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The sphaleron strikes back: A response to objections to the sphaleron approximation
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The issue of sphaleron-induced baryon decay and various paradoxes related to the instanton

method of computation are addressed. By various examples we argue that there is no contradic-
tion between the instanton estimates and sphaleron estimates, and argue that for electroweak
theory these estimates correspond to different approximations for distinct phenomena. We also in-

vestigate numerically the nature of the classical decay of a sphaleron in the (1+1)-dimensional
Abelian Higgs model.

I. INTRODUCTION

Recent investigations into the standard model have
suggested the possibility of significant violations of
baryon-number conservation at temperatures near 1 TeV
and above. ' Baryon-number violation is caused by the
winding of the weak gauge fields, the two being related
by the anomaly
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Each time the fields wind, the baryon number is changed
by nf units where nf is the number of families of quarks
and leptons. The difference of baryon number and lep-
ton number, however, is exactly conserved.

Creating these gauge fields costs energy, and the clas-
sical potential-energy barrier for winding the gauge
fields' is of order Eo-M /a . At zero temperature,
such processes can occur only by quantum tunneling and
so are exponentially suppressed by the Euclidean action
SIR-bEhtlfi-1ia . Such tunneling may be ana-
lyzed using instantons and, in the classic analysis of
't Hooft, baryon-number violation at zero temperature
was estimated to be so small that it is unlikely to have
ever occurred in the lifetime of the observed Universe.
At finite temperature, however, one can pass over the
barrier classically with a Boltzmann factor exp( pEO). —
In a classically allowed transition, there is no exponen-
tial suppression due to quantum tunneling. It is to this
possibility that previous work has been addressed. The
barrier has been identified with a classically unstable,
static solution to the equations of motion known as the
sphaleron. ' Estimates of the rate at which this barrier is
crossed suggest that baryon-number violation is
significant enough to easily dissipate any baryon excess
in a universe with 8 —I. =0.

Although the idea sounds simple once proposed, the
formalism is more confusing. When working in Euclide-
an space, the only configurations which at first sight
seem to have something to do with winding are the in-

stantons. Shuryak and Gross, Pisarski, and Yaffe,
have extended the analysis of instantons to finite temper-
ature, and the Euclidean action of any configuration
which winds once in Euclidean time is still bounded
below by 2m la . Thus, 't Hooft's conclusion appears
unchanged: the rate of baryon-number violation is
essentially zero. Ellis, Flores, Rudaz, and Seckel have
recently put forward this argument in the case of
baryon-number violation in electroweak theory.

Our main goal will be to demonstrate that the leap to
this conclusion is misplaced. In a previous work we ex-
amined the formalism of how a dynamic process, the
winding of the gauge fields, could be related to the ex-
pansion of the path integral about a static config-
uration —the sphaleron. We studied the details of how,
in this formalism, a Boltzmann factor exp( —pEO) con-
trols the rate of transitions. In this paper we shall exam-
ine the relation of these processes to instanton physics.
We conclude that instanton estimates are not relevant to
this phenomenon.

Gross, Pisarski, and Yaffe were concerned with the
calculation of equilibrium quantities, such as the depen-
dence of the free energy on HQcD Equilibrium quantities
requiring winding are indeed exponentially suppressed.
Time-dependent correlations, however, are more subtle.
We shall investigate in detail a simple toy model where,
though winding is suppressed in Euclidean time, it is un-
suppressed when analytically continued to real time. We
shall see that real-time winding is unsuppressed because
it comes from the sector with zero Euclidean winding
number.

This demonstration will explain the appearance of
real-time winding in certain operators, such as time-
dependent correlations of baryon number, which can be
nonzero without Euclidean winding. But there is an al-
ternative way to investigate baryon-number violation
which requires Euclidean winding. ' A process which
winds the gauge fields once will emit a member of each
weak fermion doublet. In a theory with one generation
of quarks and leptons, for example, three quarks and a
lepton will be emitted. If there is significant baryon-
number violation, then there should be significant S-
matrix elements involving the appearance of three
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quarks and a lepton. But one can show that such an
amplitude (qqql . ) can only receive a contribution
from configurations with nontrivial Euclidean winding,
and so, it seems, should be exponentially suppressed.

