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Tunneling by topological instantons is described as a consequence of nontrivial homotopy

among field histories and not of barrier penetration. A derivation of the Yang-Mills 0 vacua, with

finite-action (weak) boundary conditions, is given from this perspective which clarifies certain

weaknesses of the barrier-penetration approach. The treatment of nontrivial homotopy in field-

theory path integrals is discussed with special attention to the roles of finite action,
compactification, continuity of paths, and the justification of the use of Euclidean instantons in a

Minkowski-time path integral.

The origin of the Yang-Mills 0 vacua is conventional-
ly described as tunneling between vacuum sectors of
different winding numbers by topological instantons.
The analogy is drawn to tunneling by barrier penetra-
tion in a periodic potential and the phenomena of Bloch
waves. This barrier-penetration argument is not com-
pletely satisfactory. An alternative derivation of the 8
vacua in terms of nontrivial homotopy in the space of
field histories will be given. This will be used as a back-
drop to presenting the general treatment of nontrivial
homotopy in field-theory path integrals.

The main difficulty in the barrier-penetration descrip-
tion of the 8 vacua is that in order to show that the ini-
tial and final configurations are in different topological
sectors, one must compactify the field configurations.
This is done "

by imposing a condition on the
configurations which is stronger than the assumption of
finite action. The justification of this compactification
has always been recognized as weak but it had seemed
necessary.

Another difficulty is that in general finite-action paths
cannot change the homotopy class of a configuration be-
cause the path must be continuous. This might lead
one to imagine that a tunneling mechanism is at work
but the difficulty remains because Euclidean paths can-
not change the homotopy class of configurations either.
The impression is easily formed that the tunneling which

gives rise to the 8 vacua is in contradiction to this claim,
and it is important (for peace of mind, if nothing else) to
understand why in fact it is not.

A satisfactory resolution of these problems may be ob-
tained if one allows that there are other mechanisms of
tunneling than barrier penetration. In a path-integral
description, tunneling occurs when there are paths in
configuration space to be included in the path integral
which are not continuously related to a Minkowski-time
solution to the equations of motion. In a barrier-
penetration problem, the extent of Minkowski-time solu-
tions is limited by the barrier and there are paths which
reach beyond this range. In a problem like the 0 vacua,
it will be shown that there are paths whose boundary
values are not consistent with Minkowski-time solutions

K(a, b;t)=
a E I homotopy classes I

X(a)K (a, b;t) .

Since the paths in different homotopy classes are not
continuously related, there is apparently no a priori
weighting of the partial amplitudes and these "homoto-
py factors" must be determined. The problem of finding
all sets of homotopy factors consistent with unitarity in
quantum mechanics has been solved by Laidlaw and
DeWitt. They find that the hornotopy factors must
form a one-dimensional unitary representation of the
fundamental group of the configuration space.

The situation is analogous in field theory. Indeed,
Dowker has shown that the Laidlaw-DeWitt argument
applies directly to field theory when one works in the
configuration space of the field theory in which each

of the equations of motion. It is not necessary to under-
stand this fact in terms of a "barrier" as it is a natural
consequence of nontrivial homotopy.

In both cases, when evaluating the Minkowski path
integral by stationary phase, one finds that these paths
which cannot be reached by deviations from Minkowski
time solutions are reached from Euclidean- (or complex-)
time solutions of the equations of motion. To account
for their contribution to the path integral, one must de-
form the sum over paths to pass through the Euclidean-
time stationary point(s). This leads to the familiar ex-
ponential damping which is characteristic of tunneling
phenomena.

The role of nontrivial homotopy in a quantum-
mechanical path integral was first considered by Schul-
man and was later studied by Laidlaw and DeWitt.
These authors observe that if one restricts one's atten-
tion to continuous paths, then the set of paths between
an initial point a and a final point b decomposes into
homotopy classes, that is, into classes of paths which
may be continuously deformed one into another. This
induces a decomposition of the full amplitude for transi-
tion between a and b into a sum over partial amplitudes,
each partial amplitude being a sum over paths in a par-
ticular homotopy class:
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point represents the value of the field on a spacelike hy-

persurface (a field configuration). There are a few
subtleties with this however. In quantum mechanics, the
path integral is a sum over continuous paths so it may
be taken to be defined by its decomposition as a sum
over partial amplitudes. Io field theory, however, con-
tinuous paths are measure zero. But one needs continu-
ous paths to have a notion of homotopy. Are there then
no homotopy effects in field theory?

