this negative
metric.

In this paper we investigate the implications of X(C)
in the classical approximation. A detailed study of the
quantum aspects of the theory is not necessary for this
purpose, but certain aspects of the quantized theory
defined by Z(C) will be important. In particular we
must determine the form of the counterterms induced by
renormalization that must added to X.

When g =0, (2) )' =8 5' and G„'„=B„C',—B„C„' and
the Lagrangian becomes a quadratic form in F „' and C„'
whose inverse is the free coupled C,F propagator. We
define

1
~aP, yb 2 (gay gPS gabgPy )

M+
(p

2 M2)p2

P~q 713Pg
X 2 gPg+ 2 g~y

Spry P~Ps
2 g+~ 2

(3.17)

F„„=gF „'„T, . (3.18)

Hence

1
,—F „'„.=(F„„);..

&2
(3.19)

The Lagrangian (3.7} generates a renormalizable
theory. There are divergent graphs which induce coun-
terterms of the same structure as terms already present
in (3.7) as well as two new terms quadratic and quartic
in the variables F'13 (Ref. 18). (There are also counter-
terms involving the fields g; and P; which we will not
discuss here. ) To determine the form of the counter-
terms we note that the (M/2)F „',G" ' term in X in-
duces a coupling (gM /2)F „',C" C"'f,b, while the
F„'„(2) )'"F"" term induces a coupling of the form

gf, b, c"'r)"F &F ~' as well as a quartic coupling of the
form g f,b,f„dC"'C„F &F '. The coupling propor-
tional to M is super renormalizable and yields a diver-
gent contribution only to F „' F" ' graphs. The counter-
term quadratic in F „„arises from the graphs depicted in
Fig. 1. The graphs (a) are independent of M and qua-
dratically divergent, while the graphs (b) are proportion-
al to M and are logarithmically divergent.

In order to exhibit the color dependence of these
counterterms, it is convenient to use the tensor com-
ponents F~™„' of the fields which are proportional to the
i,j matrix elements of F„,where

(3.14a)

6„'" p—= &(C„'F p)~) =5'"A„p, (3.14b)

(3.14c) (b)

In momentum space we find that

1

2 g.-
p —M

Pl pv 1 PqPv

p2 g (p2)2

p a~ 2 2 2) gpa~a gp8pa (3.16)

FIG. 1. Divergent F '& self-energy graphs: The wiggly lines
in this figure denote the C„' propagator, Eq. (3.15), the dashed
line represents the part of the F'& propagator in Eq. (3.17)
which is independent of I, the line with an X denotes the
mixed propagator Eq. (3.16), while the line with X X
represents the part of the F „' propagator, Eq. (3.17), propor-
tional to M'.
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The factor 1/&2 is introduced into Eq. (3.19) so that
MG„' = —(Xl ),b F b +Qb Pv gF Pvg

(3.24)

F„'„F;""~=2trF„„F"
ij =1

N —1

F~ FI V~=F2
PV

a =1
(3.20)

1 ~ 2F qv
—tF pv

pv2 (3.21)

F
2 PvF„„=—F„2= &2

For the case of SU(3), T, =A., /2, a =1, . . . , 8, and the
relation between the F„', i,j = 1,2, 3 and the F „'„,
a =-1,2, . . . , 8, is given in Appendix B.

By examining the color dependence of the graphs of
Figs. I and 2 we can determine the explicit color depen-
dence of the F and F counterterms for SU(N) gauge
theory. Denoting the counterterms which we must add
to X(C) by —W we find

N-P NF' F
4 aPJ J

Pi F aPkF 4rj PI + (Pi PaPj)2+
4t apk j I Aoi N apj i

+ (F'.P,F i
—")(Fk.(F k')a J (3.22)

where p and A, are arbitrary constants. The function 8'
thus introduces two new parameters )M and I, into 2; p,2 ' . 2

the coefficient of the F 2 term, has the dimension (mass)

and A, , the coefficient of the F term, is dimensionless.
The explicit factors of N which appear in Eq. (3.22) arise
from the color matrices in the graphs of Figs. 1 and 2.

The complete Lagrangian is obtained by adding —8'
to Eq. (3.7). Omitting the gauge-fixing term, the
Faddeev-Popov ghosts 7' and 7', and the ghost fields

l(; and g;, the Lagrangian then takes the form

P a GiJva~ i P a (g)2)ahP ilvb i ga Gpva
pv i 4 pv 4 Pv

(3.23)

where W is given by Eq. (3.22). The equations of motion
resulting from this Lagrangian are

FIG. 2. Divergent I" graphs. Both graphs are logarithmic-
ally divergent and do not receive contributions from the
(M/2)I'6 term in X(C).

For the case of SU(2) T, =r, /2, a = 1,2, 3, and the rela-

tion between the F„'„and F „' is

F„'„+IF„
pvl

2

)abgpvb M(~ )ahP pvb g f (~v)bd P aPd F c
P P abc ap

(3.25)

Note that 8' enters only in the constitutive equation
(3.24) and that it depends upon F '&, only via the quanti-
ty F'p F IP or equivalently only via F'pF P . The con-
stitutive equation (3.24) can then be written as

G~„=e' (MF „" ),
where e'" is the dielectric tensor given by

(S )' 1 5W+M2 M2 g(p a p a&b)
ap

(3.26)

(3.27)

Thus the inclusion of the counterterm 8' gives a contri-
bution to the dielectric constant which is a function only
of F „'„. The first term in Eq. (3.27) depends only on the
potentials C„'.

IV. ELECTRIC FLUX-TUBE SOLUTIONS
TO SU(N) GAUGE THEORY

G„,=O, 2)„F p 0, =() . ——
5F p

(4.1)

We will now show in SU(N) gauge theory that if
p &0 and X &0, then the equations of motion (3.24) and
(3.25) have classical solutions describing static cylindri-
cally symmetric tubes of electric flux quantized in units
of e/N (where e is the Yang-Mills coupling constant).
This will demonstrate that X(C) possesses the essential
properties of a confining theory. In particular static
heavy quarks situated at the ends of the tube will experi-
ence a linear potential. However we must emphasize
that we have not yet calculated the quantum fluctuations
about this classical electric vortex solution and that
these fluctuations could have important effects upon its
properties. Thus quantities obtained from the classical
solution can be identified with physical quantities only in
an approximate way. The specific limitations of the clas-
sical approximation will be pointed out as we proceed in
this paper.

Nevertheless the elucidation of the properties of the
classical electric flux-tube solution is a necessary first
step. Semiclassical quantization of X(C) about this clas-
sical solution should lead to a string theory of color-
electric vortices, just as the semiclassical quantization
around the Nielsen-Olesen solution' of the Abelian-
Higgs model carried out by Gervais and Sakita leads to
a string theory of magnetic vortices.

We begin our treatment of the SU(N) flux tube by
determining the behavior of the fields at large distances

p from the center of the flux tube. (We choose the z axis
to be the axis of the flux tube and use cylindrical coordi-
nates p, P, and z.) We will use the matrix notation,
Equations (2.32), (2.33), and (3.18). At large distances
from the flux tube the fields C„and F p should ap-
proach a static solution of the equations
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C„=0, F„„=Fo„„=const&0, (4.2)-

Solutions of Eq. (4.1) are particular solutions of Eqs.
(3.24) and (3.25) and describe classical vacuum
configurations. Equations (4.1) have the trivial solution
C„=F &

——0 corresponding to the perturbative vacuum.
In order to have flux-tube solutions it is necessary that
Eq. (4.1) have a nontrivial vacuum solution,

tions. There are two differences: (1} The Z~ vortices
obtained from X(C) are color electric, not color magnet-
ic; (2) no scalar fields are arbitrarily introduced in X(C).
The role of the scalar Higgs fields is played by the fields
F„„(Eand B) which appear automatically when the La-
grangian X(C) is rendered local.

We next study Eq. (4.3) defining Fo„. It is convenient
to use the tensor T'1 given by

where

=0 for F =F
5F„„

(4.3}

T&k yF i Fyvk

PV

Then since

(4.9)

At large distances from the flux tube C„and F
& must

approach a gauge transformation Qxr(x) of the nonper-
turbative classical vacuum solution (4.2};i.e.,

N

g F„'„;=0,

we have

C„(x} —'Q-'(x)a„Q (x),
phoo g

F p(x) ~ QM'(x)FO„„QM(x),
p~ oo

(4.4a)
Ti1 —TJk —0

(4 4b) as well as

(4.10)

where QM(x) is an SU(N) matrix of the magnetic gauge
group. Expressions (4.4) are clearly solutions of the
asymptotic equations (4.1).

Now let I be any loop which surrounds the flux tube
at large distances. The loop Wc(l) given by Eq. (2.17)
then ineasures the electric fiux contained in the tube [see
Eq. (2.12)]. Since all the points on the loop are at a
large distance from the center of the flux tube, we can
use the asymptotic solution (4.4) to evaluate Wc(l}. In-
serting Eq. (4.4a) into Eq. (2.17) we obtain

Furthermore if we define M1 by the equation

M1 = Tk1 =Fpvk F 1

then

Mi FI FPvk F2
i pvk i

We can write W in the form

(4.11)

(4.12)

(4.13}

Wc(l ) =QM'(p =2m)QM (p =. 0), (4.5)

where QM(/=0) is the value of the gauge transforma-
tion at some point of the closed loop and QM($=2ir) is
its value at the same point after having circled once
around the loop. Now from Eq. (4.4b) we obtain

F„„(P=2n).
=[Q~'(0)Qxr(2m)] 'F„,(/=0)QM'(0)Q~(2m) .

(4.6}

NP F NA. ;~k (F ) 2
4

+
41 k I +

N
+

N J1

(4. 14)

Differentiating Eq. (4.14) with respect to F„, and using
Eq. (4.3) yields the following equation for F 0„„..

2

F l ~ i k l'

I F {}pvJ 6
F OpvkMPJ'+MPkF P~vj + F Opvj

Thus in order that F„be single valued we must have
4 ik+ 0jl Opvk (4.15)

Q —1( 2ir )Q ( 0 ) e 2n"" /N (4.7)

where n =0, 1,2, . . . , N —1. The electric fiux @z(l)
contained in the tube is determined from Wc(l) by the
non-Abelian generalization of Eq. (2.12). Hence from
Eqs. (2.12), (4.5},and (4.6) we obtain

The quantities Mo. and Tp1 are the values of M and
T~'I" for F„„„=Fo„„„. Multiplying Eq. (4.15) by F~o™
gives

2F{}j: To kMoj +Mok T{}j + T{}j

exp @ (l) =e2"'"~+2&l

e
(4.8)

4 ik Tlm+ TOJ1 Ok~ (4.16)

where n =0, 1, . . . , N —1. That is, the electric flux
&z(l) is quantized in units of the SU(N) quark charge
e/N. The flux-tube solution is therefore a ZN vortex.