As we shall see, this argument is Aawed because the
process mediated by the sphaleron is a classical one and
so involves a large number of quanta. To cross the bar-
rier, the fields must at some time configure themselves
into a physical sphaleron with energy -M /a . The
size of a sphaleron is r —1/M, and so the typical
Fourier component is k -M . When the sphaleron de-
cays, the momenta of particles in the final state will be
typically M . The sphaleron will therefore decay into
-1/a W's and Z's, producing the quarks and lepton as
a side effect due to the anomaly.

The amplitudes of interest are then of the form
(qqqlA ' ) rather than simply (qqql ). We shall argue
that instanton estimates to amplitudes break down in the
classical, many-quanta limit where the sphaleron esti-
mates are made. By attempting to extrapolate instanton
estimates to this limit, we shall see qualitatively how
they can yield unsuppressed amplitudes. Conversely, by
attempting to extrapolate the sphaleron estimates to the
few-quanta limit, we shall see qualitatively how they
yield the instanton suppression. We conclude that the
inclusive rate for baryon-number violation is unsup-
pressed.

In Sec. II we examine the toy system of a quantum-
mechanical pendulum at high temperature to establish
our first claim that Euclidean winding is not directly re-
lated to real-time winding. In an exactly soluble version
of this model, we shall see how winding that is
suppressed in Euclidean time becomes unsuppressed
when analytically continued to real time. We also dis-
cuss the physics of unsuppressed winding in a model
with more than just a single degree of freedom: the
sine-Gordon model on a finite ring in 1+1 dimensions.

In Sec. III we turn to the argument that S-matrix ele-
ments that violate baryon number should be suppressed.
A simple problem in integration highlights the break-
down of instanton estimates in the many-quanta limit.
Using coherent states we then study the few-quanta limit
of sphaleron estimates.

In Sec. IV we address two other issues concerning the
sphaleron estimate: electric damping and thermal col-
lisions.

In Sec. V we investigate the classical evolution of the
decay of the sphaleron. This yields a specific example of
a solution to the Minkowski equations of motion which
winds. Our arena for this investigation will be the
Abelian Higgs model in 1+1 dimensions, which is nu-
merically more tractable than the Weinberg-Salam mod-
el in 3+1 dimensions. Our interest is to check if there is
anything singular or sick about this evolution. We find
that the transition does wind the fields once but has
some interesting structure peculiar to 1+1 dimensions.

In Sec. VI we offer our conclusions.
We end this Introduction with a brief review of the

sphaleron solution and the corresponding estimates of
baryon-number violation. The particular sphaleron solu-
tion found by Klinkhamer and Manton' is identified as

the barrier between neighboring vacua for the following
reasons: (1) it is a static, unstable solution to the equa-
tions of motion, (2) there exists a path through
configuration space from one vacua to the next for
which the sphaleron is the point of maximum potential
energy, and (3) moving from one vacuum to the sphale-
ron changes the baryon number by exactly one-half the
amount of moving from one vacuum to the next. The
last is determined by computing the Chem-Simons
charge of the sphaleron:

2

g=nf Jd xK

where the Chem-Simons current is

K"=e"~ (F' W' ——'ge W'W"W' ) .vp (r 3 abc v p 0' (3)

This charge is related to baryon-number violation by
b,B =hQ.

The sphaleron is studied in pure SU(2) theory with the
Weinberg angle treated as a perturbation. The size of
the sphaleron is —1/M and its energy is

A(A/g )
sp W (4)

where A -2. This puts E between 8 and 14 TeV at zero
temperature depending on the Higgs self-coupling A..
Using a Boltzmann factor, the rate per unit volume for
crossing the barrier might therefore be of the order

R —T exp[ E, (T)/T—], (5)

II. REAL-TIME VERSUS EUCLIDEAN WINDING

A. The pendulum

We now turn to our first investigation of the relation
between winding in Euclidean time and winding in real

where we replace M by the effective temperature-
dependent mass M (T) of finite-temperature field theory.
As one approaches the critical temperature T, of
Weinberg-Salam, M ( T)~0, the size of the sphaleron
becomes infinite, the classical energy barrier becomes
zero, and the estimate (5) becomes order l.

