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I discuss various aspects of finite-density @CD on the lattice. At the heart of the paper lies a
discussion of the similarity of simulations in the quenched approximation and those of a certain
eight-Aavor theory with the fermionic determinant taken into account. The results of some nu-

merical simulations on small lattices are presented. Also, I comment on various methods that aim
at properly including the phase of the determinant, in the case the latter is non-positive-definite or
complex.

I. INTRODUCTION

A satisfactory way to simulate lattice QCD at nonzero
baryon number (i.e., finite density) has at this point in
time not yet been found. A solution to this problem
would lead to important predictions about the funda-
mental properties of the "QCD plasma, " soon to be
probed in the collisions of ultrarelativistic heavy ions.
Clearly, in these experiments we not only look at a sys-
tern at a finite temperature, but also one at finite density
or equivalently, when the grand canonical ensemble is
used to describe it, at finite chemical potential. This im-
portant application alone should suSce to "put the prob-
lem on the map,

" but it is likely that also other areas of
research would benefit from a solution. This remark will
become clearer later on.

Let me explain what I mean by a satisfactory solution
to the problem. It is well known that the inclusion of
the fermionic determinant in numerical simulations of
lattice QCD presents us with enormous difficulties. But
the development of clever algorithms has brought us to a
point where with the use of hundreds of hours of super-
computer time we can obtain qualitatively reliable re-
sults on reasonably large lattice. Once a chemical poten-
tial is added the situation becomes worse. For example,
when one uses the most popular way of including a
chemical potential in the action, the ferrnionic deter-
minant becomes complex and the usual stochastic
methods fail due to the absence of a probabilistic inter-
pretation.

A solution to the problem would therefore entail ei-
ther finding a new way of adding a chemical potential to
the action (or for that matter an entirely new approach
to finite-density physics, e.g. , microcanonical) or coming
up with an algorithm that can efficiently deal with the
complex phase in the determined. The solution would
be satisfactory, if it reduces the amount of work to about
the same level already necessary to simulate QCD at
zero baryon density.

In this paper, to be sure, I do not offer a solution to
the problem. I rather point out which attempts at a
solution are unlikely to succeed. In the next section, I
will review what is known about finite-density QCD on
the lattice. In Sec. III, I discuss shortly a one-

dimensional model which was studied in this context by
Gibbs. Section IV contains the results of a simulation
of an eight-flavor theory with dynamical ferrnions at
finite density. The last section is a short summary.

II. LATTICE QCD AT FINITE DENSITY

Imagine a system of free electrons and positrons at
thermal equilibrium. The Hamiltonian of the system is

H = QE(p)[N, (p, s)+N~(p, s)],
P, S

(2.1)

where N, (p, s) is the number operator for electrons and
positrons of momentum p and spin s, respectively.
Clearly, electron and positron number are separately
conserved. As is obvious from the basic QED vertex,
however, when electromagnetic interactions are added,
only the difference N, —N is conserved. Hence it is this

quantity which will be held fixed up to fluctuations by
the introduction of a chemical potential. The grand par-
tition function reads

Z(p, p)=Trexp —p QE(p)(N, +N ) p(N, N) '—
P, S

(2.2)

Here the trace is in Fock space and p is the chemical po-
tential appropriately coupled to the fourth component of
a conserved current j4 ——.P g:. The signs in (2.2) are
such that p "favors" the appearance of electrons. As a
matter of act, the total pressure P =(llpV)lnZ is the
sum of electron and positron pressure:

P= — ln1+e ' + p —+ —p . 2.3
2 d k —P(E, —p)

P (2sr )

Hence, at zero temperature, for p &m there is no pres-
sure and therefore all levels are unoccupied, whereas for
p, & m all electronic levels up to E =V m2+p~=@ are
occupied by spin-up and spin-down electrons. There are
no additional positrons created at zero temperature.