The above argument is essentially a repetition of an
argument given by 't Hooft and others who noted that
an SU(N} gauge theory coupled to scalar Higgs fields in
the adjoint representation has classical ZN vortex solu-

Np F{}
8'O ———

8
(4.17)

Equation (4.16) determines the values of the tensor
To~„at the extrema of W. Inserting Eq. (4.16) into Eq.
(4.14) yields the value Wo of W at the extrema:
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To"l ——3 5,5, 5, 5, (4.18)

The Hamiltonian density evaluated at the vacuum solu-
tion is just Wo. There are many solutions of Eq. (4.16)
and we seek the one that yields a minimum value for
Wp. The value of 8'0 at this minimum is the vacuum
energy density. Thus we must minimize Eq. (4.17) sub-
ject to the constraint (4.16). At the classical level the
value of Tp".l at this minimum must also be compatible
with the definition (4.9) of T,'l" as a sum of products of
F„'„;when quantum effects are included, however, Eq.
(4.9) becomes an operator equation and the expectation
value of this operator is no longer expressible in terms of
expectation values of the operators, (F„„).If we do not
impose Eq. (4.9) we are therefore going beyond the clas-
sical approximation and are including some of the effects
of quantum corrections.

Except in the case of SU(2), the classical formula (4.9)
is incompatible with the color-sing1et nature of the vacu-
um. For N & 3, the singlet vacuum energy lies somewhat
lower than that obtained in the classica1 approximation,
though for N =3 the difference is only a few percent.

In Sec. VI we will obtain the explicit form for Fp~„
and calculate F 0 making use of Eq. (4.9). Here, howev-
er, we will drop Eq. (4.9). It is then easy to see that the
minimum of W subject to the constraint (4.16) is realized
when To"l is a color singlet. Using Eqs. (4.10) and (4.11),
we conclude that

field has N —1 independent degrees of freedom. Each
degree of freedom contributes equally to the energy of a
gauge invariant vacuum and —

—,
'

((M ) /A, is the vacuum

energy density per degree of freedom. Likewise, from
Eq. (4.23) we see that —', p /A, X is the contribution of each
color degree of freedom to F Q.

Note that the trivial solution, F O„=O, of Eq. (4.15)
corresponds to the perturbative vacuum and the corre-
sponding perturbative vacuum energy density
( Wo )z„,——0. The physically relevant vacuum energy
density e„„is the difference between the energy density
of the nonperturbative vacuum and that of the perturba-
tive vacuum:

3 (p2 )2e„„=Wo —( Wo),„(=— (N 1) . —(4.25)

Now in order to have a flux-tube solution the nonpertur-
bative vacuum with F 0&0 must be the physically real-
ized solution. This means that we must have e„„&0
which implies

A, )0. (4.26)

Next we can use Eq. (4.23) to calculate the gluon con-
densate G2. G2 is defined as

N —1
2

G y [( (I3a2 Ea2) ) ( (I3a2 Ea2) ) ]
a=1

(4.27)
where A is a constant.

Equations (4.18), (4.12), and (4.13) then give

M' = 5'.
F 2

and

(4.19)

where a, =e /4n. . The first term in Eq. (4.27} is the ex-
pectation value of the operator B' —E' in the physical
Yang-Mills vacuum and the second term is its expecta-
tion value in the perturbative vacuum. Using Eq. (3.11)
we obtain in the classical approximation '

F2
~ik 0 i k 1 i k
~ ojl 2 5I5j ~ 5j5I

iV —1

where F o is determined from Eq. (4.16). Equation (4.20)
yields

(4.20)

F 2
mi jk 0 mk

Tpn jTpil 2 Tpnl
N —1

(4.21)

Inserting Eqs. (4.19) and (4.20) into Eq. (4:16) and using
Eq. (4.21) we obtain

M((I3a2 Ea2) ) F a pl(va
Op 0 (4.28)

M2
2

M2 3P2 N2 1
2 0g2 g2

(4.29)

It is known from experiment that G2 is positive. Hence

The classical approximation (4.28) replaces the expecta-
tion value of a product of operators by the product of
their expectation values and neglects quantum-
mechanical correlations as discussed above. Then using
Eqs. (2.11), (4.27), (4.23), and (4.28), we find

F p F Q 2F p 4 F Q

6 N N N NN' (4.22} p (0. (4.30)

or

3p N —1
2 2

2A,

and then Eq. (4.17) gives

3 (j') (N2 1)
16 A,

(4.23)

(4.24)

The QCD vacuum is thus magnetic (F o g 0) as expected
for a dual superconductor. The pressure from the
large-distance vacuum magnetic field confines the lines
of electric flux, just as electrically charged Cooper pairs
confine magnetic flux lines in a superconductor.

We can demonstrate that the condition p & 0 is neces-
sary for producing confined tubes of electric flux. To see
qualitatively how this comes about let F„be propor-
tional FQ„, i.e., choose

The interpretation of Eq. (4.24) is evident. The gluon F„'„=Fo„„f (4.31)
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Inserting Eq. (4.31) into (3.22) then gives

NF (gsW= Wo+ (f —1}
8

(4.32) (11/8N)(M/g)
G2/(N 1—)

(4.40)

(4.39} and (4.29), we obtain the following expression for
A, in terms of M/g and G2.

Since F~ )0 we see that 8' has an absolute minimum
at f =1 for either sign of p . However the ansatz (4.31)
yields a kinematic term in X of the form

A measurement of G2 at a given scale determines A, in
terms of (M/g).

F a (~2)abF pvb
PV =F Of (&')"f

4
(4.33) V. ESTIMATES OF THE SU(N) STRING

TENSION AND THE 1/N LIMIT

If F0(0, the kinematic term (4.33) has the normal sign.
If F0)0, the sign of the kinematic term is reversed and
the kinetic energy associated with the excitation is nega-
tive. There will then be no flux-tube solutions to Eqs.
(3.24) and (3.25). On the other hand, in the case of a
magnetic QCD vacuum (Fo(0), both the kinetic and
the potential-energy terms are positive and flux-tube
solutions exist. [Of course the argument given here is
crude since in addition to using the simple ansatz (4.31}
the effect of the (M/2)F „' G ""' term in X was not con-
sidered. However, the result remains true as will be seen
in Sec. VIII.] Note that Eq. (4.33) is just a refiection of
the fact that the kinetic energy associated with electric
excitations is negative [see Eq. (3.13)].

Next note that Eqs. (4.25) and (4.29) give the following
relation between e„„and G2..

We can write Was

N
W = — W2(F„„)+, W4(Fq„), (5.1)

where

W2(F„„)=F„'„kF";"" (5.2a)

and

+ (F apJF I }(FAalF k~ } (5.2b)

Then

W4(F„„)= F ~k F ~ F; F $ i + (F '
pi

F—; i )

g N p
8 2G2 '

M
(4.34) F pvaga ~ 1F a (g)2)abF b 1 gpvaga

2 r
V ' 4 J

V PV 4 PV

Equation (4.34) can be compared with relation between
G2 and the trace of the energy-momentum tensor T"„ob-
tained from the trace anomaly,

N
(5.3)

(4.35)
It is convenient to rescale the variables in Eq. (5.3) for
the purposes of studying the resulting classical equations
of motion. We let

where for pure SU(N) Yang-Mills theory

P(e) =p =—,( —", N)+0 (e') .
dp 16~'

Dropping the higher-order terms and identifying

1 pvs'= 4T

we obtain the relation

(4.36)

(4.37)

M-, , M XpF ~ F, C —+ C, x
g g M

Then

2

where

(5.4)

(s.sa)

Evac
11N
96 2 (4.38) G„.=a„c„a,c„+f.„c„'c—'„ (5.5b)

11 M
12 g

(4.39)

Equation (4.38} constrains the parameters entering
into the relation (4.34) between e„„and G2 obtained in
the classical approximation. Comparing Eq. (4.34) and
(4.38) we find

and

gab gaba +fadbCd
P P P (5.5c)

Henceforth in this paper, unless indicated otherwise,
x„, C„', F„'„, G„', and 2)„' will represent the rescaled
variables defined in Eqs. (5.4) and (5.5). We can then
rewrite X:

Thus the trace anomaly determines the coefficient of
F „'g " ' in the Lagrangian (3.23). We emphasize that
Eq. (4.39) is a relation between coupling constants
defined at a given mass scale. Quantum effects will in-
duce corrections to Eq. (4.39) at other scales. Using Eqs.

M
[ i F pvaga + & F a (g)2)abF pvb

2 2 PV 4 PV

——,'G""'G„'„—W], (5.6)
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Np
4M 4Ig

(5.7)

as

where the dimensionless W is now expressed in terms of
dimensionless parameters

Now (assuming that a flux-tube solution exists) let us
estimate the string tension ~, which is the energy per
unit length of a flux tube measured relative to the energy
of the vacuum. Denoting the Hamiltonian density cal-
culated from the Lagrangian density, Eq. (3.7), by & we
have

W =A, , W2(F„,)+A2W4(F„„) . (5.8) 0
2

d X X 6y~c ) (5.18)

F o —— 2b (—N 1),—

Wo ———A, ,b (N —1),

(5.9)

(5.10)

where

Equations (4.23) and (4.24) can be written in terms of di-
mensionless variables as

where x is the rescaled coordinate, Eq. (5.4), and &, as
the Lagrangian X, Eq. (5.6), can be written as

M4
(5.19)

where &d is a function only of the rescaled variables.
Equation (5.8) then assumes the form

b = (A, , /A2) .
8N

Equations (4.25) and (4.29) become

(5.11)
M0 = CTd

g
2

where

(5.20)

M4 A. 1F O

VRC

4

A, b (N —1)
g

2

and
'4 -4

F 2 2 b2(N2 1)

11

N 48

we next expand 8'about F o„j writing

while the approximate relation Eq. (4.39) is

(5.12}

(5.13)

(5.14)

o d ——fd x
~
&~(x)——,')1,)F o ~

(5.21)

The dimensionless string tension, O.d, is a function of the
dimensionless parameters A, , and A, 2 or equivalently of
Fo and Wo= —,'A, ,Fo. The explicit form for %d is given
in Eq. (3 24) of Ref. 5 (Ref. 24). In Eq. (5 21),
Az(x)=Ad(F„„(x), C„(x)), where F„„(x) and C„(x)
are the static z-independent flux-tube solutions of Eqs.
(3.24) and (3.25). The integral in Eq. (5.21) is in the xy
plane.

