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Numerical simulation of cosmic-string evolution in Sat spacetime
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We present a numerical simulation of the evolution of a system of cosmic strings in flat spacetime.
Our algorithm for the string dynamics exactly integrates the Nambu equation of motion. The strings
are represented by discrete points on a spatial lattice, allowing an intercommuting algorithm which
exactly preserves all relevant quantities. We find that the system evolves to a steady state in which
most of the energy is in loops of the smallest size allowed in the simulation. "Infinite" strings
present in the initial state fragment into a distribution of small loops. In the absence of an energy
cutoff there is no equilibrium, and the steady state artificially imposed by the cutoff bears no resem-
blance to the initial state.

I. INTRODUCTION

Despite much recent work, ' the evolution of cosmic
strings is not yet fully understood. The most attractive
possibility is the scale-invariant evolution scenario in
which the typical scale of the system of strings at any
time t is comparable to the horizon scale t. This picture is
supported by numerical simulations performed by Al-
brecht and Turok, but, because of the small size of the
simulations, some doubt still remains.

An alternative approach to the problem has been sug-
gested by Kibble, who derived equations for the forma-
tion and absorption of closed loops by long strings in or-
der to study the problem analytically. His equations in-
clude several unknown parameters, the most important of
which is the loop production function describing the rate
at which closed loops of various sizes are chopped off the
infinite strings. Kibble attempted to determine this func-
tion by requiring that the equilibrium solution of his equa-
tions in a nonexpanding universe should resemble the ran-
dom configuration in which the strings are formed. With
this assumption, he found that the system of strings
evolves either to a scale-invariant regime or else toward a
string-dominated universe, depending on the initial condi-
tions.

Kibble's approach was later extended by Bennett, who
also pointed out an inconsistency between his analytic re-
sults and the numerical results by Albrecht and Turok.
He raised the possibility that what Albrecht and Turok
see in their simulations is not a scale-invariant evolution,
but rather a transient behavior which is an artifact of a
special choice of initial conditions.

Thus, none of the approaches to the evolution of cosmic
strings has yet given conclusive results. Numerical simu-
lations suffer mainly from their limited size, while the
main drawback of the analytic approach is a large number
of unknown parameters.

In this paper we introduce a new numerical method to
study the evolution of a system of strings in flat space-
time. An attractive feature of this method is that it
represents the string dynamics exactly, in the sense ex-

plained below. Our model system can be used as a labo-
ratory for numerical experiments with strings and as a
testing ground for the analytic approaches to string evolu-
tion.

In this paper we apply our model to investigate the ex-
istence of an equilibrium state of a system of cosmic
strings in flat spacetime. We find that the system evolves
to a steady state which has no resemblance to the tangled
configuration of strings at formation. In the steady state,
most of the energy is in small loops of strings whose ener-

gy is comparable to the minimum loop allowed in our
discrete model. "Infinite" strings which initially extend
across the simulation completely break up. We conclude
that no equilibrium state exists, in the absence of a
minimum energy cutoff.

II. DESCRIPTION OF THE MODEL

Before we discuss the details of our discrete model, let
us briefly review the dynamics of continuous strings. We
shall describe a string in the usual way by a vector func-
tion x( cr, t ) satisfying two conditions:

x' x=0
and

x' +x =1. (1b)

in flat spacetime. Physically, the first gauge condition
means that each segment of string moves perpendicular-
ly to itself; the second means that the energy in a seg-
ment do is just @do. (Here p is the mass per unit
length of the string, a constant determined by the scale
of symmetry breaking for the string's Higgs field. )

Here o. is a parameter along the string; primes and over-
dots denote derivatives with respect to o. and t, respective-
ly. Mathematically, these are gauge conditions on the pa-
rametrization of the string's world sheet which make the
Nambu equation of motion reduce to the simple wave
equation

x —x"=0
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x(a, t +5)= x(o.+6,t)+ x(a —6, t)

x(o, t —5) . — (4)

Although this appears to be only a finite-difference ap-
proximation to (2) obtained by introducing

x(a, t) =[x(a, t +5)—2x(a, t)+x(o, t —5)]/5 (5a)

and

x"(a, t) = [x(o +5, t) —2x(o. , t)+x(a —5, t)]/5

(5b)

The wave equation (2) has the general solution

x(a, t) = —,
' [a(o —t) +b(a+ t)] .

The functions a and b are not arbitrary, because of the
gauge conditions. However, it is easy to show that the
equation of motion preserves conditions (1), so one needs
only to require that the initial state satisfies them.

Moving strings can intercommute (or change partners)
at intersection points with a certain probability p. In fact,
the intercommuting process is totally deterministic, and
the word "probability" refers to averaging over the rela-
tive orientations and velocities of the intersecting strings.
Numerical calculations performed by Shellard for a par-
ticular model of strings indicate that intercommuting
occurs in practically all configurations, and so p is very
close to one. However, these results can be model depen-
dent, and it is quite possible that in other models p can be
substantially different from unity.