The lesson to be learned here is that, for m &p at zero
temperature, things are independent of p. For larger
values of IM we begin to produce additional electrons.
For a system of bosons, the plus sign in front of the ex-
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ponential in (2.3) becomes a minus sign, so that at p=m
we produce an infinite number of particles.

In QCD the situation is similar. Here the conserved
charge is baryon minus antibaryon number and, in anal-
ogy to the example above, we would expect that above

p =m~ /3 one starts to produce additional baryons.
(There are three quarks in a baryon. ) To see whether

this is indeed so in the interacting theory, we have to
study lattice QCD at finite density.

Given the naive lattice action for fermions (details of
the fermionic action are irrelevant here) one possibility
to include a chemical potential is to proceed in analogy
with the continuum expression:

3

SF———,
' g [f(n)U&y&g(n +p) —l((n)U&y&p(n —p)]

n, @=1

g [f(n)Uoyof(n +0)+p(n)Uoyog(n —0)+2m/(n)l((n)] .
2 . (2.4)

The piece involving p is symmetrized so that it is pro-
portional to the fourth component of a conserved
current on the lattice. A major difficulty with this for-
mulation is that the energy density for the free theory
contains a term that diverges in the continuum limit:
ea -(pa) +(pa) (Refs. 1 and 3). A formulation which
avoids the divergence (there are others ) is due to
Hasenfratz and Karsch. ' It is obtained by making the
following replacement in the naive fermionic action:

Uo(n)~e"Uo(n), Uo(n)~e "Uo(n) . (2 5)

Note that, as in the continuum, p formally appears as
the fourth component of an imaginary, constant external
vector potential. Despite the fact that the substitution
(2.5) solves the problem of unwanted divergences in the
continuum limit there remains a major obstacle to using
it in numerical simulations: The kinetic term in the fer-
mionic action ceases to be anti-Hermitian. The fermion-
ic determinant is therefore complex and traditional
Monte Carlo methods are no longer applicable.

The easiest way to avoid this problem is to neglect the
effect of the determinant altogether, i.e., to use the
quenched approximation. It is becoming increasingly
clearer that for many important properties of QCD the
approximation is a rather good one. One seems to be
able to absorb most of the effects of the determinant into
a simple renormalization of parameters. Hence one
might suspect that this might also be a sensible thing to
try in the case of QCD at finite chemical potential. As a
matter of fact, an early investigation of the subject
presented arguments in favor of this idea. More recent-
ly, however, the state of affairs has changed. In a de-
tailed study some serious problems with finite-density
simulations were unearthed. Recall that our naive ex-
pectation was that as long as p & mz/3 there should be
no effect of the chemical potential on observables.
Above the threshold we expect chiral symmetry to be re-
stored at some point and the emergence of, as it now
seems to be the case, a parity-doubled spectrum of
color-singlet excitations of the QCD plasma. The au-
thors of Ref. 5 did indeed find a threshold, but unfor-
tunately in the wrong place: p, =m /2. It is as though
there exists a baryonic excitation at mz ——3m /2, whose
mass goes to zero as the chemical potential goes to zero.

Obviously, there is no such "Goldstone baryon" in na-
ture. (Note that according to our picture only particles
made of quarks, not antiquarks, can be produced above
threshold. This is due to the factor e " suppressing an-
tiparticles running "backwards" in time. ) It is interest-
ing to note that the same result was also obtained by the
authors of Ref. 5 when the effect of the determinant was
included by using a complex Langevin equation. This
is presumably the reason for why these strange results
were not immediately blamed on a failure of the
quenched approximation.

The use of the quenched approximation in finite-
density simulations was first challenged by Gibbs in Ref.
2. He gave arguments for why one should expect a
threshold associated with the pion mass rather than the
baryon mass. The most interesting argument indicating
that the quenched approximation should not be applied
to finite density simulations is based on Gibb's discussion
of a simple toy model. I will discuss this model from a
somewhat different point of view in the next section.