We can estimate 0. as follows. The magnitude of the
integral (5.18) is of order —e„„=—(M /g )Wo, and
from Eq. (5.16) the range of x over which it varies is of
order

F~ j FFo~ j+F (5.15)

Retaining terms in 8' which are quadratic in F~&
' we

find

' —1/2
8A,2NF o

=(2A, , )
N —1

Using m/2A,
~

as the effective volume of integration in
(5.18) we obtain the estimate

(5.16)

1 M
M2 2

b (N 1) . (5.22)—
2g

where the tenor S'.„ is given by

F Opvj F 1n +F 1pvj F On

2

8'„5~ —( I /N)o& 8„
N —1

(F oi F I„k } . (5.17)

The same rough estimate (5.22) can be obtained some-
what more systematically by calculating the contribution
of the potential energy density & „,„„,& ——(M /g )W to
Eq. (5.18). (The kinetic energy contribution should be of
the same order. ) Replacing & by (M /g )W in Eq.
(5.18) then gives

It satisfies the equation
M0= dX &—WO (5.23)

S„'";=0 .

Since A,2 & 0, Eq. (5.16) makes explicit the relative
minimum of W at Fo„.. Furthermore we see that in
the quadratic approximation W depends only upon the
component of F ',„along Fo„„, symmetrized with
respect to tensor indices. Note also that if we choose
F 1„——AF o„., then S'-I ——0.

F 'l„„l f (K)Fo„— (5.24)

Inserting Eq. (5.24) into (5.16}and using Eqs. (5.17) and
(5.11) we obtain

We estimate the difference 8' —8'o by making the quad-
ratic expansion (5.18), assuming that F~„„is proportional
to Fo„, i.e.,
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A, ) (F ",)"'FJo„„,)
W —80 ——

b X —1
(5.25)

The form of the function f (x)in Eq. (5.24) for p »1 can
be obtained by linearizing Eq. (3.24). This is com-
patible with the quadratic expansion, (5.16) for W.
Equation (3.24) then becomes 8 F ',„„=6W/5F ~P
which combined with Eq. (5.25) gives

~ F~~ F
~~

= —8~~F~~ F IJ (5.26)

( —V +gled)f =0,
which has the solution

(5.27)

Inserting Eq. (5.24) into (5.26) and taking f independent
of P, we obtain the following equation for f (p) valid for
p)) 1:

pends explicitly upon k, and is therefore very sensitive
to the assumption of a single exponential. The origin of
this result is evident. The factor (8A, ,M } ' is the nat-
ural length scale of the problem [see Eqs. (5.27) and
(5.4)] and the factor 2m arises from the transition from
cylindrical to spherical symmetry. [0 is defined by the
two-dimensional cylindrically symmetric integration, Eq.
(5.23), while M &„,&,&~

is determined by a corresponding
three-dimensional spherically symmetric integration. ]

Finally we estimate the mean-square radius R ~ of the
flux tube. Using Eqs. (5.20) and (5.21) we can write

f x d x[JVd(x) ——A iF 0]
R~ —— (5.31)

d x d ~ ——k)FO

The approximation (5.23), (5.24), and (5.25) then gives

—~8k. )pAe
1/2

P
for p»(8A, , ) (5.28}

fd xf (x)x

M jd xf (x)
(5.32)

Now the part of the field F„„which is proportional to
Fo„„becomes small inside the flux tube, i.e., F&„,~F0„„
or f~ 1. We can approximate this situation by integrat-
ing Eq. (5.23) from infinity to p=(8A, &)

'~ using the
asymptotic expression (5.28). We determine the constant
A by requiring f =1 at this point. The contribution to
the string tension from smaller distances (i.e., inside the
flux tube} will be neglected. Combining Eqs. (5.23),
(5.25), and (5.28) then gives the expression (5.22) for cr,
which, when combined with Eq. (5.13) for Gz, gives

M
0

4 g

'2
2

7T g
( —Fo)=—

4 M2 G2. (5.29)

6
Mglueball —2''0(8A, ~M ) =2770'

M

(5.30)

This result is even cruder than Eq. (5.29) since it de-

We emphasize that Eq. (5.29) relating the SU(N} string
tension to the gluon condensate is a rough estimate
which accounts for the long-distance contribution to the
string tension in an approximation where only the lead-
ing long-distance exponential is considered. The
asymptotic solutions of the exact equations (3.24} and
(3.25) will be linear combinations of exponentials. How-
ever, neglect of the nonleading contributions should not
change the estimate (5.29) qualitatively since for fixed b
it is independent of the coefficient A, &, which determines
the rate of exponential decay.

Next let us make a similar estimate of the mass of a
spherically symmetric static solution of Eqs. (3.24) and
(3.25) which can be interpreted as a glueball. [In a pre-
vious publication we have explicitly obtained such a
solution for the case of SU(2).] The magnetic pressure of
the QCD vacuum keeps the gluon distribution in the
glueball confined to a finite region of space. Estimating
the mass of this glueball by the same long-distance ap-
proximation that yielded Eq. (5.29), we obtain

1/2

where f is given by Eq. (5.28) for p « 1. Taking
p'~ f=e, with Po ——+8k,

&
gives

2 1 1 3 g
2poM 16K,,M

(5.33)

od b f (A~), ——
or equivalently

—3p IVX

4%A, 4!g'

(5.34a)

(5.34b)

Thus with M =0 in X(C) we see that the string tension
is proportional to b, i.e., to p /X, provided that A, 2 is
fixed

However, when M &0, the Lagrangian X.( C) does not
yield a string tension satisfying this scaling law. Instead
(5.34) is replaced by a more complicated relation from

This estimate is also very crude. However it gives the
correct dependence of R ~ upon ¹ In Sec. VIII we will
calculate R ~ exactly for SU(2).

The (M/2)F „' G&„ term in X(C) played no role in ob-
taining the long-distance estimate (5.29). Yet it is essen-
tial in X(C) since it reflects the presence of the
M /2) (C) term in the original nonlocal form of the dual
Lagrangian. To understand its effect on the string ten-
sion let us see what happens if it is not present.

We first note that if M =0, then e is proportional to
b . To see this, we set M =0 in X(C), but retain p, as an
independent parameter [instead of being related to M by
Eq. (4.39)] so that flux-tube solutions can exist. Next
make the rescaling transformation (5.4) where M is now
a mass scale. The Lagrangian then takes the form (5.6),
except that the —,'F" 'G„'„ term is absent. The string ten-
sion will still have the form (5.20) where o.

d is a function
of A,

&
and A, 2 and hence depends upon the arbitrary mass

scale M only via its dependence on A,
&

—— Np /4M . —
Since 0. cannot depend upon the arbitrary scale M, crd
must equal A,

&
multiplied by a function only of A,2. Using

Eq. (5.11) we can then write
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62-N, e„„-N, o -N,2

M ~„,b,s-&N, R~ —I/v N
(5.35)

Let us now see how the parameters of L(C) depend
upon N in this limit. Since g =2m /e we must take

g-~N . (5.36)

Equation (5.14) then implies

A, , -independent of N .

From Eq. (5.33) we obtain RFr —I/VN provided

(5.37)

(5.38)

Using Eqs. (5.36), (5.37), and (5.38), we find from Eqs.
(5.29) and (5.30) that o /G2-independent of N and

Ms, „,b„, /o —I/v'N in accordance with Eq. (5.35). Fi-
nally Eq. (5.13) gives G2-N provided that

which one can only conclude that o. is proportional to
b for large b . We will see in Sec. VIII that numerical
solutions of the SU(2) flux-tube equations verify the b
dependence of the string tension for b &&1, but that it
decreases less rapidly with b for small b . For
b «1, cr is more nearly linear in b . Thus for b &1,
significant contributions to the string tension appear to
arise from short distances, inside the flux tube itself.
The presence of the (M/2)F""G„' term in L(C) thus
produces an important change in the dynamics of flux-
tube formation.

We note that the long-distance expressions (5.29),
(5.30), and (5.33) for cr, Ms~„,b„~, and RFz, as well as Eq.
(5.13) for Gz, indicate that long-distance contributions to
physical quantities depend on M and g only in the corn. -

bination (M/g) (Ref. 27). The parameter p is, we re-
call, fixed in terms of (M/g) by requiring that the classi-
cal approximation to the trace anomaly is satisfied. The
remaining parameter in X(C), namely, A, , is related to b

according to Eq. (4.40), which we may rewrite as
A, = 11/8Nb

Yang-Mills theory is specified in terms of a single di-
rnensionful parameter AQCD The appearance of two pa-
rameters, M/g and b, in X(C) reflects the degree to
which our "derivation" of X(C) from Yang-Mills theory
is imprecise. We must take b as a free parameter,
though in principle it is determined from Yang-Mills
theory. In practice we can determine it by calculating
od as a function of b and fitting the experimental string
tension. Since b is the dimensionless gluon condensate
per color degree of freedom, we can anticipate that b
will be of order unity. If b «1, short distances con-
tribute enough to cr so that use of X(C) may be unreli-
able.

It is interesting to use the above results to see what
happens when we take the large-N limit of QCD in
which N~ao and e~O, such that Ne remains fixed.
There are arguments that QCD becomes a string theory
in this limit. ' The usual large-N diagrammatic
analysis ' shows that in this limit

b ——.
N

(5.39)

Equation (5.39) follows from Eq. (5.11) if

A.2-independent of N . (5.40)

Equation (5.7) then shows that the original unscaled pa-
rameters A. and p are independent of N. To summarize,
we obtain expressions for G2, e„„,o., Mg~„,b,&~, and R~
which have the desired large-N behavior, Eq. (5.35), pro-
vided M behaves as v N.