A direct computation of this rate is possible by
weak-coupling methods in the temperature range
M (T)«T«M (T)/a for the case A, -g. In this
range the simple formula (5) is reduced by several orders
of magnitude, but the rate is nonetheless sufficiently
large to be relevant for cosmology. At higher tempera-
tures, it is difficult to conclude anything by direct com-
putation since infrared divergences of the finite-
temperature theory render weak-coupling methods al-
most useless. In fact, in the symmetric phase above the
critical temperature, there is no sphaleron solution.
Nevertheless, we put forward arguments in Ref. 3 that,
at very high temperatures, the rate may go as

R -aI' r4, (6)

where p is a number, p-3 —4. This is in contradistinc-
tion to instanton estimates, which at first sight would
seem most valid and familiar in the symmetric phase.
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time. Our model for this study will be the quantum
mechanics of a rigid pendulum, where the pendulum
may swing all the way around in a circle. This model
has many of the paradoxical features of the electroweak
theory. At zero temperature, in the presence of the
gravitation potential shown in Fig. 1, the pendulum can
only wind about by quantum tunneling; the rate may be
calculated by instanton analysis. At finite temperature,
the pendulum is given an ensemble of energies weighted
by exp( PE—). At high temperatures, large compared to
the potential difference between the top and bottom of
the orbit, we expect that the pendulum will wind around
with probability close to one. On the other hand, in Eu-
clidean space, a solution which winds must have a singu-
lar high-temperature limit since it is required to do so in
Euclidean time P~0. We shall show that the Euclidean
action for such a winding solution grows as 2n. T/A in
the high-temperature limit, and therefore the instanton
is exponentially suppressed. Our purpose is to show
how the formalism nonetheless reproduces one's physical
intuition of a rapidly rotating pendulum.

A pendulum is described by a spatial coordinate x
constrained to a circle, so that points are identified
modulo 2m. %'e shall allow the range of x to be
—00 &x & 00 so that we can follow the pendulum as it
wraps around several times, but we must remember that
the physical coordinate is identified modulo 2n.. %e
shall keep track of A in this section to help identify the
classical limit.

Note that the sphaleron for the pendulum is given by

x»(t)=n .

This static, unstable solution is the top of the swing of
the pendulum. The Boltzmann factor for crossing the
barrier is just exp( —PE, ).

Let us now suppose that there are no external forces
such as gravity acting on the pendulum (or that the tem-
perature is high enough that these can be ignored) so
that the action is simple and quadratic:

] ~ 2
(8)

where we have chosen units in which the moment of in-

ertia is 1. So, taking the winding number n of a path to
be

n= f drx,1

2% 0

we can write the partition function as

Z=g f [Sx]„exp(—SE/fi), (10)

where in each term we integrate only over paths with
winding number n. The instanton solutions and actions
are

SE — d7 —X + l i6 X
8 .

0 2' (12)

The advantage of this simple system is that the action is
quadratic, so we can obtain exact results for quantities of
interest.

Now let us consider a measure of the real-time rate at
which the pendulum wraps around the circle:

'2

~( ) (~
x()) x(0)—

(13)

where the T denotes time ordering. When the tempera-
ture is large, we expect this last quantity to be given by
its classical value. Classically, the ordering prescription
is irrelevant and the equipartition theorem gives
—,'U =—,'Tso that

t TA(r)= +O(R) .
4m

The dependence of the free energy on 8, however, is
measured by

2p

88

This quantity is exponentially small as can be seen ex-
plicitly by replacing, in each winding-number sector,
x(w) by x„(r)+5x(r)where 5x is periodic. The parti-
tion function then factorizes exactly into

g exp( —2n. n /A P) exp(in 8)
n

&& f [2)5x]exp ——f dr —'(5x }~
0

The expectation of n is then just

x„(~}=2nnrl.fiP, S„=2'n /fiP .

Let us now modify the system by adding n 8 term
which couples to the winding number:

v(xj
I(

sph(jleron

g n exp( 2m. n /A' P) e—xp(in 8)

g exp( 2n n /R —P) exp(in 0)

=2 exp( 2m /fi P) cos—8+O(e ~" ~), (17)

FIG. 1. The gravitational potential felt by a simple circular
pendulum.

and so A ( i') is expo—nentially suppressed.
Let us now, by calculating A(t) for arbitrary t, see

how the unsuppressed classical result is consistent with
the suppressed value of A( —i'). We have seen that
the contributions from n &0 will be exponentially
suppressed, so let us concentrate on the n =0 sector:
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A (t)=I7 5x(t) —5x(0)
2m

'2

+O( —2n is p)
5(k' —(m /fi)'),

k2 —(m/fi) +ie exp(&P
I ko I

) —1

(19)

We need the propagator ( V5x 5x ) in a free theory at
finite temperature. This is well known to be

where we have temporarily included a mass as an in-
frared cutoff. In configuration space, this gives