Another interesting work, Ref. 8, also indicates that
the results of Ref. 5 do not represent "physics, " but
rather are due to numerical problems. There the au-
thors compared the numerical simulation of SU(4} lattice
gauge theory at infinite gauge coupling, using a high-
precision "Dimer Monte Carlo" calculation to the
analytical formulas of a simple mean-field theory based
on the 1/d expansion. ' The numerical data agreed very
well with the theory and indicate the following. (One
should keep in mind though that this is strong coupling. }
Chiral symmetry is restored abruptly at a critical value
of p that lies in between the quenched value related to
the pion mass and the expected value related to the
strong-coupling baryon mass. This means that the
baryon mass may not play the important role that we
had anticipated on the basis of our naive agreement.
Rather, a phase "full of quarks" becomes energetically
more favorable in a first-order fashion. It would be ex-
tremely interesting to see whether or not the same hold
true for [SU(3)] QCD at weak coupling. All of this indi-
cates that it is a severe mutilation of the theory to
neglect the phase of the determinant when the latter is
complex. We will see later on that instead one should
consider the quenched approximation as the limit of
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another theory. But first let us discuss the previously
mentioned toy model.

III. A TOY MODEL:
U(1) IN ONE DIMENSION

+m QX(n)X(n) .
n

(3.1)

Here we have chosen a "gauge" in which the "gauge
field" 8 is a constant. The partition function is defined,
however, by integrating e over both the fermions and
8. Equation (3.1) has the usual continuous U(l)XU(1)
symmetry of staggered fermions:

X(n)~e'~X(n), X(n)~e '~, n even,

The content of the model we are going to discuss can
be simply stated as U(1) gauge theory in one dimension
using staggered fermions:

S= QX(n)(e"+' 5 „+,—e " ' 5 „,)X(m}
n, m

dimensional field theory. As such it is equivalent via the
transfer-matrix formalism to the quantum mechanics of
a finite number of anticommuting operators in the Harn-
iltonian forinalism [as opposed to a path integral over
the coordinate x (t), which leads to canonical quantiza-
tion with commutators]. It is rather surprising that such
a system should suffer a spontaneous breakdown of a
continuous symmetry, since, according to a well-known
theorem, " the lower critical dimension for such a break-
ing is two. In particular, quantum mechanics of finitely

many degrees of freedom always allows for a unique
symmetric ground state. To investigate this point fur-
ther let us look at the behavior of the ground state in the
Hamiltonian formulation. To derive the Hamiltonian, I
followed the transfer-matrix formalism as explained in
the article by Creutz. ' The partition function can be
written as Trf' where T is the transfer operator and N
the number of sites. We have f'=e ' where e is the
spacing in the time direction. After some algebra one
obtains the following explicit expression for T:

X(n)~e'~X(n), X(n)~e '~, n odd .
(3.2) T= —,'(a b +ha+a a bb) —mea a—b b . (3.4)

The mass term breaks this symmetry down to diagonal
U(1) (P=P'). It is not hard to compute the partition
function which is obtained by integrating a simple deter-
minant over 8. The interesting result is that the chiral
symmetry (3.2) is "spontaneously broken" since XX= —,

'

independent of p in the limit m~0. In the quenched
approximation, in which one computes XX before averag-
ing over 8, one obtains XX= —,

' for p &m'/2 and XX=0
otherwise. (Here m' —+m in the continuum. ) Hence in
this very simple example the quenched approximation
differs from the full theory for p & m'/2. It is crucial to
include the phase of the determinant.

Anticipating the discussion in the next section, let us
now consider what would happen if we were to use
~det

~

instead of the determinant. This corresponds to
adding to (3.1) another "fiavor" of fermions, but one
that interacts with the Hermitian conjugate of the opera-
tor in which the propagation of antiparticles is favored
[essentially p~ —p in (3.1)]. Note that we can look
upon the quenched approximation just as well as an ap-
proximation to this theory, i.e., the formal nf ~0 limit.
In the presence of a chemical potential it is actually like-
ly to be a good approximation, since we do not neglect
any complex phase. Again, the computation is very sim-

ple and as expected we obtain, for the fu/I theory,

m
1 if p(
0 otherwise . (3.3)

At the same time the number density jumps from 0 to 2.
Hence the theory behaves the same way as in the
quenched approximation.