From Eqs. (5.6) and (5.8) we note that X(C) depends
explicitly upon I and g only via a multiplicative factor
M /g . Thus the semiclassical expansion A~O of
exp[(i/A) f X] can be achieved by keeping fi, A, t, and A2

fixed and letting g /M become small. On the other
hand, from Eqs. (5.36), (5.37), (5.38), and (5.40), we see
that the large-N expansion corresponds to the limit

A, i fixed, A, 2 fixed . (5.41)

Thus we conclude that the semiclassical expansion
around our flux-tube solution coincides with the large-N
expansion and that the semiclassical expansion parame-
ter is 1/N.

Furthermore, since the width of the flux tube is
I!v'N, we must let the radius of the flux tube go to zero
at the same time that we make the semiclassical expan-
sion. The leading term in the semiclassical expansion
about this zero width vortex should yield the Nambu-
Goto string according to arguments given by Gervais
and Sakita in the context of the Nielsen Olesen vortex
solution of the Abelian Higgs model. This string theory
has the familiar spectrum of linearly rising Regge trajec-
tories of stable meson resonances. The next order of the
semiclassical expansion (1/N expansion) must at the
same time account for the finite radius of the classical
flux-tube solution. To order 1/N the meson spectrum
will be altered and the meson will acquire a width.
These general conclusions are in accordance with the ex-
pectations of the usual large-N analysis.

Our work therefore provides further justification that
the large-N limit of QCD is a string theory. It goes
beyond previous analyses by explicitly constructing a
classical flux-tube solution as the starting point and by
showing that the expansion in 1/N is just the semiclassi-
cal expansion around this solution. In principle the first
1/N corrections should correct some of the unphysical
features of the Nambu-Goto string, and a physically
satisfactory string theory could result. Of course this
program remains to be carried out and we have no con-
crete knowledge of the nature of the string theory that
might finally emerge. However we might hope that a
string theory arising from a well-behaved field theory
(Yang-Mills theory) will possess only physically accept-
able properties. The unphysical features of retaining
only the leading term in the 1/N expansion can then be
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attributed to the inadequacy of the approximation rather
than of the theory itself.

(5.9) which, when expressed in terms of the matrix Bo,
takes the form

VI. SYMMETRY STRUCTURE OF
THE ASYMPTOTIC FLUX-TUBE FIELDS

F 2

—2 trBO. BO= = b—(N~ 1—) .
2

(6.5}

In Sec. IV we determined the value of F 0, but did not
specify the detailed Lorentz or gauge structure of FQ„.
Given any particular choice of FQ„, we can of course
make a gauge rotation or Lorentz transformation
without changing the value of F Q. However in order to
explicitly construct a flux-tube solution we must make a
particular choice of FQ„,. Furthermore we must specify
the gauge rotation Q~(x) from which the asymptotic
flux-tube fields are constructed via Eq. (4.4). Since
F 0&0, we will choose FQ„ to be purely magnetic. We
define rescaled color-electric and -magnetic fields E and
B in terms of the rescaled fields F„, by Eqs. (3.11) with
M replaced by unity. Henceforth E and B will represent
the rescaled fields.

We then choose our vacuum fields BQ and EQ to be

~0 ~ 0 01 x+ Q2 y+ 03Jz (6.1)

where BQ;, i =1,2, 3 are three orthogonal vectors having
a common magnitude. We take BQ3 along the axis of the
flux tube. The matrices J„,J, and J, are three SU(N)
generators which form an N-dimensional irreducible rep-
resentation of an SU(2) subalgebra. They satisfy the
equation

On the other hand, Eqs. (6.1) and (6.2) give

—2 trB0.80———2B021tr(J2+ Jy2+ J,2)

B2
(N —1)N,

2
(6.6)

where BQ] is the common magnitude squared of vectors
Bo;. Combining Eqs. (6.5) and (6.6) we obtain

2b2
BQ] — e (6.7}

Choosing coordinate axes along Bo; we can write (6.1) as
' ]/2

2
EQ ——0, BQ——b

N
(J„e„+Je +J,e, ) . (6.8)

We have

Next we construct the gauge transformation QM(x)
which, via Eqs. (4.4} and (6.8), determine the field
configurations at large distances from the center of the
flux tube. We take Q(0)=1, so that Q(2n) belongs to
Zz. For SU(2) we choose

Q (g)=e (6.9)

N —1J2+J2+J2x y z 4
(6.2)

It is easy to show that one can always construct such
matrices as linear combinations of the generators T, of
SU(N). For example, for SU(2) we choose

Le) 73
QM V'QM ——

p 2

QM v]Q = 'T ]cos+ —%2sing,
—1

QM 'T2QM =72coslp+7 ]sing .

(6.10)

7] 12 73J =—J=—J=—2' y 2' ' 2

while for SU(3) we choose

J.=~5 J, =~7 J.=~2

(6.3)

(6.4)

Then from Eqs. (6.3), (6.8), and (6.10) we obtain the fol-
lowing large-distance fields surrounding an SU(2) flux
tube:

CQ
——E=0,

where A, ; are the SU(3) generators in the notation of
Gell-Mann. In the case of SU(3), had we chosen
J„=A., /2, J~ =A&/2, J, =A&/2, we would not have ob-
tained Z3 flux-tube solutions. Instead we would have
found a solution which could have been deformed into
the vacuum via intermediate SU(3) configurations.

The choice (6.1) for Bo yields a vacuum which is rota-
tionally invariant because a rotation in ordinary space of
the three spatial vectors BQ, can always be compensated
by an SU(N) rotation of the matrices J,J, and J, such
that the matrix BQ is left invariant. This vacuum is,
however, not invariant under pure Lorentz transforma-
tions. Since FQ„ is used to construct the asymptotic
field surrounding a static flux tube, there is a natural
preferred Lorentz system, namely, the system in which
the classical solution is static. To understand the res-
toration of Lorentz invariance requires going beyond the
static classical approximation.

The magnitudes of the vectors BQ; are fixed by Eq.

1 ] 1 e4 ~3C= Qw VQtw=-.
lg g p 2

(6.11)

B=Qw'(4»oQ~(4)

=b e —+e —+e—
2 2 '2

QM (g=2m)=e (6.12}

Comparing Eq. (6.12) with Eqs. (4.7) and (4.8) we see
that the configuration (6.11) describes an n =1, Zz flux
tube. We can also show this by evaluating Wc(l) direct-
ly. Using Eq. (6.11) we have

The 1 and 2 color components of the magnetic field
point in the radial and tangential directions, respectively,
while the 3 component of the B remains aligned along
the z axis. Their magnitudes remain equal. Further-
more we have
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2m T3 ~3
dx C"= —=e—.

g 2 2
(6.13)

where Yz is a traceless diagonal matrix satisfying the
equation

The tube then contains a unit e/2 of color-electric flux.
Since the large-distance potential Eq. (6.11) is Abelian
we have

2&/ Y~ 27Ti /1Ve =e

The resulting long-distance electric vector potential,

(6.23)

7

Wc(1)=exp ig dx C" =exp 2mi . —=e "'~
P 2

n cyC= —— Y
g

(6.24)

which coincides with Eq. (6.12).
For the case of SU(3) we choose

(6.14) corresponds to a Zz flux tube containing n units of Zz
flux.

The explicit form of the matrix T'l", corresponding to
the vacuum configuration, Eq. (6.8), is '

QM'(ip)=e '""~, n =1,2,
where Y is the hypercharge matrix:

(6.15) 2F0
T.l =

N
Ji Jk (6.25)

1 0 0
~8 1

Y— ——0 1 0v'3 3
0 0 —2

Then

(6.16)
Then

2
0

Ml' ——Tkl ——2
N

21, k Fo,
N —1 N

Jk J!= '5'i, (6.26)

e&
QM VA~ ———In —Y,

P
n =1,2, ,

QM A, 2QM ——A, 2,

QM 1( 5QM =A, 5cosn ip+ i(,4sinn p,
Qjv' X70~ A 7cosn g+ A, 8sinn g

(6.17}

in agreelnent with Eq. (4.19). In obtaining Eq. (6.26) we
have used the fact that in our notation Ji/&2 are the
conventionally normalized angular momentum matrices.
[See Eq. (3.19).] Now for N =2 it is easy to verify that
TJ&" has the singlet form Eq. (4.20). As pointed out ear-
lier this is only true for SU(2). For example, for SU(3)
we find, using Eqs. (6.4), (6.25), and Appendix B, that

Thus at large distances from a flux tube containing n

units of Z3 flux we have

F2
j! 6

(fil~j ~k~! }ik 0 i k (6.27)

n cyC= ———Y, n =1,2,
g p

B=b( —', )' [e„(A—3cosnip+A4sinng)

+eY(i(,,cosny+Assinny)+e, k2] .

The color-electric flux contained in the tube is

f dx C"= n(3 )Y-.P 3

Hence

Wc(1)=exp ig n3Y =e—xp 2@i (3Y)—e . n

3 3

2nin /3

(6.18)

(6.19)

(6.20}

which clearly does not have the color-singlet structure.
In fact Eq. (6.27) implies for all SU(N) that

F 2

TimTnk 0 Tik
jn ml 3 j l (6.28),

T

Fo 0 0 4 0

6 N N N N 3
(6.29)

which agrees with Eq. (4.21) only for N =2. These re-
sults make explicit, as pointed out in Sec. IV, that for
N&2 the classical expression, Eq. (4.9), cannot have the
color-singlet form.

To obtain the value of F 0 and Wo for the SU(N} vac-
uum having the structure of Eq. (6.8) we insert Eq. (6.28)
into Eq. (4.16). This yields the following equation for
F 2.

W (1} Q
—1( 2lr) e2inn Y e2nin/3 (6.21)

A flux-tube solution having the asymptotic behavior Eq.
(6.18) thus contains n units of Z3 color-electric flux.

In the case of SU(N) we can choose

Q(n)( ) (6.22)

The result (6.20) also follows directly from (4.7) and
(6.15), i.e., 2F'= —"

8
(6.30)

This value coincides with Eq. (4.23) for N =2 and is
smaller (in magnitude} for N )3. The value of W at an
extremum is given in terms of the value of F 0 by Eq.
(4.17). For F 0 given by Eq. (4.23), W has the value Wo,
Eq. (4.24), which is an absolute minimum, while for F 0

instead of Eq. (4.22), obtained from the color-singlet ex-
pression, Eq. (4.21). Equation (6.29) then gives
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given by (6.30) W has the value

W=
64

(6.31)

2

W — ~ Pa @pwca+ [(Pa F a~a)2
2

+ (P ag /l»)(F a P ahab)]

which is only a relative minimum of 8' unless N =2.
For SU(3) we obtain (7.1)

and

F 0—— instead of2 27 P 4p (6.32)
Let F„~(M /g )F„„and W~(M /g ) W. Then

W —g~P ag p"a+/ [ (P a P a~a)2

+ (p &g P»)(F & F aPb)] (7.2)

81 (p2)2 3 (p2 )2
Wo = — instead of ——

64 2 A,
(6.33) where, from Eq. (5.7),

The relation (4.29) between 62 and the parameters of the
theory will be correspondingly modified. These changes
are small compared to the experimental uncertainties in
G2.