So

(5x(t, )5x(t2)) = fi

2m

exp(im
I t& tz—/A') exp( im—

I t~ t2 I

—/A')

exp(Pm ) —1 exp( —Pm ) —1
(20)

A(t)=
4m m

exp( im—
I
t

I
/A') —1 exp(im

I
t

I
/fi) 1—

+O(e ) .
—2n /fi P

exp( —Pm ) —1 exp(Pm ) —1
(21)

We can now safely take the cutoff m to zero:

2
/ 2

A (t ) = +i Rt —+O(e ' '" P) .
4~' P

(22) differing by 2m. The reason the sum in Eq. (24) nonethe-
less gives a small result is because the phases interfere
destructively. For instance, in the absence of external
forces,

1
+E(x)= —exp(ikx ),v'L (25)

where k is the spatial momentum, E=k /2, and we
have temporarily restricted x to L /2 & x & L /2—,
L ~ oc. Notice that the overlap probability

2
P = f dx %s (x + 2m. )%s (x) (26)

is one. But now consider Eq. (24). The sum over E be-
comes an integral over k which may be evaluated explic-
itly:

B. Interpreting the instanton

The instanton is certainly related to the communica-
tion of the region x -0 to the region x -2m. We have
seen that the instanton is suppressed but the communi-
cation is not. Why should this be so?

We can address this question by considering the Eu-
clidean path integral which takes us from x =xo to
x =xo+2m, integrating over xo. This quantity is pre-
cisely the contribution to the partition function from the
winding-number-1 sector of the theory:

Z) ——f dxo(xo+2n.
I
exp( 13H )

I xo)—
exp —SE (23)

x (p) =x(0)+2m-

We know Z, to be small -exp( —2n. /P) at high tem-
perature. (We have returned to the convention A'=1 for
the remainder of this paper. )

If we analyze Z, in terms of energy eigenstates, this
result is perhaps a bit surprising. Expressed in terms of
energy eigenstates, Z& becomes

Z& =X f dxo+E(xo+2'IrB'E(xo) exp( PE) . (24)—

Z, =L f dk exp(i2n. k) exp( —Pk /2) . (27)

If we normalize by the zero-winding contribution, we get

Z] 2=exp( —2m. /P) .
Zo

The action integral has been suppressed by cancellation
of the varying phases of the overlap amplitude. The
width of the interval in k over which this cancellation
occurs is k —&T.

C. The sine-Gordon model

In the analysis of the previous sections we have con-
cerned ourselves with a theory having only 1 degree of
freedom. In the case of a quantum field theory we ex-
pect that the other degrees of freedom will play a role.
In this section we examine such a system by considering
the sine-Gordon model in 1+1 dimensions on a finite-
length ring. We shall see that this system also has in-
stantons which are suppressed in the high-temperature
limit, but real-time winding is controlled by a Boltzmann
factor which is unsuppressed. Although we cannot solve

We expect that in general there will be a large overlap
between high-energy states which have coordinates

The classical and high-temperature limits are the same
and reproduce the previous result A (t)= t T/4n. .

—2m /fiMoreover, A ( ifiP) =O(e— "~) as it should.
The moral is that large real-time winding comes from

the sector with Euclidean winding-number zero. The
fluctuations in Euclidean time must be small since other-
wise we would find suppression due to a large Euclidean
action; in the case at hand,

I
A( ir)

I
(A—P/4m for

0&r&AP. When analytically continued to real time,
however, the fluctuations become large.
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this system exactly as we did for the pendulum we shall
give physical arguments for the lack of exponential
suppression.

The sine-Gordon model has the action
(c)

(b)

S=—' f d'x(-,'[a(()(x)]'+m'[1 —cos[y(x)]]) . (29)

((j)(x))=2nN , (30)

where 1V is an integer. In infinite volume, these different
vacua cannot be connected with instanton solutions.

We can estimate the instanton contribution to the ac-
tion in finite volume. First consider the limit where the
temperature is small: T&&m. In this case we expect
that the time extent of the instanton is 5t-1/m. The
spatial extent is 5x-L since (I) must change by 2n.5n
over all of space. So

In this equation the coupling constant is A, , which we
shall take as small. The size of the system will be taken
as L in the spatial direction and P in the Euclidean time
direction, corresponding to a finite temperature.

