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Debye potentials for monopoles in U(1) and SU(2):
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The Dirac vector potential and Banderet vector potential give the same monopole field. It is

shown that, unlike the Dirac potential, the Banderet potential is not integrable to yield a Debye

potential. Next, the coordinate-patch formalism is given for the Debye potentials with the usual

trade off between two copies of regular potentials and one singular potential. Some simple exam-

ples of Debye potentials are given. For the spontaneously broken SU(2) gauge theory, the Higgs

potential in the large-distance limit is seen to approach its U(1) analog in the form of the Debye

potential within a factor of r.

I. INTRODUCTION

This paper reports the findings of three results in the
study of Debye scalar potentials for the electromagnetic
field and SU(2) gauge theory.

(1) In Ref. 1 a simple relation is found between the
vector potential A and the Debye potential f [see Eq.
(6) below]. While every Debye potential yields a vector
potential, the converse is more subtle. Does every vec-
tor potential possess a Debye potential? Contrary to
naive expectation, the answer turns out to be negative.
We study the examples of the Dirac monopole vector
potential and the Banderet monopole vector potential.
They give the same monopole field and are related by a
gauge transformation. Nevertheless, the Banderet vector
potential is shown to be nonintegrable to yield a Debye
scalar potential. Thus we demonstrate that not every
vector potential can have a Debye scalar potential. This
is the first result (Sec. II).

(2) Inasmuch as the singular Dirac monopole vector
potential has associated with it a singular Debye scalar
potential, and since, instead of dealing with the Dirac
string and/or singular potential, the coordinate-patch
formalism has been developed for the magnetic mono-
poles, it is natural to ask whether the relationship be-
tween the vector potential and the Debye scalar poten-
tial can be extended in each region such that the corre-
sponding quantities are indeed related by a gauge trans-
formation. As might be expected intuitively, the answer
is yes. This is the second result (Sec. III).

(3) In an effort toward a better understanding of the
structural relationship between the vector potentials and
the Debye potentials, a few simple examples are given in
electrodynamics [Eqs. (13) and (14) below]. The follow-
ing relation seems striking. When the vector potential is
expressible as a vector product between a constant vec-
tor and the radial vector, the Debye potential is simply
(apart from a minus sign) the scalar product involving
the same quantity. This observation immediately re-
minds us of the similar situation between the vector po-
tential and the Higgs potential for monopoles in the
SU(2) gauge theory. A closer scrutiny of the latter case

is undertaken. In particular, we study the asymptotic
(large-distance) limit of the Higgs potential and find that
when the symmetry is spontaneously broken from SU(2)
to U(1), the remnant of the Higgs potential is simply the
radial Hertz potential or, within a factor of r, the Debye
scalar potential, in electrodynamics. This is the third re-
sult (Sec. V).

II. THE DIRAC AND BANDERET MONOPOLE
POTENTIALS

A = ——Psin88 .
r (2)

It is easily checked that both give the same radial mono-
pole field

Vy Ao=VX As=g-
r 2

(3)

Much has been said concerning the Dirac potential. '

The two vector potentials are in fact related by a gauge
transformation. Explicitly, we have

A $= A 8+VA,

A=gg(1 —cos8) .

(4a)

(4b)

To escape from the usual predicament of vanishing
divergence of curlA, we are dealing with vector poten-
tials that are inherently pathological, namely, the Dirac
potential is singular at 0=m, and the Banderet potential
is not single valued in P; more precisely, it does not
respect the periodicity in p, e.g., A s(p =2~)
& A (/=0).

Among the many possible vector potentials that de-
scribe a magnetic monopole field, two stand out. One is
the well-known Dirac form (purely azimuthal com-
ponent)

g (1—cos8)
r sin0

The other is the less familiar Banderet form (purely
polar-angle component)
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Is singular potential more tolerable than non-single-
valued potential? We pose the question whether there
exists any criterion by which one may make a judicious
choice. We find one way to settle this question by invok-
ing the Debye scalar potential. For simplicity, we shall
only consider the static magnetic case here. The mag-
netic Debye scalar potential corresponding to the Dirac
vector potential is given by' (we shall hereafter suppress
the subscript M for the magnetic mode)

'0"=0" '+ lntan —.b 2g 8
T 2

(12b)

IV. SOME SIMPLE EXAMPLES OF DKBYE
POTENTIALS

For this simple example, the results for the Debye poten-
tials are just the 8 integral of the corresponding relations
for the Wu- Yang potentials.

lncos —.D 2g 8
T 2

For the static case, A and 0 are simply related as'

A= —LQ,

where

(5)

(6)

In electrodynamics, we have the following.
Example 1. Uniform 8 field

A= —,'B&(r, B=constant vector,

%=——,'B r.
Example 2. Multipole fields

(13)

L= —r&(V .