1 ~ ~2
2M 12

(7.3)

The vacuum value of F, given by Eqs. (5.9) and (5.11) is

VII. SU(2)
F 0

——6$
16K.2

(7.4)

For the case of SU(2) we use Eq. (3.21) to express W
in terms of the fields F „' and obtain the expression

The quadratic expansion of 8' about its minimum
takes the form

W= —3A, b +—"A, (F ' g""')
3 2 OP

Fa Ppvb+Fa Ppvb Fa F~Pb+Fa F/Pb
4g o8 P o ~~aFd y»d OaP 1 laP 0 lfiaPd PaPd

3 b 1aP 0 (7.5)

The expression (6.8) for the vacuum color-magnetic field
can be written as

BO; ——b5', (7.6)

B =Bo;+B);, (7.7)

where the upper index refers to color and the lower in-
dex to space. If we write the expansion of B about its
vacuum value as

ponent gd 8 id which is invariant under a simultaneous
rotation in color space and ordinary space. The trace-
less "tensor" field T' has five independent components
which transform as an irreducible second-rank tensor
under a simultaneous rotation in color space and ordi-
nary space.

That part of the kinematic term in the Lagrangian,
F „' [(S )'"/4]F"", which is quadratic in 8 can be ex-
pressed in terms of S'b and T' as

then Eq. (7.5) can be written as

3gQ2+ S bs b+ T bT bPp P2
1 2

where

(7.8)

where

8QQ28 0
' = —-'S'a'S' ——'T' 8 T' ——'A'"8 Aab

2 2 2 2

(7.12)

and

ga
S'b= b g 8d

d

Tabab lb+ la

2

5b
X 811
d

(7.10)

Pp= 8A i $2 = 32A2b = 2A i (7.11)

The "scalar" field S' has a single independent com-

A'—:—,'(8;b —8„). (7.13)

The "antisymmetric tensor" field A' accounts for the
remaining three independent components of 8 . Com-
paring Eqs. (7.12) and (7.8) we see that (POM )'~ is the
"mass" of the scalar field and that (p2M )' is the
"mass" of the tensor field. The massless field A' is the
"Goldstone boson" which arises because the vacuum is
not invariant under spatial rotations. However because
of the invariance of the vacuum configuration under a



37 DUAL LONG-DISTANCE QCD 1053

combined color and spatial rotation, the field A ' can be
eliminated from the Lagrangian by a gauge transforma-
tion, and we can set A' =0. The color-magnetic field

8&, will then be a linear combination of S' and T',
which will be exponentially damped at distances p from
the center of the flux tube which are greater than
(Po) ' and (P2) ', respectively.

The color-electric field E vanishes at large distances
from the flux tube [see Eq. (6.11)]. However it cannot
vanish everywhere since the ij component of the consti-
tutive equation (3.24) relates EI, to the color-electric dis-
placement ~ector Dk. The field Dk ——26'k&j Gj'vanishes at
large distances since the tensor G; constructed from the
asymptotic potential Eq. (6.11) via Eq. (5.5b) is zero.
This is just the dual of the Meissner effect. The electric
displacement vector cannot penetrate into the interior of
the QCD vacuum just as a magnetic field cannot
penetrate into the interior of a superconductor. On the
other hand, D cannot vanish in the interior of a flux
tube, since the tube contains a unit e/2 of flux of D [Eq.
(6.13)]. From Eq. (3.24) there must then also be nonvan-
ishing component of E inside the flux tube.

Since the color-electric field E does not vanish in the
interior of the flux tube there must be a damping mecha-
nism to cause it to vanish at large distances. However
from Eqs. (7.8), (7.9), and (7.10), we see that the quadra-
tic terms in F,„,which are those which are important
at long distances, involve only the color-magnetic field

B,. There is no term in Eq. (7.2) to produce the neces-
sary large-distance damping of E. However, the cubic
coupling gMf, b,F„'„C""C"' induced by the term
(M/2)FP"'Gp„ in X gives rise to F4 graphs which are
not included in Fig. 2. An example of such a graph is
shown in Fig. 3. Since it is ultraviolet finite it is not
necessary to introduce a counterterm in 2 having the
corresponding spacetime and color structure. Neverthe-

less we are free to add such a term so that some of the
quantum effects of these graphs are accounted for in the
classical approximation. We find that the quadratic ap-
proximation to 8' contains an additional term which is
quadratic in E and of the same structure as Eq. (7.8). It
thus produces a damping term in the equations of
motion for E so that the electric field dies off exponen-
tially at large distances. There results an everywhere
finite confined flux-tube solution of Eqs. (3.24) and (3.25)

It is natural to include such a contribution to W since
it arises from couplings induced by the (M/2)G„'g ""'
term in X. It is just such a term which is responsible for
giving E physical degrees of freedom and for producing
a nonvanishing E inside the flux tube. However, in the
next section, where we solve the equations of motion
(3.24) and (3.25) with this additional term in W, we find
that the field E makes a small contribution to the string
tension and the glueball mass. The inclusion of this ad-
ditional term in W therefore leaves the arguments
presented in previous sections essentially unchanged. In
particular the estimate (5.29) for the string tension
comes from the region outside the flux tube and does not
depend upon the details of what happens inside, except
for the assumption that a solution exists. It is important
that this estimate does not differ substantially from the
results of the numerical calculations presented in the
next section. If it did, then the value of the string ten-
sion would depend sensitively upon the details of the
field distribution inside the flux tube and the long-
distance Lagrangian X(C) could not be used reliably.

In the next section we will examine in more detail the
sensitivity of o to the details of the short-distance struc-
ture. We will do this by including in W all possible
quartic SU(2)-invariant, Lorentz-invariant, terms in F„„
so that W has the form

g Fag Pva+g (Fag Pva)2+g (Fag PvbNF a F iab)+g (Fag vi b)(F PPaF b )+g (F ag vka)(F PPbF b

(7.14)

With A, 3
——A, z and A.4

——A,
&
——0, the general form (7.14)

reduces to Eq. (7.2). Deviations from these values are in

principle calculable from quantum corrections. In par-
ticular, the terms involving A, 4 and A, 5 in W are induced

by graphs involving the gMf, b,F„',C" C"' coupling such
as that of Fig. 3. The vacuum determined by the
minimum of W still has Eo——0 and 8&; ——b5', where b is
now given by

b
12K,2+4k3+ 2A,4+4K, ~

(7.15)

which is the generalization of Eq. (7.4).
Furthermore, expanding W [Eq. (7.14)] about this

minimum and retaining quadratic terms in B& and E we

obtain the generalization of Eq. (7.8)

W= —3A, b'+ S"S"+ T"T" S'"S'"—
CX2' T~bT~b

E E (7.16)

FIG. 3. Ultraviolet finite F graph arising from the
(gM/2)F „' G ""' term in X.

where S', T'", and b are given by Eqs. (7.9), (7.10),
and (7.15), respectively, and where
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with

5» d
E»+E, 5»

3 d 2 3

(7.17}

When the ansatz (8.1) is inserted into the field equa-
tions (3.24) and (3.25) (rescaled), they become the follow-

ing set of differential equations for the rescaled variables.

"Gauss*s law":

V Cp —(Cz +C3+Bz +Bi Ez—E3—)Cp

and

Pp=8kiq Pz=8b (4A3+2A4+X5) (7.18)
1

pB, C&B—z+ CzB3 =0 . (8.2a)
p ~p

ap= —8b (3A4+A&), az ———8b 15 . (7.19)

With Az ——kz and A4=A5=0, the above equations reduce
to Eqs. (7.8)—(7.11) with b given by Eq. (7.4).

Next note that the quadratic term in E arising from
the kinematic term in the Lagrangian can be written as

"Ampere's law":

V' C3 —(Cz —Cp+B i +Bz Ei —Ez )C—3

BE 2B,B 2E,E
+ +CpBz+CzEi =0 (8.2b)

Bp p p

and

AE»= zi(E» E) . — (7.21)

'E'B E'—= 'S'"B S—'"+ 'T' B T—' + 'A '"B A—'" (7.20)E E 2 E E 2 E

where

V' Cz —(C3 Cp+Bi+B3 E, E—3)Cz—

1 8+— pE2 —CpB3+C3E& =0 .
p Bp

(8.2c)

VIII. EQUATIONS OF MOTION AND
SOLUTIONS FOR SU(2) FLUX TUBES

Equations (6.11) give the behavior of the fields E,B
and the potentials C as the cylindrical radius p ap-
proaches ap in an n =1 SU(2) flux tube. We now seek
the simplest ansatz for the fields at finite distances for
which the field equations (3.24) and (3.25) close. We as-
sume for all p

B=B,(p)e~T, +Bz(p)e&Tz+B3(p)e, Ti . (8.1a)

This is the simplest possibility, since the asymptotic B
field Eq. (6.11}already has all these components. Then
it is not hard to see that the field equations will close if
we postulate, in addition, that

and

C=C3(p)e&T3+Cz(p)e, Tz

Cp =Cp(P }T1

E=E(p)e~T, +Ez(p)e&Tz+E, (p}e,T, .

(8.1b)

(8.1c)

(8.1d)

Comparing Eqs. (7.20) and (7.16) we see that if ap) 0,
and a2)0, the fields SE and Tz will be exponentially
damped at large distances. Furthermore one can set
Ag =0 everywhere when seeking static solutions of Eqs.
(3.24) and (3.25) (Ref. 33).

Finally we note that the estimates for physical quanti-
ties given in Sec. V remain the same, provided b is
defined by Eq. (7.15). The parameter A, , is, as before,
determined in terms of g by Eq. (5.14). Fixing b then
constrains the remaining A, We will see in the next sec-
tion that, unless b is small, cr is not very sensitive to the
values of kz —A,3, A.4, and A.5 which are in principle cal-
culable. Furthermore the string tension is then in the
range given by the estimate (5.29), which verifies its in-
sensitivity to the details of the short-distance structure
of the Aux tube.