Next, let us look at the free theory. The partition
function obtained by integrating (3.1) over the fermions
defines the statistical mechanics of a one-dimensional
system of anticommuting objects, or equivalently a one-

In (3.4) the operators a and b obey, together with their
adjoints, a set of anticommutation relations. The mass
m is now the dimensionful mass. The operator in (3.4) is
not positive definite and therefore does not define a
Hamiltonian. Instead the Hamiltonian stepping the sys-
tem 2e forward in time can be obtained from the square
of (3.4). For the Hamiltonian we obtain

8=m(ha+a b ) . (3.5)

To make the discussion of symmetry breaking more
transparent, let us rename a =QL and b =Ptt, in which
case (3.5) can be written as

& =m A'=0'yo0 (3.6)

where g=(& ), yo=(i o), and ys ——(o i}. We can0 1 1 0
L

think of the Hamiltonian as breaking explicitly a y5
chiral symmetry. It is clear though that fP, being pro-
portional to the Hamiltonian, will be independent of m,
so that in the limit m ~0 a "condensate" remains. The
symmetric states will, however, become degenerate with
the finite-m ground state in this limit, as can be seen by
diagonalizing (3.6). Defining u =( I/V'2)(1(L +pa ) and
u =(1/&2)(ft Pa ) we get—

H =m (u u —u u) . (3.7)

H =[—mu u +(m —2p)u u] . (3.8)

Hence for p & m /2 the ground state is the chirally sym-
metry state

~

11). To conclude this section let me sum-
marize. In the quantum-mechanical system derived

At finite m the ground state
~

01 ) has one u particle
present, the excited states are (

~

00),
~

11)) and
~

10) in

this order. In the m~0 limit the symmetric states

~

00 ) and
~

11 ) (they are annihilated by the chiral
charge fysP) become degenerate with the state

~

01).
A chemical potential in the action leads to the Hamil-
tonian
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from (3.1) we can define a continuous chiral symmetry
which is explicitly broken by the Hamiltonian and is re-
stored at some critical chemical potential. The formal
m ~0 limit leaves a nonvanishing g1(; the symmetric
states, however, become degenerate with the nonsym-
metric finite-m ground state. The fact that the one-
dimensional field-theory version of the model leads to a
magnetization at zero mass, might be due to the fact
that the equivalent bosonic field theory is nonlocal in the
zero-mass limit.

IV. MONTE CARLO SIMULATION
OF AN 8-FLAVOR THEORY

In the preceding section we have seen that one can
look upon the simulation using the absolute square of
the determinant as corresponding to adding additional
flavors that interact with the conjugate interaction. We
also saw that, as far as the dependence on the chemical
potential is concerned, the quenched approximation was
a good one. As we will see now, the same holds true
also in QCD in four dimensions. To be explicit, I have
simulated the following theory:

Z I [dU] G I I 2 2 (4.1)

M is the Dirac operator for staggered fermions, and the
chemical potential has been included via the prescription
(2.5). Upon integration over the fermions one obtains
~detM

~

in the measure and in the p, ~O limit (4.1}
reduces to eight-flavor QCD. What do we expect the
dependence on the chemical potential to be like in this
theory? First of all, it is clear that there will be a
threshold at half the pion mass below which we expect
everything to be independent of JM. This is because prop-
agation of "type 2" antiparticles is favored, just as prop-
agation of type 1 particles is favored by the exponential
factor e". Because of confinement in this theory we can,
above threshold, only produce additional pions, i.e., q &qz

bound states.