Equation (4} implies that, if there is a 4,
L&+—P= —Leal 8+V[gg(1 —cos8)] . (8)

When integrated, the azimuthal component of this equa-
tion (recall that L& ———8/88) reproduces ql of Eq. (5).
The polar-angle component of Eq. (8) yields [recall that
Le=(1/sin 8)(B/BP)]

A=pXrf(r}, @=constant vector,

It, rf(r)—.
(14)

XJ.
A,'= e„" f—(r) .

r

When folded with the isospin Pauli matrices

(15)

Stretching beyond electrodynamics, we venture into the
Wu-Yang ansatz for the SU(2) gauge field:

P sin 8+c(8,r),
2r

where c(8,r } is independent of P.
Such a 4 is clearly unacceptable since it would give a

spurious (() component of A' and also a wrong radial
magnetic field. We conclude that the Banderet potential
(2) is not integrable to yield a Debye potential.

III. COORDINATE-PATCH FORMALISM
FOR THE DEBYE SCALAR POTENTIALS

A =A.'—
2

(15) reads

The Debye potential reads

f(r) .
2r

(15')

(16)

g(1 —cos8)
r slnO

lncos —(8&m) .() 2g 8
r 2

In region b

(loa)

(lob)

The coordinate-patch formalism which calls for two
sets of nonsingular vector potentials A ",A ' ' that re-
place one singular Dirac potential A is presumably
well known. Here we simply point out that the corre-
sponding entities exist for the Debye scalar potentials.

In region a

It is known that in the asymptotic limit usually imposed
for a monopole, f(r)~1 as r ~ oo, the Wu-Yang ansatz
(15) is reducible to the Dirac form (1) by a singular
gauge transformation. '

Apart from the multiplicative radial functions, the
algebraic structure of the Debye potential here curiously
resembles the expression for the Higgs potential in the
't Hooft-Polyakov ansatz. This resemblance is further
examined in the next section.

U. DESCENT FROM THE SU(2) GAUGE THEORY
TO U(1) ELECTROMAGNETISM

g(1 + cos8)
r sin0

ln sin —(8&0) .(b) 2g . 0
2

(1 la)

(1 lb)

Consider the finite energy classica-l solution problem of
the SU(2) Yang-Mills-Higgs system. The asymptotic
boundary conditions to be imposed are (we suppress the
time component here)

In the overlap region, the two sets are related by a gauge
transformation,

@a g @a &abc A b@c p

(4') =1,
(17}

(18)

Ak' ——Ak"'~8k@, 4=2gp . (12a)

For the Debye potentials, the corresponding relation
reads

where the Higgs potential 4' is suitably normalized and
we have set the gauge coupling constant to be unity.

The expression for the gauge vector potential Ak
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satisfying Eq. (17) reads (modulo a term parallel to 4'
which we ignore here)

g a &abc@by @c (19)

Of all the known ansatz for the SU(2) or SO(3) theories,
such as those of Wu and Yang, 't Hooft and Polyakov,
and Bogomolny, Prasad, and Sommerfield, ' the follow-
ing algebraic structure is a common feature.

For the Higgs potentials, we have

(a) From (19), we have

b C

Ak =e' ' H(r)t)» H(r)
2 2

.b. b- H (r)=E X Ok~ r4

b
kab +

2 (23)

X H(r) .
2

The gauge potential reads

(20)
(b) On the other hand, we evaluate the analog ot j-q~.

(6) and (7). Take %=%'r'/2, 4'=(x'/r2)h (r) with
h(r)~1 as r~ac.

We have

The boundary conditions are

H~r, f~1 as r —+Do .

(21)

(22)

X
&k = —(rXV)„O'= —e„,,x, B, , h(r)

. X)

I'~ oo r 2
(24)

The ansatz (20) and (21) is consistent with (19) in the
asymptotic limit (22).

When the Higgs potential 4' picks a certain direction
in isospin space [thereby breaking spontaneously the
SU(2) symmetry down to U(1) electromagnetism], the
mysterious mixing of the spatial and the internal (iso-
spin) indices renders 4' to be radially directed (namely,
parallel to x'). In the asymptotic limit (22), the follow-
ing two expressions coincide.

This suggests that at the large distance when the
broken-SU(2) symmetry retains the residual long-range
U(1) electromagnetism, the Higgs potential 4' asymptot-
ically becomes radially directed and approaches the radi-
al Hertz potential, which is the Debye potential multi-

plied by a factor of r.
Whether this connection between the asymptotic

Higgs potential and the Debye potential is fortuitous just
for this monopole case remains to be seen.
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