The discrete model of strings in Aat spacetime that we
have developed permits us to investigate the motion and
intercommuting of strings with a computer. At any in-
stant we describe a string by a finite number of points on
it which are equally spaced, in the parameter a. , by some
separation 5. The segments of string between these points
all have the same energy.

To evolve these points in time, we can exploit a surpris-
ing consequence of Eq. (3). Any function satisfying the
wave equation (2) satisfies a finite-difference equation as
weH.

so that (4) becomes two first-order difference equations:

x(o, t +5}=. —,
' [x(o + 6,t)+ x(o —6, t)]

+v(o, t)6 (7a)

and

v(a, t +6) .= —,'[v(o. +5, t) +v(a —6, t)]

+ [ x(o.+ 25, t) —2x(o., t)

+x(o —26, t)]/45 . (7b)

Clearly, v(a, t) is a discrete version of the string velocity
x(a, t) which becomes exact as 5~0. These difference
equations allow us to compute x and v exactly at all times
if we know them at one instant, as indicated in Fig. 2.

Note that the x's and the v's are determined on two
interlocking but nonoverlapping diamond lattices in the
(o., t) plane. One can visualize the v's as the velocities of
the links of string between the points that we are track-
ing. (Note that each of these links has the same energy,
namely, 2p5. ) The points have position but not velocity,
while the links have velocity but not position. (Note
also that at time t+6 we obtain the x's for a different
set of values of o. than at time t, although it is the same
set as at t —5.) The difference equations (7) generate an
exact solution of the wave equation (2). As 5~0, this
solution becomes the one for which the initial position is
x(o, O) and the initial velocity is x(a, O).

As discrete versions of the gauge conditions (1) we
adopt

u. v=O

the x's at time t —6 and at time t, then we can calculate
them at all future times.

Actually, rather than using the second-order difference
equation (4), it is more intuitive to define

v(a, t)= [x(—a, t +6)—,'[x—(a+6,t)+x(o.—6, t)]]/6

it is in fact an exact relation, as the substitution of (3) into
it will reveal. It relates the values of x on a diamond lat-
tice in the (a, t) plane, as indicated in Fig. 1. If we know

u +v =1 (Sb)

Here v, which was defined in (6}, is the discrete counter-
part of x, and

8
0 ~ 0 0 0 ~ 0 ~ O ~ Oil

'K{~,t+8 ) 0{ t~)

0— 0 0&(~-yt) &(~+8,t) x(~-, t) x(, t) x(~m8, t)
Q

g {cr t) v (~-S.t) v (~++ t)~ o ~ o ~ o o e o e

FIG. 1. A schematic representation of Eq. (4), by which
x(~, t) can be computed on a diamond lattice in the (o, t) plane.

FIG. 2. A schematic representation of Eqs. (7a) and (7b), by
which x(o., t) and v(o, t) can be computed on two interlocking
diamond lattices in the (o, t) plane.
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u(o, t):—[x(cr +5, t) —x(0.—o, t) ]/25

is the discrete version of x'. (It should be visualized as
belonging to the links, like v. ) Obviously, as 6~0 these
become Eqs. (1). It is less obvious, although easy to
check, that these discrete gauge conditions are preserved
by the discrete evolution equations (7), just as the con-
tinuous gauge conditions (1) are preserved by the wave
equation (2). We must ensure that our choice of initial
state satisfies them.

A simple way to do this is to restrict the possible u's
and v's to a set of discrete values. Up to this point, our
model has been discrete in the sense that we determine
the x*s and v's on a lattice in (cr, t) space. We can go
further and make the model spatially discrete as well.
From (4) it is clear that if the components of all the x's
at two successive time steps are integral multiples of 6,
then they remain so forever. By (6) and (9) this means
that the components of the u's and v's will be integral or
half-integral. The discrete gauge conditions (8) then al-
low only three types of links, as shown in Fig. 3.

The first type has
~

u
~

=1 and v=O. Its end points are
separated by

~

b,x
~

=26, which implies that one com-
ponent of Ax is +26 and the other two are zero. Such
links are "fully stretched" and are at rest.

The second type has
~

u
~

=
~

v
~

=&2/2. Its end
points are separated by V'25, which implies that two com-
ponents of Ax are +6 and the other is zero. Similarly,
two components of v are +—,

' and one is zero. Such par-
tially contracted links move at 0.707 light speed perpen-
dicularly to themselves.

The third type has u=O and
~

v
~

=l. Its end points
are degenerate, with Ax =0. One component of v is + 1

and the other two are zero. Such links are fully contract-
ed and move at light speed parallel to the x, y, or z axis.
They are the discrete versions of the cusps that exist in
continuous strings.

A sample loop, lying in a plane for ease of drawing,
that is constructed from such links is shown in Fig. 4.
With a little thought one can see that in three dimen-
sions the string points at any instant will all lie on a
face-centered-cubic lattice. We can construct initial
states satisfying the discrete gauge conditions (8) by us-

FIG. 4. An example of a planar loop of string in our model.
The end points of the links of a three-dimensional loop would lie
on a face-centered-cubic spatial lattice.

ing just these types of links to make strings on such a
lattice.