V Ez —(C3 —Cp)Ez—
2C&Ei BCz

+
B, 'BE, ='

(8.2e)

V' Ez —(Cz Cp )E3 PCi + =0 . (8.2fl
a~

p Bp BE&

The magnetic constitutive equations:

2C3B2
V B, —(Cz+Cz)Bi—

aCO

Bp

(8.2g)

V Bz —(Cz —Cp }Bz—
2C3Bi am

+COC3 — ——0,
p BB2

(8.2h)

V B3 (Cz Cp }B3 CpCz =0 .2 2 2 aw
()B3

In the above equations we use the notation

V= — p, V = — p.aa —, a 1 a=
p ap ap'

=
ap p app

(8.2i)

The last six of the above equations are the constitutive
equations (3.24) while the first three are the equations of
motion (3.25). This system of nine coupled nonlinear
second-order differential equations describes in detail the
field configurations associated with the n =1 SU(2) flux
tube.

The ansatz (8.1} also gives us the explicit form of the
function W, and therefore of the various derivatives of
W' appearing in the field equations. We find, using the
general expression (7.14) for W, that

The electric constitutive equations:

2C3E2 aw
V' Ei —(Cz+Cz}Ei- —C2C3+ =0,

p

(8.2d)
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W= —2A)(A, + Aq+ A3)+(4A2+4A3+2A4+2A~)(A, + A 2+ A 3)+(8A2+2A~)(A t A2+ A2A3+ A3A, )

+8A4(B)E)B2E2+BqE2B3E3+B3E3BiE&)+(4A4+4is)(B fEi +BqE2+B3E3),

where we use the notation

2 E2

(8.3)

(8.4)

As p~ oo, the asymptotic behavior of the solutions to the differential equations (8.2) is just that given by Eq. (6.11).
That is, in terms of the functions defined in Eq. (8.1) we have, as p~ ce,

1
C3 ~— Cp ~0 C2 ~0

P

8) ~b, 82~b, 83~b,
E& ~0, E2~0, E3~0 .

(8.5a)

(8.5b)

(8.5c)

The approach to these asymptotic values is exponential. To study the approach to the asymptotic regime, the field
equations can be linearized around the asymptotic values with W replaced by its quadratic expansion Eq. (7.16). As
pointed out in Sec. VII, the constants a; and P; in Eq. (7.16) must all be positive to assure exponential approach to
the vacuum.

Solutions to the nine coupled nonlinear differential equations (8.2) are obtained numerically for various values of the
parameters A,

&
through A, &. Boundary conditions are imposed at a large cutoff radius R, simulating infinity, at which

we require 8, =82 ——83 ——b, C3 ———1/R, and Cp =C2 =E, =E2=E3=0. The solutions are of course tested for sensi-
tivity to the cutoff radius.

At the origin, the field equations show that C3, E~ E2 8, and 82 vanish while Cp, C2, E3, and 83 approach con-
stants. Accordingly, in the numerical solutions, the functions C3, E„E2,8&, and 82 are set equal to zero at the ori-
gin, while the first derivatives of Cp, Cz, E3, and 83 are made to vanish.

To calculate the string tension we use Eqs. (5.20) and (5.21). Substituting our ansatz (8.2) into the explicit expres-
sion for &d given in Ref. 5 and using the field equations (8.2), we obtain

Co(C3+ C2 )—C3Cp +Co(B p +8 3 Ep E3—) —C~(B—f +B3
—E f —E3 ) —C3 (B

~
+B2

—Ef —E2 )

2C3 BW , BW

P
(E)E~ B,B2) + W ——'B; -'E, —-' 'aB ' 'aE (8.6)

Next we must choose values for the parameters ap-
pearing in O'. The parameter A, , is determined in terms
of the coupling constant g by Eq. (5.14), while the value
of g can be estimated from the 1/R contribution to phe-
nomenologically determined potentials between heavy
quarks as follows. The 1/R part of the potential is the
dominant contribution at shorter distances,
R =(1 GeV) ', which is already inside the flux tube.
We can estimate the potential at such distances from the
exchange of a C„gluon between quarks in the perturba-
tive vacuum, where the gluon propagator is given by
Eqs. (3.15), (3.16), and (3.17). The quark C„gluon cou-
pling can be found by generalizing arguments given in
Ref. 7. However since no non-Abelian effects enter into
the calculation it can be equally well carried out using
the original A„variables. Exchanging a gluon with a
propagator b, „,Eq. (2.35), between quarks gives rise to a
vector interaction mediated by the sum of a Coulomb
potential and a linear potential. Inside the flux tube
where such a calculation is applicable the linear term
generated by the M /q propagator is unimportant and
the potential is essentially Coulombic with the usual
coefficient in SU(3):

g a,
V(R)= ——

3 R g2R
(8.7)

We emphasize that this is an estimate approximately val-
id inside the flux tube. The single h„gluon exchange
bears no relation to the potential outside the flux tube
where the nonvanishing magnetic field confines the elec-
tric flux and their results a Lorentz-scalar linear poten-
tial between quarks whose strength is given by the string
tension o.. The long-distance potential is not directly as-
sociated with the M /q small-q behavior of A~. Com-
paring Eq. (8.7) to a phenomenological potential, we
find

g =6.6 for R =(1 GeV) (8.8)

Using Eqs. (5.14) and (8.8) we then obtain

A, , =0. 1 . (8.9)

We choose b = —F p/6 as a second independent pa-
rameter. In the long-distance approximation, Eq. (5.29),
od ——3~b /2, i.e., it is independent of all A, , provided b
is fixed. We choose X2 ——k3 and A.4 ——0 so that W, Eq.
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(7.14), has a structure similar to its original form Eq.
(7.1). (We have also considered other sets of A, ; not satis-
fying these conditions and arrive at the same con-
clusions. ) Equation (7.15) determines A, 3 in terms of b,
A, &, and A.5, and takes the form

0 =(420 MeV) (8.12)

Gz-(330 eV) (8.13)

while G2, found from an analysis of QCD sum rules for
heavy-quark —antiquark systems, is of order

(4A,3+ A, 5)=
4b

Equations (7.18) and (7.19) become

&o=4&2=8~& ao=a2 —— 8b k—~,

(8.10)

(8.11)

(The uncertainty in G2 is about a factor of 2.) Thus the
measured value of 0 /Gz is around 2.6.

Theoretically, o /G2 ——od/6b, so at b =1 the "ex-
perimental" value of crd is

so that if A, ~ is negative then the electric field E damps
exponentially at large distances.

The values of A, 2
—A, 3, A, 4, and A, 5 can in principle be

calculated from Feynman graphs such as the one shown
in Fig. 3 (Ref. 35). In this paper, however, we shall take
these to be free parameters. We have computed hard as a
function of b for A,

&
———0.025, —0.125, and —0.625.

The results are shown in Fig. 4. The curves have essen-
tially the same shape, those for larger values of A,

& lying
lower. For comparison, the long-distance estimate
od ——3vrb /2 is shown in the same figure. The exact od
decreases less rapidly than b for small b, reflecting
contributions to od coming from small distances inside
the flux tube. The sensitivity of O.

d to A.5 is also larger
for small b . Both of these facts suggest that our predic-
tions may be somewhat less reliable for b & 1.

Experimentally, the string tension o, determined by
the slope of Regge trajectories, is

+d(b = 1)1xpt 4 ' (8.14)

Our calculated value, for A, 5
———0. 125, is

Od(b =1),„„,„=5.9 . (8.15)

Decreasing A, 5 by a factor of 10 increases o d by 20%, in-
creasing it by a factor of 10 decreases o„by 10%%uo. For
b') 1, the ratio ad(b')th-, y/ad(b'), „pt increases. For
b (1, as indicated above, we have less confidence in the
theoretical estimates because short-range effects begin to
become important. Altogether, then, b of order unity
appears optimum. We should emphasize the uncertain-
ties in all of these estimates. The experimental value
(8.14) of crd(hz=1) is from SU(3) data on cr and G2,
while the theoretical value (8.15) is from an SU(2) calcu-
lation. There are also modifications due to quantum
fluctuations in Eq. (5.13) for G2, and, as we have men-
tioned, G2 is not very well known experimentally.

Taking the above into account we select the following
values for the parameters in W:

l7

l6-

l5—

l4-

l3—

l2—

IO-

Og
8—

0 b2

/ i

5
5

25

b =1, ki ——0. 1, A5 ———0. 125,

which yields ~d =5.9. From the corresponding numeri-
cal solutions to Eq. (8.2) we calculate C„and F„„from
Eq. (8.1), D and H from Eq. (3.9), and the energy densi-
ty %d from Eq. (8.6). In Fig. 5(a) we plot —C3(p), the p
component of the vector potential, as a function of the
scaled radius p. The potential —C3 vanishes at the ori-
gin, increases reaching a maximum at p =2, and then de-
creases approaching its asymptotic value 1/p exponen-
tially. In Fig. 5(b) we plot the p and P components of
the color-magnetic field: B,(p) and B2(p). These func-
tions are large only outside the flux tube and decrease
rapidly in its interior. In Fig. 5(c) we plot the z com-
ponents of the electric field and the electric displacement
vector, both of which lie in the 3 direction in color
space. We see that these fields are large only when the
one and two color components of the magnetic field 8

&

and 82 are small. The color-electric flux is then
confined by the magnetic pressure produced by color-
magnetic fields lying in directions orthogonal to E, and
D, both in ordinary space and color space. Finally in
Fig. 5(d} we plot the energy density &d, from which the
confined nature of the flux tube is evident.

Using Eqs. (5.20), (8.15) and the experimental value
(8.12) for a we obtain

FIG. 4. o.d vs b for different values of A, 5. The straight line
is the long-distance estimate, od ——~/4(6b ). (M /g }2-( 175 Me V ) (8.16)



37 DUAL LONG-DISTANCE QCD 1057

0.35 I.O

0.30

0.25

a 0.20

) 015

0.10

0.05

0.8

AJ
m 06
a
O

0.4
Q

CQ

0.2

'0 10 12
0

0
I

10 12

0.6 ~

0.5—

~ 0.4—
N

03 DE

0.2

~~ 0. 1

0—

-0. 1
I

10

(c)

12

1.8

1.6

1.4

1.2

1.0

W 0.8

0.6—

0,4-

0.2.