The answer is that of course there are, but one must
recognize how they show themselves. The specification
of the homotopy factors corresponds to imposing bound-
ary conditions on configuration space which are to be
satisfied upon completing closed loops. ' This is not im-
mediately obvious from the original Laidlaw-DeWitt ar-
gument, but it is evident if one works in the universal
covering space ' where a modified proof of their result
can be given (see the Appendix). The Laidlaw-DeWitt
result thus gives all boundary conditions that can be im-
posed on configuration space consistent with unitarity.
For the path integral to be well defined, these boundary
conditions must be imposed before attempting the
decomposition into partial amplitudes.

This can be done by using a differential expression'
for the topological number (index) involved in the homo-
topy factor and including it in the Lagrangian. This is
done in standard treatments ' of the 8 vacua where one
adds 8 times the Pontryagin density to the Yang-Mills
Lagrangian. This has been recognized" as imposing
boundary conditions on configuration space but its
significance in terms of nontrivial homotopy has not
been discussed. The inclusion of this boundary condi-
tion term in the Lagrangian gives an action which is
correct on the subspace of continuous paths that see the
topology of configuration space and it induces an effect
on other paths through the modified Lagrangian.

Strictly speaking, in field theory there is no a priori
decomposition of the exact full amplitude into partial
amplitudes as in (1) because the path space does not
decompose. But having specified the correct "in princi-
ple" path integral, when one performs a semiclassical
(Gaussian, stationary phase) approximation to evaluate
it, there will be a decomposition. One s first observation
is that only finite action paths will contribute as station-
ary points to the path integral. ' The finite-action paths
are a subset of continuous paths, so there will be a
homotopy classification of the stationary paths.

Deviations from these paths are expressed in terms of
an expansion in eigenfunctions of the second variation
with arbitrary coefficients and the Gaussian approxima-
tion involves integrating over these coefficients. This
means that discontinuous paths are being included in the
sum over paths. One might be concerned that these
discontinuous paths might break the homotopy
classification of the stationary paths. This does not hap-
pen for two reasons.

The first reason is the more important because it is so
easily overlooked. In general the target space of a field
theory with nontrivial homotopy is not a vector space.
This means that one must define the operation + when
one describes a field as a background plus a deviation:

/=$0+@&. This may be done' (if the target space is a
manifold) by using Fermi normal coordinates and ex-
pressing the deviation as a displacement along a geodesic
leaving normal to the stationary path. The trouble is
that Fermi normal coordinates are local and cover at
best a simply connected region. The same topology
which induces nontrivial homotopy classes confines the
range of deviations. One simply cannot express paths in
a different homotopy class as deviations along a well-

defined family of one-parameter curves.
This is supported by the second fact that the eigen-

functions of the second variation are continuous func-
tions which satisfy boundary conditions compatible with
the stationary path they are associated with. That is,
they are in the same homotopy class as the stationary
path. One can use them to construct paths which are
discontinuous in the differential sense, but one cannot
combine them to reach a path in a different homotopy
class. The reason for this is that a path is described in
terms of a one-parameter family of deviations from a sta-
tionary path, but one needs at least a two-parameter
variation to make a discontinuous path and then use it
to change homotopy classes.

Having justified the place of nontrivial homotopy in
the path integral, it is necessary to determine which
homotopy group is relevant in a given field theory. This
has been done by Dowker by directly applying the
Laidlaw-DeWitt argument in the configuration space C
of the field theory to find that the homotopy group is

,(C). Th. is result is, however, largely formal because
the burden is then placed on properly identifying C. A
more direct argument will be given with close attention
to the role of compactification and the treatment of
finite-time transitions in Minkowski time.

The idea is to generalize the Laidlaw-DeWitt argu-
ment so that it applies to path histories which are not
one dimensional. Suppose that spacetime has the topol-
ogy M XR. The image of M in the target space N under
a field mapping P is a field configuration. A one-
parameter family of such configurations is a field history.