The sine-Gordon theory is labeled by topologically
distinct vacua for which

FIG. 3. Multiple kink/antikink pairs move partway around
the ring, changing P,„.
around the ring one way as the other, and the average
winding will be zero. This is because we have included
no preference for the direction of winding. To do so we
need a chemical potential term

pN- f dx P(x) .
2~L

(34)

In electroweak theory, p would be the chemical poten-
tial of the baryons and leptons, and this term reflects the
fact that every winding creates baryons and leptons and
so costs energy p. In the case at hand, the chemical po-
tential creates a force which pushes the kinks in one
direction around the ring and the antikinks in the other.

mL
(31) III. EUCLIDEAN WINDING REVISITED

In the high-temperature limit T ~&m, the instanton must
change in Euclidean time 5t -P, so that here we have

L
(32)

In any range of temperature, the instanton contribution
to the topologically nontrivial sector of the path integral
is suppressed by exp( —S;», ) which is exponentially
small in the limit of small A, but finite L.

Once again, though instantons are exponentially
suppressed, we expect the transition rate to be un-
suppressed at high temperature. The theory has
kink/antikink solitons where the kink and antikink in-
terpolate between the different ground states. The ener-

gy of a kink is of order E —m /k so that the
kink/antikink contribution to the partition goes as

P-exp( —2Pm /1, ) . (33)

At high temperature we expect many kink/antikink
pairs. These can change the average value of P by mov-
ing around the ring as in Figs. 2 and 3, and the cost of
producing them is just the Boltzmann factor of Eq. (33).

On average, of course, as many pairs will move

A. The instanton and many quanta

Rather than examining correlations of winding num-
ber, as in the previous section, we now examine S-matrix
elements which explicitly show the destruction or
creations of baryons. Such matrix elements can only get
contributions from nontrivial Euclidean winding, and so
the Euclidean action is always bounded below by 2n /a.
It therefore seems that all such S-matrix elements must
be suppressed, regardless of the temperature.

As mentioned in the Introduction, the flaw in this ar-
gument is that the decay of the sphaleron involves a
large number ( —1/a) of quanta; the relevant matrix ele-
ments are schematically of the form (qqqlA

' ). For-
mally, the estimate of an amplitude as exp( —S;„„)re-
quires the assumption that the current term J.A used
for calculating Green's functions yield only a small per-
turbation on the action of the instanton. That assump-
tion breaks down if J is "big." As we shall see this
occurs for amplitudes involving a large number of quan-
ta.

Consider a simple example of saddle-point approxima-
tions from calculus [that is, (0+0)-dimensional space-
time]:

I — dx e
—s(x)&2n

n =

(a) (b)
where S(x)=g [1+(x—g ') ] . (35)

(c) (d)

FIG. 2. A single kink/antikink pair circles the ring, chang-
ing 4avg'

The minimum of S is S;„=1/g and occurs at
xo ——1/g. This is intended to be analogous to the instan-
ton case.

The integrand of Io is bounded above by exp( —S;„),
which disappears in the small-g limit, and Io is correctly
estimated as having this exponential dependence. But
let us now consider I„for large n. Specifically, take
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n =1/g . We now need

I , 2
—— xe+

d —fS(x)—g Inx j
1/g

(36)

The second term in the exponent is order 1/g and can-
not be treated perturbatively. Plugging in x =xo, we
know the integrand can be at least as big as

B. The sphaleron and few quanta

Having seen that instanton estimates can become un-
suppressed in the limit of many quanta, we shall now
complete our study of the relationship between instan-
tons and sphalerons by showing that sphaleron estimates
become suppressed in the limit of few quanta. The basic
argument is that the number of quanta in a classical
coherent state is Poisson distributed. The strength of
events involving different numbers of particles should be
roughly

(n )" („)
n!

' (38)

For n small, this is suppressed by exp( —(n )). Since
(n ) —1/a, we find a suppression similar to the instan-
ton one.

To understand the branching ratio P„more formally
we shall briefly consider the description of the sphaleron
as a coherent state. " The sphaleron is, to good approxi-
mation, a classical object. As such, it decays classically
and its decay rate may be computed by following its
classical evolution. The value of this rate depends on
whether or not there is significant damping at the tem-
perature of interest. Without damping, we expect that
the rate is order 1/M . With damping, this rate may be
reduced by 2 —3 orders of magnitude. Once the sphale-
ron has decayed we have classical waves radiating away

2/g
—1/g (37)

and so the exponential dependence of I
i& 2 is ~ (1/g )!.
1/g

So I 2 does not vanish in the small-g limit —quite the
1/g

opposite.
One can continue to play with the dependence on g if

one interprets I„asanalogous to the amplitude for
scattering of n quanta into n quanta. To get a rate we
should square I„anddivide by n! for the final particles.
For n =1/g, this gives & (1/g )!.