But there is also the possibility, that as we increase p
we will see a difference from the quenched approxima-
tion: pions are bosons and, as was mentioned in the in-
troduction, if it were not for the fermionic nature of
their constituents we would expect to immediately pro-
duce infinitely many of them above threshold. But be-
cause of the hard-core repulsion there is a chance for the
dependence on p to be smooth above I /2. In this case
it is not inconceivable that once we reach p=mii/3 we
see a second threshold effect due to the production of
type-1 baryons and type-2 antibaryons. If this were the
case in our simulation (which does include the effect of
dynamical fermions) it would be likely that in QCD with
dynamical fermions the naive threshold mii/3 applies.
To look at the effects of baryons I have in addition to
the SU(3) theory also simulated the U(3} theory, which
has no baryons.

Most of the simulations were done at infinite gauge
coupling. Because of my limited resources I ran on
small 4 lattices. The boundary conditions in the time
direction were antiperiodic and periodic in the spatial
directions. I used the pseudofermion method' to take
into account the effect of dynamical fermions, and also
to compute XX and the number density. The program
passed all the checks I performed; in particular, it agrees
with the analytical formulas for PX and the number den-
sity as a function of p of the free theory. In Fig. 1 the
results for gX are shown for three different values of the
mass. I used the same number n f of pseudofermionic
iterations both for the update and the measurements.
Shown in the figure are the results for n f ——50-10 and

npf 240-40. There is a pronounced shift in the loca-
tion of p, when one increases the number of iterations.
In Fig. 2 the number density p is plotted for two values
of the mass. It is remarkable that at n f ——SO-10 the
Maxwell relation

Bp BXX

Bm Bp

2.0 I I I I I I I I f I

1.5—

1.O—

0.5—

0.0
00 0.5 10 1.5 0L;

0.0 0.5 1.0 1.5

FIG. 1. The chiral order parameter gg as a function of p at
infinite gauge coupling. The solid lines are drawn through the

n~f ——50—10 (10 iterations discarded for thermalization) data at
m =0.2 (squares) and m =0.5 (fancy squares). )( and +
denote the same quantities for npf 240 40 Tile —0 denotes
XX at m=0.75, npf 50—10.

FIG. 2. The number density p at infinite gauge coupling.
The solid lines correspond to the ones in Fig. 1. The data
marked by a + are taken at m=0. 5 and n f ——240 —10. The
shift of the critical chemical potential as the number of pseu-
dofermion iterations is increased is evident.
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p=4. 5

1.0 i

0.5

0.0
0.0 0.5 1 0

already holds to good accuracy. It is apparent that

p, ~0 as the mass is decreased. There is absolutely no
indication of a second threshold. As a matter of fact
both observables change quite rapidly above threshold
and the change becomes steeper with increasing number
of pseudofermion iterations. Just as in Ref. 8, the num-
ber density quickly reaches its maximum allowed value
of p= 3. (Note that I measure type-1 observables only,
i.e., X,X, and p, . ) I have repeated the simulations also
for the U(3) theory. The results are identical to the ones
shown in Figs. 1 and 2. Hence we conclude that there is
no evidence for baryon production in this theory, but
similar to SU(4) QCD (Ref. 8) there is a transition to a
quark-rich phase with three quarks/flavor. [In a large-p
evaluation of the determinant, such a contribution arises
in U(3) from the six-link integral. ]

I have also redone the simulations in the quenched ap-
proximation. Again for both SU(3) and U(3) the results
are within the errors the same as those shown in Fig. 1

and 2. This is not surprising, since the effects of dynam-
ical fermions are expected to be small at infinite cou-
pling. Hence, the quenched approximation "works" as
an approximation to the eight-Aavor theory. From this
point of view the fact that we find a threshold for the
U(3) theory is not surprising. In Ref. 5 it as claimed,
however, that due to the absence of baryons we do not
expect such a threshold in U(3). This is not so. First of
all, there is no connection to baryons in the quenched
approximation as far as the dependence on p is con-
cerned. In addition, the simplest example that in U(N)
the dependence on p only integrates out in the partition
function is the U(1) tnodel of the previous section. There
the quenched approximation did show a threshold where
as the full theory was independent of p.

