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The most general anomaly-free version of the SU(2) XU(1) XU(1)' local gauge-invariant model is
presented here, for two different Higgs structures (the minimal ones), as an extension of the
SU(2) && U( 1) Glashow-Weinberg-Salam model.

I. INTRODUCTION

The Glashow-Weinberg-Salam' (GWS) local gauge-
invariant model of the electroweak interactions has been
successful so far in explaining most of the experimental
results related to the subject, including the weak-neutral-
current results (one conspicuous exception is the b,I= —,

'

rule).
In spite of its success this model is not thought of as

the ultimate one, and a lot of different generalizations
have been proposed in the last two decades to accomplish
new experimenta1 results and for aesthetic matters also.
In this paper we present the most general anomaly-free
version of one of such extensions, based upon the local
gauge-invariant group SU(2) XU(1))&U(1)'. This model
has been used extensively in the literature for different
purposes: It was used in Ref. 4 to arrange the parameters
for suppressing unwanted semileptonic and nonleptonic
weak decays; in Ref. 5 to arrange the parameters for can-
celing flavor-changing neutral currents in models without
the charmed quark; in Ref. 6 as an attempt for explaining
the AI= —,

' rule; in Ref. 7 to arrange the parameters for
explaining possible lack of evidence for parity nonconser-
vation in the atomic physic experiments; in Ref. 8 for ex-
plaining the CERN anomalous events, and so on. (Other
references to the model are enumerated in Ref. 9.) So far,
in all of its applications in the literature only particular
versions of the model have been used, and in most cases
the version presented is not renormalizable, due to the
fact that it is not possible to achieve proper cancellation of
the triangular anomalies for the particular values chosen
for the parameters.

II. THE MODEL

The group SU(2))&U(1) &(U(1)' is characterized for five

generators, T~, T2, and T3 for SU(2), Y'i for U(1), and Yq

for U(l)', three of which may be diagonalized simultane-
ously (T3, Yi, and Y2). In the exact symmetrical model
there are five massless gauge bosons. We also need three
different coupling constants: g, gi/2, and gq/2 for SU(2),
U(1), and U(1)', respectively.

In order to break the symmetry in the manner
SU(2)&&U(1) XU(1)'~U(1)(i, and to give masses to four
out of five gauge bosons (the photon remains massless),
several Higgs bosons must be introduced in the model.
The most economical way for achieving it is by using (a)
one SU(2) doublet Pi and one SU(2) singlet X of complex
scalar fields (six real fields) and (b) two SU(2) doublets Pi

Equation (2) fixes the value a Y, +b Yz ——Yows for a given
multiplet, where Yaws is the hypercharge for such a mul-
tiplet in the GWS model (a fixed number). So, we have
the freedom to choose Yz fixed and Y& free for every mul-
tiplet. This arbitrariness introduces one more free param-
eter for every multiplet: the value Y&.

Equation (2) permits two very different situations: one
for a&0 and b&0, and the other one for a =0 and b&0.
The physics for the two cases is different. From now on
we will work with (2) for b&0 and any value for a (in-
cluding the value a =0). '

The covariant derivative for the model has four in-
dependent terms: the kinetic one iB„and one term for
each subgroup in the Cartesian product group; that is,

iD„=iB„+gT-B„+ Y, C„+ Y C„'
2 ~ v 2 2 v

where B&, C&, and C„' are the five gauge fields associated
with SU(2), U(1), and U(l)', respectively. When we calcu-
late the Lagrangian for the scalar sector of the theory we
get

L„,~ igiD "D„gi+iX*D "D——„X for version (a),
L„,~ iP, D "D~gi+ig——2D "D&Pq for version (b) .

(4a)

(4b)

Spontaneous symmetry breaking in Eq. (4) produces
masses for the charged weak fields W =(B'+iB )/&2
given by

~ii,2=g2v, /4 for version (a),
M~2 ——g (vi +v2 )/4 for version (b); (5b)

also the neutral fields B„,C„, and C„' mix with each oth-
er giving a 3)&3 real mass matrix. In order to diagonalize
such a matrix in the most general case, three Weinberg-

and Pz of complex scalar fields (eight real fields). In both
cases Pi is the GWS Higgs multiplet. From now on we
will call them versions (a) and (b), respectively.