One may follow through the same sort of argument
for the g dependence of instanton amplitudes in elec-
troweak theory. The usefulness of the instanton estimate
is even more obscured by the complications of the
momentum dependence of the amplitude, the necessity
of analytically continuing the result to real time, and the
phase-space and initial-particle distribution integrals to
be done. All of these issues are potentially fraught with
subtleties.

The moral is that instanton methods are not effective
for amplitudes involving many quanta, and we expect,
based on the classical picture of the sphaleron, that these
are precisely the amplitudes of interest.

from the original position of the sphaleron. What is the
probability that the total number of quanta in these
waves will be measured as small (say 3 rather than 1/a)?

To address this question let us write the classical final
state in the language of quantum field theory using the
coherent-state representation

In this formula, E is the energy of the quanta created by
a (k). 4(k) generically represents the Fourier transform
of the final-state classical field; we have ignored all in-
dices and problems associated with gauge freedom (see
Ref. 11 for details). The factor exp( —(n )/2) normal-
izes the state where the average number of quanta (n )
is given by

(n)= f f4(k)
f

(27r) 2E
(40)

The classical coherent state which we have written
down is not an energy and momentum eigenstate. In the
classical limit when (n )~ ao, the state has well-defined

energy and momentum. We work in a frame where

d k E 4 k =Esp (41)
(277) 2E

and where the average value of the spatial momentum
vanishes.

The overlap of
f
out) with an n-particle state may

now be computed as

f
(out

f
k„k,, . . . ,k„)

f

'
=

f
(out fa (k, ) at(k„)f0)

f

~

(„)I
@(ki)l'

(27r) 2Ei (27r) 2E„
(42)

Notice that since
f
4

f

—1/a, this branching fraction
is not analytic in the weak-coupling limit. Upon in-

tegrating over final three-momenta, and remembering a
1/n! for identical particles in the final state, we see that
the integrated branching probabilities are Poisson distri-
buted as in Eq. (38).

The Poisson distribution for the final state is typical of
a classical distribution of particles. The surprising issue
here is how large (n ) is, and the fact that this leads to a
tremendous suppression of sphaleron decays into a small
number of particles.

IV. OTHER ISSUES

In this section we cover a few other areas of possible
confusion in the physics and formalism of the sphaleron
approximation. We shall discuss the role of electric
screening and thermal collisions on the transition.

A. Electric screening

The first issue is electric screening, which has been
suggested by Ellis et al. as a possible source of tremen-

d k
f
out) =e " exp f 4„(k)a(k)

f
0) .

(27r ) 2E

(39)
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dous suppression for sphaleron processes. Electric
screening plays an important role in instanton physics
because, in order for the Euclidean winding JOPd~E B
to be order I for very small P, one needs large electric
and magnetic fields. These large electric fields are
screened, and so the contribution of such a configuration
is suppressed. This effect gives a contribution to the
effective free energy of -(RT) for instantons of size R
(Ref. 8). If one were to plug in the sphaleron size
R -I/M, one would find a suppression of the form
exp( —T /M ).

However, as we have previously discussed, the wind-

ing does not happen in Euclidean time but in real time,
and so the winding is not constrained to happen within
time P. Winding can occur with small electric fields
present for a long time rather than large electric fields
present for a short time. How do damping effects in the
plasma determine this? The sphaleron is a purely mag-
netic configuration and so is not itself electrically
screened. The process which changes baryon number,
however, is a dynamic one that evolves through the
sphaleron. In the creation and decay of the magnetic
fields of sphaleron, electric fields must be produced, and
these electric fields will be screened.

Indeed, we found in Ref. 3 that, for the temperatures
we studied, such damping efFects slow the sphaleron de-
cay rate by a few orders of magnitude. (Specifically, we
found that Landau damping was the most important
effect. Landau damping has a similar origin to electric
screening and is proportional to the size of the electric
fields. ) Since the decay of the magnetic configuration is
damped, the electric fields produced are smaller and the
time for the decay is longer. These effects cancel in the
winding number 1 dt E B. The suppression of the rate
is not exponential, as exp( —S,s) for the instanton, but is

just algebraic due to the algebraic effect of damping on
the decay time. For details of the formalism in the case
of Landau damping, see Ref. 3.