The first difference from quantum mechanics is that it
is possible for there to be a homotopy classification of
field configurations. This happens when [M,N], the
homotopy group of mappings from M into X, is non-
trivial. A simple example of this occurs when M=S'
and X=R gR ' (three-space with a line removed). The
configurations in which P(M) encircles the line removed
and in which it does not are homotopically inequivalent;
one cannot be continuously deformed into the other
without crossing the line removed from N. Homotopi-
cally inequivalent configurations lie in different topologi-
cal sectors of the theory. There can be no continuous
path connecting configurations in different homotopy
classes; therefore there can be no finite-action path con-
necting them. (This statement is at odds with the con-
ventional description of the 8 vacua in which the n
vacua are claimed to be in different homotopy classes
and to be connected by a finite-action Euclidean path.
This seeming contradiction is one of the difficulties with
the barrier-penetration description of the 0 vacua and
will be explained below. )
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An additional subtlety of field theory is the possibility
of twisted fields. ' This arises because in actuality a field
configuration is not the image of the manifold M in the
target space N but is a cross section of a fiber bundle
with base space M, fiber N, and bundle group G. It may
happen that there are nontrivial fiber bundle structures
and one must specify the bundle structure of the theory
one is considering. This corresponds to specifying
boundary conditions on field configurations. The homo-
topy of field histories is not sensitive to these boundary
conditions and thus not to bundle structure, so without

loss of generality, one can confine one's attention to
trivial bundles in which one can work with field
configurations as images in the target space.

As we will be interested in the semiclassical approxi-
mation, it is necessary to restrict our attention to paths
associated with finite-action solutions to the equations of
motion. In quantum mechanics we can restrict attention
to finite-action paths because any path can be arbitrarily
closely approximated by a smooth path while an
in6nite-action smooth path must have passed through a
region of unbounded potential and cannot contribute to
the path integral. In field theory, the situation is less
clear. It is evident that we need not consider infinite-
energy initial and final configurations because the path
joining them will necessarily have infinite action. It is
not certain however that smooth infinite-action paths
joining finite-energy configurations are always associated
to infinite-action stationary paths. Until this can be
determined, it is prudent to include all continuous paths
joining finite-energy configurations.

The importance of these remarks is that the assump-
tion of finite-energy configurations imposes boundary
conditions on fields which affect the topology of
configuration space. For example, in a massive (1+ 1)-
dimensional scalar field theory, the assumption of finite-
energy configurations requires that $~0 as

~

x
~

~oo.
This compactifies the configuration and may result in a
homotopy classification of field configurations if
~,(N)+0. In a massless (1+ 1)-dimensional scalar field

theory, the condition is only that P~ const as
~

x
~

~ oo

and this does not compactify the configuration because
the constant may be different at +co. In a massless
(2 + 1)-dimensional scalar field theory, the configurations
are again compactified, but the constant at 00 may
change as the configuration evolves (at least until one
determines that all solutions of the equations of motion
in which it does have infinite action).

To determine the homotopy class associated to a field
history, one must consider both the evolution of the
configurations in the target space and the evolution of
the boundary in the subspace that it is confined to by the
assumption of finite action. With this in mind, one can
go on to generalize the Laidlaw-DeWitt argument. The
original argument will go through unchanged once the
construction identifying the homotopy group has been
given (see the Appendix).

In the Laidlaw-DeWitt argument one associates a
path running from an initial configuration a to a final
configuration b to an element of a homotopy group by
completing the path into a closed loop based at an arbi-

trary (fixed) point e. This is done by attaching path seg-
ments connecting e to a and b to e. The path segments
are part of the homotopy mesh and it is the fact that the
homotopy mesh is unphysical that allows one to deter-
mine the homotopy factors (see the Appendix). In the
field theory case, one can complete a finite history to a
closed "loop" by attaching cylinder path segments (of
topology M XI where I is an interval) to the initial and
final configurations joining them to a base configuration
0 in the same homotopy class. This gives a closed loop
of topology M )(S'.

The relevant homotopy group is then
[(MXS',BMXS'), (N, F)] which is the group of inaps

which take M)&S' into the target space N while taking
the boundary of M (and its evolution) into the space F
that is defined by the constraint of finite action. It is
amusing that the Laidlaw-DeWitt construction of com-
pleting the finite path between a and b into a closed loop
is designed to avoid the notion of relative homotopy
(homotopy between objects with fixed boundary) while
the finite action constraint that the boundary of M lie in
a particular subspace reintroduces it. It should be em-
phasized that in general this homotopy group is not one
of the standard n.„(N) homotopy groups which are writ-
ten [S",N] in this notation. The articles by Isham '
describe how to calculate these homotopy groups
(though not with the boundary constraint).