By imposing spatial discreteness we reap a cornputa-
tional benefit: we can use integer arithmetic to avoid any
round-oft errors in the evolution. This means, for exam-
ple, that if the loops are not allowed to intercommute,
then they will execute exactly periodic motion
indefinitely.

After evolving all the strings ahead one time step 6, we
allow them to intercommute before proceeding with the
next time step. (All allowable intercommutings are per-
formed "simultaneously" before the next evolution time
step. ) We use a very simple but attractive intercommut-
ing algorithm: two strings' which pass through the same
lattice site simply reconnect as in Fig. 5 with probability
p. Neither the positions of any points nor the velocities of
any links are altered by this process —only the "connec-
tions" between the points and the links. Our model of in-
tercommuting thus exactly preserves the gauge. More im-
portantly, it exactly preserves the energy, momentum, and
angular momentum of the strings. This is the principal
benefit gained by imposing spatial discreteness.

2$

~ ~ )[

~ 3( ~

FIG. 3. The three types of links of string allowed by the
discrete gauge conditions (8) in our spatially discrete model. The
components of the end points of the links are all integral multi-
ples of 6. All links have energy 2p.6.

FICs. 5. An example of intercommuting strings. In our
model, strings are allowed to commute only if they pass
through the same lattice point. This ensures that the gauge
conditions are preserved and that the energy, momentum, and
angular momentum of the system stay constant.
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FIG. 11. The number of loops as a function of time during
the evolution of two different initial states with 6492 links. The
evolution of the Monte Carlo initial state is shown for two
different cutoffs.

The steady-state distribution of loop energies is shown
in Fig. 12. The number of loops whose energy is greater
than or equal to E (averaged over time steps t =500, 600,
700, 800, 900, and 10005) has been plotted against E.
(Note that E!2@5is the number of links in a loop. ) For
cutoff 8, over half the energy (53%%uo) of the system is in

loops with 8 —12 links; for cutoff 2, over half (61%) is in
loops with just 2 links. As in the smaller simulation, the
strings have fragmented into loops on the smallest allowed
scale. In both cases, the "infinite" strings (such as the
longest one in the initial state, which had 2188 links) have
disappeared; there are essentially none left that are longer
than about 10 links for cutoff 2, or about 60 links for
cutoff 8.

To test the hypothesis that the system reaches a
cutoff-imposed steady state which is independent of the
initial conditions, we simulated a system with the same
amount of string arranged in a completely different ini-
tial configuration. We generated a "loop gas" contain-
ing 3246 loops, each consisting of just two "degenerate"
links. They were distributed at random throughout a
volume of (645) . Such links must move at light speed,
but the direction of motion of each one was chosen ran-

lOOOO E

lOOO

N (oo ~

IQ

cutoff 2

I i I t I a

N~
~e cutoff B

+r
~r~

&t~
Qg

r&&

IOO

E/2 p.8

FIG. 12. The energy distribution of the loops in the steady
state for the system with 6492 links.

domly (two links belonging to the same loop were al-
lowed to have different velocities).

This loop gas was evolved for 1000 time steps with

p =1 and cutoff 2. In this simulation, all the loops had
the minimum allowed energy to begin with, so the tenden-
cy was to build a small number of larger loops in loop
collisions. The resulting number of loops as a function of
time is shown in the top curve in Fig. 11. The agreement
between the two curves with cutoff 2 indicates that the
steady state is indeed independent of the initial conditions.
Furthermore, the steady-state distribution of loop energies
for the loop gas is found to be the same —within statisti-
cal Iluctuations —as the distribution evolved (with cutoff
2) from the Monte Carlo initial state with the same densi-
ty. In view of the extreme qualitative difference between
the two initial states, these distributions are striking evi-
dence that the strings forget their initial state.

The steady-state distribution of loops depends on the
density of string in the simulation, n, which can be
defined as the ratio of the total number of links to the
number of points in the lattice. Our discrete model can
be expected to give a realistic representation of string
evolution only for n &&1. However, we could not resist
the temptation to study the nature of the steady state for
n —1 as well. When n approaches 1, the spatial lattice
"fills up" with links, they cannot avoid each other, and
the consequent intercommuting produces structure on
large scales. We have found that for n &0.2 the steady
state has "infinite" strings which include a substantial
fraction of the total number of links. It would be in-
teresting to study the character of the phase transition at
the critical density n, -0.2.

Finally, our model suggests that individual loops tend
to fragment by self-intersection. We observe that loops
on the smallest scales frequently break off from larger
ones, in regions near cusplike structures. Whether this
is an artifact of our model or not is an unresolved ques-
tion at this time.

IV. CONCLUSIONS

Our simulations strongly indicate that fragmentation is
the dominant process in a system of strings in fIat space-
time. Small loops break off from large ones much more
readily than they become reattached. There appears to be
no equilibrium state in Oat spacetime, contrary to previous
assumptions. In particular, the "infinite" strings present
at formation do not persist, but get broken into smaller
and smaller loops. Current analytic models that have as-
sumed or predicted the existence of an equilibrium due to
reconnection need modification. The distribution of loop
energies we have found in the cutoff-imposed steady state
should be useful for testing future analytic models.
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