At very high temperatures, T ~ M„(T) /a~, the
sphaleron is magnetically screened by the plasma. At
these temperatures, however, the approximations which
dictate that the system must create an approximate
sphaleron in order to pass over the barrier break down.
The system may be able to pass through small
configurations which are unscreened (see Ref. 3 for de-
tails). In any case, the process proceeds quickly enough
for T & M ( T)/a to be cosmologically significant.

B. Thermal collisions

We shall now examine the issue of thermal collisions.
Suppose that, before a sphaleron decays, a collision with
the thermal bath knocks it back over the barrier so that
there is no net transition. (See Fig. 4.) It seems that
counting the number of sphalerons might then overcount
the number of net transitions.

To explore this possibility we delineate four important
length scales of the problem: M ', (g T) ', (a T)
and [a Tln(T/M )) '. M ' is the size of the sphale-
ron; (gT) ' is the electric screening length and the scale
for Landau damping; (a T) ' is the magnetic screening

.==& collision

FIG. 4. The system passes over the barrier, collides with the
thermal bath, and is knocked back, producing no net transi-
tion.

length and u T &&M is required for the validity of per-
turbation theory about the sphaleron; and
[a Tln(T/M )] ' is the mean free path of II"s and Z's
in the thermal bath. In Ref. 3 we found that we could
analyze the sphaleron for M &&T &&M„/a . In this
range, the mean free path is the longest scale of the four
discussed. At the lower end of the range, the decay time
of the sphaleron is order M ' and is shorter than the
mean free path. At the higher end, damping is impor-
tant and increases the decay time by a factor of order
(gT/M ) . In the limit T «M~/a, the decay time is

still small compared to the mean free path. So, for the
temperatures studied, thermal collisions during the de-
cay of the sphaleron should not yield a significant
change in the estimate of the transition rate. (We should
emphasize that, in the range M~ && T &&M /a, the es-

timated rate for baryon-number violation is as large as
10' times the expansion rate of the Universe. One
would need a very significant effect to shut this process
down. )

V. CLASSICAL EVOLUTION OF THE SPHALERON

In this section we turn away from instanton-related is-
sues and investigate the classical evolution of the decay-
ing sphaleron. We are interested to see if there is any-
thing singular or otherwise bizarre about this evolution.
The classical decay of the sphaleron is difFicult to study
in the Weinberg-Salam model beyond the analysis of
small fluctuations. This is because it is difficult to solve
the classical equations of motion for the sphaleron as it
decays. At some time it may be necessary to embark on
a computation of this problem in classical time evolu-
tion, but at present such an effort seems unwarranted.
We have therefore chosen to study a problem which is
more numerically tractable: the Abelian Higgs model in
1+ 1 dimensions.

The Abelian Higgs model in 1+1 dimensions is a
theory with instantons. ' It has been used as a model
for sphaleron processes, and the one-loop computation
of sphaleron-induced decay has been performed analyti-
cally. ' We are interested in tracing the decay of the
sphaleron after it has left the neighborhood of the
sphaleron configuration. We shall do so classically.
Classical physics can be misleading in 1+1 dimensions
where quantum fiuctuations dominate in the infrared.
Our hope is that the classical decay in 1+1 will be
analogous to the classical decay in 3+1, where the clas-
sical approximation is a good one.
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We take as the action

S =f d x [ ,'—F—„+(D„4)—V(4)

+~) „(Ia~+g~,~~)e~,

where

(43)

.2 I « I
)

I I I I
]

I I I I
J

I I I I
t

I I I I
t

I I I I

c2
V(4) =A,

2

For computational reasons we shall assume the system is
finite and periodic in the spatial direction with length L.
Note that the gauge field has been coupled axially to the
fermions so that the fermion number current is anoma-
lous:

I I I I I I I I I I I I I I I I I I I I I I I I I I I

-1 0 2

8 F~=B (%yI'e)= — e g~,P P 4~ ~ (45)

where e„is the two-dimensional antisymmetric symbol.
The topological charge corresponding to the anomaly is

Q«„——— f dx A 1(x), (46)

where A, is the spatial vector potential. The combina-
tion of baryon number minus topological charge is con-
served so that

d
d

(QF —QI.I, )=o (47)

A sphaleron solution for this theory has been con-
structed in Ref. 14. It is

and

C Max
e =ie-"""

v'2 2
(4&)

gL
(49)

We here work in the gauge Ao ——0, and the parameter
MH is given as

~H2 2A,C
2

FIG. 5. The initial values of Re@ (solid line) and Im@
(dashed line) used in our simulation.