This result may now be applied to analyze Yang-Mills
gauge theory. Consider a (3 + 1)-dimensional Yang-
Mills gauge theory with potentials taking their values in
the Lie algebra p. The constraint that field
configurations have finite energy requires that the poten-
tials be pure gauge as

~

x
~

~ oo:

A„(x)~g(x)B~ '(x) as ~x
~

~oo . (2)

This means that the surface at infinity is being mapped
into the Lie group G. The homotopy group classifying
paths is then [(R XS',S XS'),(p/G, G)] where p/G
is shorthand indicating that one is interested in images
in p up to gauge transformations. If G is connected,
then since [R XS',p/G]=iri(p/G)=no(G)=0, all of
the topology is given by [S XS',G]. For simply con-
nected simple Lie groups G, in particular for SU(n ), this
equals Z. In the standard derivation' of the 8 vacua, the
homotopy classification is given by [S,G]. This is be-
cause finite action is required for the full Euclidean his-
tory which requires the potential to be pure gauge on a
three-sphere. '

It should be emphasized that the gauge has not yet
been fixed. This is important because at this stage one is
formulating the "in-principle" path integral and gauge
fixing may affect the topology of the space of paths. It is
correct that full account has not been explicitly taken of
equivalence under gauge transformation. Isham and
Kunstatter' show how holonomy effects connected with

gauge transformations can modify the homotopy
group —this is not a problem if G is simply connected.

If the nontrivial homotopy of field histories can be
seen in Minkowski time, then what is the role of the Eu-
clidean instantons? This is best understood by reconsid-
ering the Belavin-Polyakov-Schwartz-Tyupkin (BPST) in-
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stanton. ' The first step in the construction of this in-
stanton is to write down a pure-gauge configuration on a
three-sphere which has index 1. This is the image in the
Lie algebra from a three-sphere in Euclidean space but it
is just as well the image from a three-sphere in Min-
kowski space. One merely replaces x4 by xQ. This may
be taken as representing the boundary values of a gauge
field which is pure gauge on hypersurfaces at times tQ

and t, and outside a sequence of two-spheres between tQ

and t&. By filling in this sequence of two-spheres with
nonsingular configurations one has an acceptable field
history connecting two pure-gauge configurations.

This field history is in the winding-number-one homo-
topy sector by construction. It is not however a solution
of the equations of motion and cannot be used as a sta-
tionary point for evaluating the path integral. The ques-
tion one must ask if one wishes to evaluate the path in-
tegral semiclassically is the following: What is the field
history in this homotopy class which does satisfy the
equations of motion'? The answer is that there is no
such solution in Minkowski time, but there is a
Euclidean-time solution, namely, the BPST instanton. If
one is evaluating the path integral by stationary phase,
one must deform the path integration contour to pass
through this stationary point in order to account for the
configurations in the winding-number-one homotopy
class.

The reason that there is not a Minkowski-time solu-
tion has to do with the fact that one is imposing bound-
ary data on a three-sphere in a hyperbolic equation and
this is not a well-posed problem. The boundary value

problem of finding a solution between a pure-gauge
configuration on an initial Cauchy hypersurface and a
pure-gauge configuration on a final Cauchy hypersurface
is well posed and has a unique solution which is pure
gauge everywhere. Being pure gauge everywhere, it is in
the homotopically trivial class. There cannot be a
Minkowski-time solution with nonzero winding number.
The analytically continued problem however is elliptic
and is well posed, having the instantons as solutions.

One can see clearly that the instanton does not con-
nect homotopically distinct configurations. Both the ini-
tial and final configuration are pure gauge and are homo-
topic to the identity. One can give the impression that
they are in different hornotopy sectors by compactifying
the configurations at infinity by imposing the boundary
condition ' g (x)~id as

~

x
~

—+ oo. With this boundary
condition, the space of pure-gauge configurations is
disconnected and there are no continuous zero action
histories connecting configurations in different homotopy
sectors.

One finds' however that by extending the space of
configurations to all finite-energy configurations then
there do exist continuous finite action histories between
homotopically distinct zero-energy configurations. The
dilemma about how it is possible to have a finite-action
path between "hornotopically distinct" configurations is
thus resolved by observing that the configurations are
not homotopically distinct in the larger space in which
the path lies. It is not then surprising that instantons
have nonzero action as this is precisely what allows them

to tunnel between different (zero-energy) topological sec-
tors.

One can go further to recall the origin of the barrier
penetration description. As the pure-gauge configura-
tions are energy minima, the finite-action history be-
tween two such homotopically distinct configurations
will pass through configurations of greater energy. This
is reminiscent of tunneling in quantum mechanics when
a particle of a given energy tunnels through regions
where the potential energy is greater. One is naturally
drawn to a barrier-penetration analogy. However, since
the "barrier" is not externally induced but is instead a
property of the configurations, it is prudent to think in
terms of the topology of configuration space and not to
restrict oneself to images of potential barriers.