To see what happens at finite values of the gauge cou-
pling I have performed the same Monte Carlo simula-
tions at P=4.5. This value is below the critical value for
the first-order transition known to occur when the num-

ber of Aavors is eight. ' The results are similar to the
strong-coupling ones. I used 24 —4 pseudofermionic
iterations; the acceptance was 0.82. Note, that in the
presence of a chemical potential a change in a timelike
link is multiplied by an exponential of the chemical po-
tential. This has to be taken into account when deciding
on a reasonable acceptance rate The threshold again
decreases with the quark mass m. The result for the
chiral order parameter and the Wilson line are shown in
Fig. 3. Note the curious behavior of the Wilson line
(m=0. 1). First it rises, consistent with our expectation
that the system should in some sense "deconfine, " but
then it drops again. The U(3) results are identical to the
SU(3) ones, except for the Wilson line which vanishes.
In the quenched approximation both SU(3) and U(3)
show the threshold except that the Wilson line does not
show any p dependence, which is expected since there is
no fermion feedback.

It is clear from the above discussion that the phase of
the determinant must somehow be included in the simu-
lation. Without it the results will be similar to the
eight-flavor theory (or for that matter any theory defined
by a power of the absolute value of the determinant).
Although it is quite clear that the procedure is doomed
to fail, I have tried to measure the phase separately and
included it in the expectation values. What I mean is
that the expectation value of a physical observable 0 can
be written as

(o)= ((o "))
(4.2)

where (( )) denotes an expectation value with the mea-
—SG

sure ~detM
~

e . Note that in the pseudofermion
method, one only computes the change in the deter-
minant, so that one has to start with a configuration of
known detertninant (phase) and determine subsequent
values of the determinant by adding up the changes.
Such a procedure can of course lead to a large accumu-
lation of error. As expected, the method fails miserably.
The phase oscillates wildly between configurations, and
at the end one obtains the same values for the observ-
ables but with huge errors. Partly, importance sampling
is to blame here. In Ref. 15 we have tried to remedy
this part by using the microcanonical methods of Ref. 16
in some simple models. We have found that these
methods do improve on Monte Carlo sampling, but a
relatively small amount of noise in the phase leads to a
rapid deterioration of the quality of the results. Noise in
the phase will of course be inherent to any stochastic
method that one can conceive of. One possibility for in-
cluding the phase of the determinant is the complex
Langevin equation. But since it seems to give the same
results as the quenched approximation, this is probably
not a good way to go. Hence we are faced with serious
difficulties.

FIG. 3. Data at a finite value of P. The Wilson line is
shown with errors, all other errors are of the order of the size
of the points. Solid lines are drawn through the data for g7 at
m=0. 5 (+) and m=0.2 (squares) at n~&

——24 —4. The three
points denoted by a &( are m=0. 5, n„f——200—40 data.

V. CONCLUSIONS

In this paper I have discussed a variety of issues con-
cerned with simulations of lattice QCD at finite density.
We have argued that the quenched approximation
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should be considered as a good approximation to a class
of theories that make use of the absolute value of the
determinant in the presence of a chemical potential.
This has been shown to be the case explicitly for the
eight-flavor theory. The behavior of these theories as a
function of the chemical potential is drastically different
from what we expect to be that of QCD, although the
high-density phase should be very similar. It might ac-
tually be a good idea to study this phase in more de-
tailed in the spirit of Ref. 6. An interesting quantity
that can be studied with presently available methods is
the quark-number susceptibility at finite temperature
and zero chemical potential. ' In this last reference the
authors introduced different chemical potentials for
"up" and "down" quarks, leading to what they call
flavor-singlet and flavor-nonsinglet susceptibilities. The
eight-flavor model I discussed is a special case of degen-

crate flavors of equal and opposite chemical potential
and corresponds to the flavor-singlet sector.

I believe that it is not clear at all that the naive idea of
a threshold associated with the baryon mass is realized
in nature. Before we can answer this question and many
others concerned with the nature of the dense phase new
ideas are needed. Traditional Monte Carlo methods are
doomed to fail.
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