0
0 10 12

FIG. 5. Numerical solutions to Eqs. (8.2) with b =1, A,
~

——0. 1, A.5
———0. 125. (a) shows —C3 as a function of the (scaled) cylin-

drical radius. (b) shows 8& and 82. (c) shows E, and D, and (d) shows p&d.

Gz =(270 MeV) (8.17)

This value is insensitive to the choice of b, and is about
a factor of 2 below the experimental value. Next, using
Eq. (5.31) for the radius of the flux tube, we obtain

RFT=1.5 fm . (8.18)

The classical approximation for G2, Eq. (5.13) with
b =1 then gives

self as an unstable physical particle. On the other hand
it is complicated to solve our equations for gluon distri-
butions having the geometry of closed flux tubes, and we
have made no attempt to do so. We only remark here
that the long-distance estimate (5.30) makes no reference
to the internal geometry and hence in principle is applic-
able to closed flux-tube glueballs as well. Indeed, we can
use the crude estimate (5.33), to write Eq. (5.30), in the
form Mll«bg~-(2nu)&2(RFT), which aside from the
factor &2 is the naive geometrical estimate for the mass
of a closed flux-tube glueball.

In Ref. 6 we obtained spherically symmetric static
solutions to Eqs. (3.24) and (3.25) which we interpreted
as a glueball. Using the above parameters we obtain

~glueball (8.19)

The detailed Lorentz structure and color structure of
this solution is not important for our present discussion.
We only point out that this solution, unlike our flux-tube
solution, is not topologically distinct from the vacuum.
Thus although classically stable it is not topologically
stable and it is not clear that such an object manifests it-

IX. THE STATIC POTENTIAL:
THE LANDAU-GINZBURG APPROXIMATION

AND THE BAG APPROXIMATION

As a final application let us briefly discuss the static
potential V(R) between a heavy quark and antiquark
fixed at a separation R. We know at large R that V(R)
is a linear potential and that at short distances it is a
Coulomb potential. To calculate V(R) at all distances
requires the introduction of sources into Eqs. (3.24) and
(3.25). How this is done is described in Ref. 7. Howev-
er, the resulting equations are sufficiently complicated
that they must be simplified. Two approximation
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schemes to Eqs. (3.24) and (3.25), which permit the cal-
culation of V(R), are outlined in what follows.

El ——E2 ——E3 ——Co ——C2 ——0,
Bi ——B2=—B,
B3——b =const,

(9.1)

in our SU(2) ansatz (8.1). Equations (8.2) for the SU(2)
Aux tube then reduce to just two equations, for the func-
tions B and C3=—C:

and

2B
V 2C- ' -2B2C =0

p
(9.2a)

A. Magnetic superconductor approximation V (R )

As noted in Sec. V, with M =0, and for fixed p, X(C)
reduces to a Landau-Ginzburg-type Lagrangian. When
M =0, Eqs. (3.24) and (3.25) close if we set

potential at short range with a rapid transition to a
linear potential at long range. In Fig. 6 we plot the po-
tential V (R) between a heavy quark and antiquark in
the magnetic superconductor approximation to dual
long-distance QCD. At short distances V (R ) behaves
according to Eqs. (8.7) and at large-distance behavior is
fixed by the value Eq. (8.12) of the string tension.

In the same paper Ball and Caticha also calculated the
monopole antimonopole potential using a linearized ap-
proximation to Eqs. (9.2). In this approximation their
equations [which we denote as Vb,s(R)] reduce to those
of the MIT bag-model static potential. ' Although
Vb,s(R) does not yield the correct string tension, it can
be made to agree quite accurately with V (R) if the
string tension is allowed to be a free parameter. Thus
the MIT bag-model static quark-antiquark potential can
be viewed as an approximate solution to the magnetic
superconductor approximation to dual long-distance
QCD as described by X(C).

where the function 8 is given by

with

(B2 b2)2
4

X =—
2b

'2

V B — C+ — B —— =0,1 1 88'
p 28B (9.2b)

(9.3)

(9.4)

B. The bag approximation to the exact Eqs. (8.2): Vb,s(R)

Of course, since Ball and Caticha calculated the
Landau-Ginzburg potentia1 exactly, there was no need
for them to make a bag approximation. However, we
want to find the potential V(R) obtained by introducing
sources into Eqs. (8.2) generated by X(C). In this case,
in contrast with the magnetic superconductor case (9.2),
the problem is too difficult to solve exactly and an ap-
proximation is required. We have calculated the poten-
tial V(R) using a linearized Abelian approximation to
Eqs. (8.2) analogous to the approximation to Eqs. (9.2)

With the substitution C~A, B~P, Eqs. (9.2) become
the Landau-Ginzburg equations for an ordinary super-
conductor characterized by a Landau-Ginzburg parame-
ter g=& —3x/2. They thus describe a magnetic super-
conductor.

Now although, as noted in Sec. V, there are important
differences between the physics of dual QCD as de-
scribed by X(C) and the physics of a magnetic supercon-
ductor, the constraints (9.1), valid in the magnetic super-
conductor approximation, are approximately satisfied by
the solutions of Eq. (8.2). The fact that the solution of
the exact Eqs. (8.2) are fairly well described by the
Landau-Ginzburg approximation may be understood
by referring to Fig. 4. We note that the physical value
of b is close to the region in which 0. is linear in b .
This linearity is an indication of the validity of the
Landau-Ginzburg approximation. In fact we can obtain
a good estimate of the string tension in the Landau-
Ginzburg approximation from the straight line in Fig. 4.
We thus expect that one can obtain a good estimate of
V(R) by introducing sources into Eqs. (9.2) and then
calculating the resulting static approximation potential
in the magnetic superconductor approximation.

Indeed Ball and Caticha have calculated the poten-
tial between a heavy monopole and antimonopole in an
ordinary superconductor. Their results may be taken
over directly, with the relabeling and rescaling indicated
above, to determine V (R), the magnetic superconduc-
tor approximation to V(R). They find a pure Coulomb

1.6
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FIG. 6. The heavy-quark potential from various models.
The solid curve is the linear plus Coulomb potential of Ref. 34.
The dashed line is the MIT static bag-model potential Vb,g.

The long- and short-dashed lines are the bag-model potential

Vb, ~ of Ref. 7. The dots are the magnetic superconductor po-
tential V from Ref. 39.
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which yielded the MIT bag-model potential. Again the
resulting potential [denoted as Vb, (R)] does not give
the correct string tension. However, the comparison be-
tween V (R ) and Vb,g(R ) suggests that Vb, (R ) can be
an adequate approximation to V(R ) provided the string
tension is taken as a free parameter. When this is done
the potential Vb, g(R) is almost indistinguishable from
VMs(R )

The basic difference between the MIT bag-model po-
tential and the potential obtained from the bag approxi-
mation to Eqs. (8.2) is that they give a diFerent depen-
dence of the string tension on the flux 4 contained in
the flux tube. The string tension in the bag approxima-
tion to the exact Eqs. (8.2) is given in terms of 4 and
e„,by the equation

&2M 4e =4+—2e„„ 1+
3277 —E„~c

(9.5)

+adjoint

+ fundamental

=1.83

to be compared with approximately &8/3=1. 63 for the
MIT bag model and 8/3-2. 67 for the lattice. However
since the bag approximation to Eqs. (8.2) does not give
the correct absolute cr, it can only be used qualitatively
to understand the ratio.

X. CONCLUSION

We have begun with a propagator 6~ obtained from a
truncated system of equations based on the Dyson equa-
tions and Ward identities of Yang-Mills theory and con-
structed the free Lagrangian X' '(C) which, in the C

OP
representation, describes the same physics as
Gauge invariance then fixes the long-range limit X(C) of
the interacting dual Yang-Mills Lagrangian. This La-

where e„, must now be taken as a parameter fixed by
the string tension. This dependence on 4 can be com-
pared with that given by lattice calculations ' which sug-
gest that in SU(2) the ratio between the string tension in
the adjoint representation (i.e., between gluons) and the
fundamental representation (i.e., between quarks) is close
to 8/3, for small enough lattices that the screening of
gluon sources by gluon pairs (which eventually destroys
the linear potential in the adjoint case), has not yet come
into play. The ratio 8/3 is, of course, for SU(2), just the
ratio of Casimir eigenvalues for the two representations.

It is conventional in bag models to take the effective
Abelian charge on the source to be proportional to the
square root of the Casimir eigenvalue. Thus the
color-electric flux in a bag flux tube is also proportional
to this value. The string tension in the MIT bag model
is proportional to the flux; therefore the ratio of adjoint
to fundamental string tension in the MIT bag will be
&8/3, for SU(2), rather than the close to 8/3 value
found in the lattice calculation. ' In contrast with the
MIT bag, where cr is linear in 4, the bag approximation
to Eqs. (8.2) has a term in 4& as well. For SU(2) it will
therefore give a result between &8/3 and 8/3 for the ad-
joint to fundamental ratio. We obtain a ratio

grangian turns out to describe a system with properties
resembling those of a magnetic superconductor.

The physical origin of these properties is the follow-
ing; it was pointed out a number of years ago by Niel-
sen that one can understand asymptotic freedom as a
consequence of the paramagnetic nature of the perturba-
tive Yang-Mills vacuum. When this perturbative feature
is extended beyond its domain of applicability, there re-
sults an infinite magnetic permeability p(q ) at a space-
like momentum (the Landau ghost). Imposing self-
consistency and compatibility with gauge in variance
moves this singularity in the permeability out to infinite
distance; i.e., p(q )~M /q as q ~0. This is the phys-
ics described by X' '(C), the free Lagrangian constructed
from p(q ). Although it gives a mass to the dual gluon
and a linear potential between quarks (indicative of
confinement), it contains unphysical long-distance singu-
larities and allows electric flux to spread out. In the C„
language these feature manifest themselves in the mass-
less field F„, which, because of the nonlocal nature of
p(q ), are implicitly contained in X' '(C).

But when interactions are included by extending
X' '(C) to X(C) so as to maintain invariance under the
transformations of the magnetic gauge group, the fields

F„, assume a role analogous to that of Higgs fields. The
resulting interactions induced between the fields F„,pro-
duce a condensation of the F„„quanta yielding a mag-
netic physical vacuum with F &0, which is energetical-
ly favorable to the perturbative vacuum in which
F„=O. This modification of the vacuum structure is
the most important consequence of the interactions
present in X and eliminates the two problems present in

namely, (1) long-distance singularities are eliminat-
ed via a dual Higgs mechanism where masses are gen-
erated from a "spontaneous symmetry breaking" in-
duced by a nonvanishing vacuum expectation value of
the fields F„,; (2) the resulting vacuum magnetic pres-
sure prevents color-electric flux lines between distant
quark sources from spreading out into space.