The propagator for the 8 vacua with the
compactification boundary condition g (x )~id as

~

x
~

~ ao can be derived in terms of nontrivial homoto-

py on configuration space. This was first done by Dow-
ker' and as his argument has a slightly different per-
spective from the general one above and as it is not gen-
erally available, I will brieAy summarize it. Working in
the configuration space of finite-energy configurations
without yet fixing the gauge, one first observes that the
pure-gauge configurations decompose into homotopy
sectors classified by [S,G]—maps of the compactified
R into the gauge group. One can think of configuration
space as a fiber bundle in which the fibers are
configurations related by "small" gauge transformations
(gauge transformations that are homotopic to the identi-
ty). The large gauge transformations which take one
from one pure-gauge homotopy sector to another may
then be interpreted as a covering group on the (simply
connected) space of finite-energy configurations.

There are distinct partial amplitudes for paths running
between a chosen initial configuration fiber and each im-

age of the final configuration fiber under large gauge
transformations. These are the analogs of the homotopi-
cally distinct histories in the argument above. The phys-
ical space of finite-energy configurations is obtained by
projection from this covering space and by the method
of images one knows that one includes a phase factor
with each partial amplitude to impose the boundary con-
ditions of the physical space (cf. the Appendix). This
phase factor is a one-dimensional unitary representation
of the covering group, in this case, m&(G) which equals Z
for G =SU(n). This leads to the standard result for the
8 vacua with strong (compactification) boundary condi-
tions.

There is a difficulty which arises in the cornpactified
case which is not present in the more general one. This
involves gauge fixing and the Gribov ambiguity. ' As
yet the gauge has not been fixed and there is the possibil-
ity that fixing the gauge could affect the topology of
configuration space. The object of gauge fixing is to
choose one member from each class of gauge-equivalent
configurations so that there will be no double counting
of configurations in the path integral.

In the fiber-bundle picture of Dowker, ' this corre-
sponds to finding a section in the bundle, reducing each
configuration fiber to a particular configuration in the
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fiber. The difhculty is that Singer' has proven that
there are no global gauges when space is compactified to
S . That is, there is no global section of the fiber bundle
that Dowker is using. This means that the space of
gauge-fixed configurations is disconnected. But from
above one knows that to get the full 0-vacuum result one
must be able to reach all configurations —how is it possi-
ble for there to be a finite-action history between
configurations in disconnected gauge-fixed sectors?

The answer is that the Gribov ambiguity allows for
certain zero-action discontinuous evolutions. Because
there are no global sections, the gauge fixing fails to al-
ways specify a unique configuration from each
configuration fiber. When it does fail, there are two (or
more) configurations which are related by a gauge trans-
formation. Each of these lies on a different section of
the fiber bundle and one's histories may move between
the disconnected sections by way of these configurations.

Another subtlety confronting Dowker's description is
that not all gauge choices preserve the distinction be-
tween small and large gauge transformations. The main
significance of this is that the topological structure of
the theory is more transparent in some gauges than in
others. One finds that if only the small gauge transfor-
mations are fixed, then Dowker's covering space argu-
ment is unaffected. But if the large gauge transforma-
tions are also fixed, as they are in Couloumb gauge, then
the topological structure indicated by the covering group
is hidden. The result still holds, but the histories which
were homotopically nontrivial are now discontinuous
and are made possible by the Gribov ambiguity. This
was explicitly demonstrated by Jackiw, Muzinich, and
Rebbi

The analysis on the noncompactified space with finite-
energy boundary conditions is somewhat simpler because
Singer' mentions that there do exist global gauges. The
description of the Yang-Mills 8 vacua is thus cleaner if
one does not invoke compactification to construct a
barrier-penetration description. One does not have the
disturbing circumstance of finite-action paths connecting
apparently different topological sectors and one need not
worry about the Gribov ambiguity. In addition it is seen
that the 8 vacua are a natural consequence of nontrivial
homotopy of paths in field theory.