L =24. Figure 5 shows our choice of the initial time
derivative of 4. Figure 6 shows the energy density at
t =0, 7, and 35. As one can see, the sphaleron indeed
decays and spreads out through the box. Notice, howev-
er, the small bump that remains in the t =35 curve; this
bump is persistent. It turns out to be a quasistable
breather of real (t theory. " It is interesting that the
breather, originally discovered for a real scalar field, ap-
parently remains quasistable when embedded in the
Abelian Higgs model, a theory with a complex scalar
field.

The topological charge Q should change by one unit
in the transition. Figure 7 shows the topological charge
evolved both forward and backboard in time. The aver-
age value has indeed changed by one unit, but there are
undamped oscillations of order one.

These oscillations are an interesting feature special to
1+1 dimensions. The reason for their appearance is
that plane waves can carry topological density. Let us
ignore, for the moment, the nonlinear debris such as the
breather and consider a sphaleron that has decayed into

The topological charge of this sphaleron solution is —,'. It
is also possible to show that the sphaleron corresponds
to an energy saddle point along a noncontractible loop
which connects topologically distinct vacua of the
theory.

We shall investigate the decay in the absence of fer-
rnions. It is then straightforward to solve the equations
of motion numerically from initial conditions. We as-
sume that the sphaleron describes the fields at t =0 and
then assume some small initial value for the time deriva-
tives of the fields. We work in the sector of the theory
where there is no external electric field. To check our
results we verify that the electric charge and energy are
conserved to the accuracy permitted by the numerical
evaluation.

We consider one such numerical simulation here. We
work in units where g = 1 and have chosen the parame-
ters A, =1 and c =2. The spatial extent of our box is

(f)

O

LLJ

LL)

I I 1
I

1 I 1 1 I I I

II
I

II
II
II
II
I
II
II
II
", t=o
I I
I I
I I
I I

I
I
I
I
I

I I

I
I
I
I

I
I
I

I

f
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-20 -10
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FIG. 6. The energy densities at t =0, 7, and 35.
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2 )
(

I i (
(

i I i
}

} } Q-g f d x trFF

-g' f d'k e" t' k„f'„(k)kf'( —k)

)& cos[2tokt+P(k)+P( —k)], (54)

CA

LUL

I i i i I » i I » i I

-40 -20 0 20 40
T IME

FIG. 7. The topological charge as a function of time.

asymptotic plane waves. In the classical 1+1 Abelian
Higgs model, the gauge symmetry is broken and the A
field has a massive, longitudinal mode. (This is not true
of the quantum system. ) Let us write the A field of the
decayed sphaleron as a superposition of plane waves:

A„(x)= f f„(k)cos[k x+P(k)] .dk
(51)

~Q-gf(0) . (53}

This is the source of the oscillations in Fig. 7. Note that
the period of oscillations in this case is 2trlM =m as
predicted. We believe that the variations in the ampli-
tude are due to the interaction with the nonlinear
breather.

Let us consider the same analysis in 3+1 dimensions.
We find

Writing f„(k)=f(k)A,„(k),where A,
„

is the longitudinal-

polarization vector, the oscillation of the topological
charge Q is

Q-g f dx F-gM f(0)cos(M t+(Iio) . (52)

The size of the oscillation is then

where k=(cok, —k} is the parity refiection of k. At
large times t, the cosine will be highly oscillatory, and so
Q~O at large times as long as f is smooth. Thus, un-
like in 1+ 1 dimensions, any oscillations in 3+ 1 dimen-
sions will damp away.

VI. CONCLUSIONS

In this paper we have argued that there is no contra-
diction between instanton and sphaleron estimates of
baryon-number-changing processes in the electroweak
theory. These estimates are in fact complementary, be-
ing valid in different temperature regions. For the par-
ticular quantities of interest here, instantons provide use-
ful estimates only at low temperatures. We have also
considered a variety of model problems and have shown
that the sphaleron analysis yields qualitatively and semi-
quantitatively correct results. We have not discussed the
detailed reasons for the sphaleron estimate in elec-

-troweak theory since this was the topic of a previous
work.

To summarize, the sphaleron appears to provide a vi-
able baryon-number-changing mechanism, and in a
range of temperatures, M (T) «T «M (T)la, the
rate of baryon-number change may be reliably computed
in a weak-coupling limit.
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