Thus the magnetic superconducting properties of
long-distance QCD appear in two stages: the singular
long-range magnetic permeability p(q ) results from the
self-consistent solution of the truncated Dyson equa-
tions. The confinement of electric flux lines results from
the vacuum condensation of the F„, quanta already
present in X' '.

Almost all the applications considered in this paper
have been carried out in the classical approximation
from which, after using the string tension and gluon con-
densate to fix the coupling strength, we predict about 1.5
fm for the flux-tube radius. Further applications require
going beyond the classical approximation. Semiclassical
quantization around the classical flux-tube solution
should lead to a string theory with linearly rising Regge
trajectories, but this quantization has not yet been car-
ried out for X(C). Furthermore, perturbative calcula-
tions in g around the nonperturbative vacuum are neces-
sary for determining the range of applicability of X(C);
that is, to determine whether X(C) can describe hadron
physics in a large part of the long-range regime not de-
scribed by short-distance asymptotically free perturba-
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tion theory. Dual gluons can be coupled to quarks;
however this coupling complicates calculations substan-
tially. Finally one can use X(C) to study long-distance
QCD at finite temperature. In particular one can calcu-
late the deconfining transition temperature.

To conclude, we wish to point out a number of impor-
tant problems that remain. We have seen how combined
gauge and rotational invariance is maintained in the
presence of a nonvanishing classical vacuum field F 0„',
however it still remains to understand how Lorentz
boost invariance is restored by quantum corrections. It
is also necessary to study the quantum theory defined by
X(C) to make sure that no violations of unitarity in
physical amplitudes are induced by the negative metric
states resulting from the indefinite Lorentz metric. We
have noted the cancellation between the negative metric
F; fields and the ghost fields 1(; in lowest order, but we
have no general argument that this continues in all or-
ders.

All of these points need to be cleared up in order to
know whether X(C) describes a consistent quantum field
theory. While it is true that X(C) is supposed to coin-
cide with Yang-Mills theory only at long range, it is
defined at all ranges, and it would certainly be desirable
for it to be a consistent field theory everywhere.
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We suppress color and Lorentz indices for ease of writ-
ing. We have also explicitly displayed the powers of the
Yang-Mills coupling constant e which appear. y2, y3,
and y4 refer to the bare two, three, and four legged ver-
tex functions. We use the index 3 on the I „„ to em-
phasize that these are the usual A language vertex func-
tions of Yang-Mills theory.

The functions En can all be uniquely broken up with
two separate parts E„'" and E„' ' having the following
properties: (i) E„"' involves vertex functions only up to
I „„+„(ii)E„I" and E„' separately satisfy the Ward
identities; and (iii) E„' ' is one order of e higher than
E(1)

Figure 7 illustrates this decomposition for I „z. [In
general, E„"' and E„' ' are defined by Eq. (A17) of Nucl.
Phys. B186, 531 (1981).]

The Ward identities relate the divergence of I „„ to
I „„1,' they can be solved to express I ~„as a function
of I ~„1plus an undetermined transverse part. Thus

(A2)

We know" that if the vertices on the right-hand side of
(A3) satisfy their Ward identities, than the vertex on the
left-hand side does too; thus this set of vertices is
guaranteed to describe a gauge-invariant approximation.

In particular, for n =2, Eq. (A3) becomes

A2 E2 (V2 V3 V4 A2 A3
(1) (1) 2 . (1) (1) (A4)

and E2 ' is represented by the diagrams on the first line
of Fig. 7. I „'3 is in turn expressed in terms of I '„'4 by
Eq. (A3) for n =3. Since it therefore satisfies its Ward

where I„ is the kinematic singularity-free longitudinal
part of I „„,and I ~„gives zero when we take the diver-
gence of Eq. (A2). We know that any set of I „„exactly
satisfying all of the Dyson equations also automatically
satisfies the Ward identities.

The basic idea of the iteration scheme is now the fol-
lowing. We first drop E„I ' in the Dyson equations (Al),
and define vertices I'„'„' satisfying the truncated system

n —2 (1) (1) 2 n —1 (1)e rw„E„('Vz,eVi, e —
V—4, I &2, . . . , e rz„+i) .

(A3)

APPENDIX A

The iteration scheme is based on the system of Dyson
equations and Ward identities characterizing Yang-Mills
theory. The form of these relations is gauge dependent;
it is convenient to select axial gauge. In this gauge, the
Dyson equations En relate the n-legged ordinary gluon
proper vertex functions I „„to each other as (E(2))

2

n —2 2e I q„——E„~y2 e V3 F4 A2 A3

n —1 2rgb+] e rgb +)) (A 1)
FIG. 7. Graphical representation of Dyson equation E2 for

r„,.
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identity, it can be written

I (1( I (I (() )+I (()T (A5}

Now suppose that the transverse part I '~3 is unim-

portant in Eq. (A4) in the infrared limit. Then we can
replace I'z& in (A4) by the first term in (A5), and (A4)
becomes a closed equation for I'~z.

To be specific we can write (introducing explicit
Lorentz indices)

I „3„„i(q,k, k')=fi„i(e(k)k„—e(k')k„') — (k k'5 .i k&—k,')(k —k')„+cyclic permutations,
e(k) —e(k')

(A6)

I'„",„(q)=e(q)(q'5„—q„q„) . (A7)

where e(q) is the dielectric constant defined in terms of
I'~z by the equation

Consistency will occur if these equations have solutions
with the low-momentum behavior given by (A7) and
(A9) for I'zz' and by (A6) and (A9) for I'„'~, namely,

With these forms, (A4} yields an integral equation for
the dielectric constant:

I'„'i(-q /M (A 10)

z dk E(k, q} z ( dk L (k, q}

(A8)

where K and I. are kinematic factors.
Setting e= 1 on the right-hand side of Eq. (A8) yields

the usual perturbative solution with its inconsistent low-
momentum behavior. One can show" that the only pos-
sible self-consistent low-momentum behavior of e(q)
compatible with Eq. (AS} is

e(q)- —q /M as q ~0, (A9)

I.O

0.5

l

2.0
0
0 I.O

-q /M

FIG. S. The solution of the integral equation for e(q). The
solid curve is the input e(q). The circles are the output e(q)
calculated from the right-hand side of the integral equation
(AS).

0.5 2.5

where M is an undetermined scale parameter, We have
solved Eq. (A8) numerically and have obtained a self-
consistent solution for all q having the low-q behavior
given by Eq. (A9) (see 'Fig. 8). Denoting by 5(~0'(q) the
gluon propagator obtained from solving (AS), we obtain
Eq. (2.35) (transcribed to the axial gauge).

To verify the self-consistency of dropping I'z3, we
must study Eq. (A3) for n =3, in which we replace I'„'4'

on the right-hand side by I4(I'„'3). Equations (A3) for
n =2 and n =3 then form a set of coupled integral equa-
tions for I '~z and I'„'3. This system of equations is too
complicated to study in detail but it has a structure
analogous to that of our previous Eq. (A8) for e(q)

and I '„'„' vanishes for n )7.
The exact infrared behavior of the A language vertex

functions can now be obtained by iterating the full

Dyson equations, including the E„' ' parts, using the
M /q propagator 6'„' and the vertices I'„'„' as input.
Thus, it is easy to see by power counting, will generate a
series expansion of the form

I „„=g (e M )'I„"(q),
i =0

(A12)

where the I„" are 4i-dimensional integrals depending
only on the external momenta and not on the mass scale
M. Dimensionally, therefore, they behave as
(q ) '(q) ", so that the expansion parameter in (A12) is
(e M /q ), q being a characteristic external momentum.
There results an expansion dominated by low momen-
tum with a dimensionful coupling constant e M whose
value reflects the effect of high momentum on low
momentum. The expansion diverges in the infrared, and
the infrared behavior of the exact I ~„differs completely
from that of the I'~„'. This reflects the singular long-
distance behavior of the variables A„.

The way to construct a convergent infrared expansion
is to avoid the A language altogether. We must instead
translate the expansion into the C language. To do this,
we first note that the purely Abelian theory described by

I'„"-q /M (A13)

corresponds in the C language to the Abelian theory
having

I C2-M(1) 2 (A 14)

In the same way the low-momentum limit of all the
I'„'„' should be just that determined by repeated applica-
tion of the Ward identities to I '„'2. Since the Ward iden-
tities are linear, the I '„'„' will all be proportional to
1/M . Furthermore, each I '„'„' is one power of momen-
tum lower than I '„'„',; thus

I &4-q /M, I &5 —q/M, I '~s- I/M, (Al 1)
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Furthermore, since we know that the C Lagrangian is

gauge invariant, the I c„must all satisfy the same Ward
identities as do the I z„. Consequently a set of C„ver-
tices, I c„', can be explicitly constructed from (A14) by
repreated application of the Ward identities, just as the
I '„'„' were constructed from I'~z. These vertices I c„' are
in fact precisely the bare vertices generated by the
M /2) term in X(C). The complete L(C), Eq. (2.32), is
obtained by including the first low-momentum correc-
tion to I C2.

Because in each order the Ward identities are respect-
ed, each term in the expansion (A12) is gauge invariant.
The corresponding C language expansion of which the
I c„' constitute the first term, is also gauge invariant.
Furthermore the higher-order terms in this C„expan-
sion produce vertices I c„which satisfy unitarity. The
quantum corrections to I c„' generated by X(C) produce
a series having both these properties. Nonminimal addi-
tions to X(C) can, at low momentum, be accounted for
by renormalizing the parameters appearing in X(C).
The quantum Lagrangian X(C) then describes in the C„
language the long-distance physics of the series (A12)
and is the appropriate Lagrangian for describing long-

APPENDIX B

In this appendix we write down the explicit relation
between the components F „' of F„and its tensor com-
ponents F„', for .SU(3). We have

F „'„3—— ,—(F„„iF—„)=F„', ,&2

pv3 . /lv tv IJ» '&2

F pv3= ( —', )' F pv

(B1)

F1 3 PV
pvl g pv+

2 3

F8
1 3 PVF

distance Yang-Mills theory. The expansion parameter is

g q /M instead of e M /q .
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