This description of tunneling in terms of nontrivial
homotopy is valid for all problems in which the tunnel-
ing takes place by topological instantons. The topologi-
cal classification relevant to a given theory is more gen-
eral here than what is usually encountered because it al-
lows for finite evolution times and takes more care with
the topology associated with the boundary of
configurations. The greatest difference would come in
theories involving nonsimply connected target spaces for
either the manifold or boundary, say in a Yang-Mills
gauge theory with 6 =SO(n) (Refs. 4 and 14).

The main import of this discussion of nontrivial
homotopy is the recognition of a tunneling mechanism
other than barrier penetration. The question of the ex-
istence of a mechanism which does in fact tunnel be-
tween different topological sectors is made more tenable
now that one need not conceive of a barrier to tunnel

through. In a related vein, one should consider the
effects of working with a base spacetime manifold whose
topology is not I)&R and whose sections can change to-
pology. This would be of interest to both string theory
and the question of the consistency of topology change '

in quantum gravity. Work is in progress on these ques-
tions.

This work was supported in part by NSF Grant No.
PHY-8515689.

APPENDIX

where c'(e, a)c(a, e ) is the loop associated to
c(e,b)c'(b, e) to p, and c(e,a)p(a, b)c(b, e) is the orig-
inal identification to a.

To prove independence of the partial amplitudes, one
needs to know that the short-time behavior of the partial
amplitudes is such that, on the universal covering space,

K (a, t;b, t')~5(aa, b) as t~t', t&t', (A2)

where aa is the u image of the point a on the universal
covering space. (This is the new property used in the ar-
gument. ) This is the boundary condition defining the
partial amplitudes on the universal covering space. It is
connected to the t~t' boundary condition for the full
amplitude by the decomposition of the base manifold 5
function on the universal covering space

5(a, b)= g X(a)5(aa, b),
aEH

(A3)

where the X(a) impose boundary conditions on the base
manifold after projecting down from the covering space.
This is why determining the homotopy factors is
equivalent to specifying the boundary conditions on
configuration space. To guarantee the existence of the
universal covering space, one must assume that
configuration space C is locally simply connected. That
is, there exists a neighborhood U of any point a E C such
that for all b E U, the paths from a to b are in the same
homotopy class.

A modified version of the Laidlaw-DeWitt argument
is given for completeness and to indicate the role of
boundary conditions. The argument is similar to one
given by Avis and Isham, but the key step is a
justification of the independence of the partial ampli-
tudes which they assumed.

Having identified paths p(a, b) with elements of a
homotopy group H by attaching path segments c(e,a)
and c (b, e ) in the homotopy mesh to form a closed loop,
one has the decomposition of the full amplitude into a
sum over partial amplitudes as in (1). To derive the re-
sult, one then needs to know that the partial amplitudes
are independent and that by a homotopy mesh change
c~c', K ~E' =E ", where A, ,@EH. The latter fol-
lows iminediately from

c'( e, a)p (a, b)c'(b, e ) =c'( e,a)c (a, e )c ( +,a)

Xp (a, b)c (b, e )c ( e, b)c'(b, e ),
(Al)
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Independence of the partial amplitudes follows upon
taking the short-time limit if all of the images of the
point a are distinct on the covering space. Since there
are no accumulation points of the images by the assump-
tion that configuration spaced is locally simply connect-
ed, the only possibility is that two images associated to
di6'erent homotopy classes agree. But this cannot hap-
pen. Suppose that two images were the same, aa =pa,
then a loop could be constructed running from this point
to a and back. It would be in the homotopy class ap
since it runs between the a and p images of a via the
identity, but all loops in the universal covering space are
contractible so aP '=e which implies a=P.

For a chosen homotopy mesh c, one has the full am-
plitude

g X(a)K~ (a, t', b, t) .
aEH

(A5)

Using (A4) in (A5) and linear independence of the partial
amplitudes as seen in the short-time limit, one can
equate the two series term by term. This gives

exp( i—gtt)X(Pa) =X(a) . (A6)

A choice of an overall phase can be made to set X(e)=1
where e is the identity element of the homotopy group.
Then it is clear that

X(P)=exp(igtt) (A7)

one end point, then E' =EC~, and labeling the phase
change by P, we have

K'(a, t';b, t)=exp( i—gtt)K(a, t', b, t)

K(a, t';b, t)= g X(a)K (a, t', b, t) .
aE-H

(A4)
and

Since the homotopy mesh is unphysical, if one changes it
to c', the full amplitude can only change by a phase. If
the change is made so that the mesh is only changed to

X(P)X(ct)=X(Pa) . (A8)

The homotopy factors form a one-dimensional unitary
representation of the homotopy group H.
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