The symmetry is spontaneously broken down to the
electromagnetic one, by demanding

(P;)o——(O, v;/&2), i =1,2,
(X)o—v /&2,

for the vacuum expectation values. The most general way
of writing the unbroken generator g is

Q = T3+ (a Y, +bY2)/2 .
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type angles are needed: 8, g and g (8 is the Weinberg an-
gle of the GWS model), defined as' '

sinO= e /g,
tang=ag2/bg, ,

where

g] +b g2 +g
is the electric charge. The former definitions for 8 and g
are valid for both versions' (a) and (b). The definition for
P depends upon the version we are working with, so we
have

4M~ /cos O sinO
tan(2$) =

Mz +Mz —2M'' /cos 8

for version (b). Where Mii is given by (5) Mz and Mz
are the masses for two weak-neutral heavy gauge bosons
of the theory functions of the respective parameters for
each version. Before continuing we want to emphasize
that there are so far two more parameters for each ver-
sion: Y& and Y& the free hypercharge for the Higgs bo-

sons for version (a), and Y~, , Y~, the free hypercharge for
the Higgs bosons for version (b). [For version (a) Yr can
be absorbed in U by the definition V=V Yq, and must be
such that Yz&0. For version' (b), Y~, &Y~,.] So in gen-
eral we have

Mz, z ™z,z'(g gl g2 U ~1

for version (a), (10a)

Mz, z =Mz, z'(g~rgl g2 Ul, U2, a, b, Ylt, , Yy )

X (a Yp, —sin g) (9a)
for version (b) . (10b)

for versions (a) and

4M' /cos O sinO
tan(2itj) =

Mz +Mz' —2Mll /cos 8»n(2g)
2

2X (a Y~ —sin g)—
1 2++ 2 I

a( Yp —Y~ )
[ 2

(9b)

It is important to notice that a and b in (10) are not free
parameters we may play with; they must be chosen in the
very moment we define the charge operator Q in Eq. (2);
we are keeping them so far just for generality. '

After some manipulation of the algebra we get the final
expressions for the most general covariant derivative of
the model, as a function of the real fields A„(the photon
field), Z„and Z„' (the two heavy neutral fields), valid for
both versions (a) and (b):

iD„=id„+g(8'„T +H. c. )/&2+e A„Q

sing sin8 cot/+gZ„Q sin 8—T3+ [aYl (cotg+ tang) —2 Yows tang]" cosO 2

cosf sinl9 tang
+gZp Q sin 8—T3- [a Yl (cotg+ tang) —2 Yowstang]"cosO 2

where T+ ——T]+iT2, Y& is the free hypercharge parame-
ter, and YGws is the GWS hypercharge (a fixed value) of
the multiplet on which iD„acts. As mentioned before,
we are going to have one more free parameter for each
multiplet in the theory. Notice in (11) that in the limit
$~0, rr/2, the covariant derivative reduces exactly to the
one for the' GWS model, plus one extra term due to the
new massive neutral current. Also in those limits we get

l

Mz ——M li /cos8 (for it ~0) and Mz ——M li /cos8 (for
P~rr/2) for both versions.

III. THE FIRST GENERATION

We are going to sandwich the covariant derivative (11)
in between the following multiplets which exhaust the fer-
mions of the first generation of leptons and quarks:

Multiplet"

Yr ws

Yl (free)

ltjL ——(U, e )I

—YlL YR

pL ——(u, d )l.

1

3

Yl„R

2
3

YiR

When we calculate the Lagrangian L =Lkin+Lwk+Lem+L„eU

L =QL 4gl +ell Be~ +f L P QL + u ll Bu g +dil gd g,

where g =iD "y'„, y„are Dirac matrices, we get

where Lk;„, L k, and I, are the kinetic, charged weak,
and electromagnetic parts, respectively; they are exactly
the same ones obtained in the GWS model. The
difference with the GWS model appears in L„,„which we
may write as
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L„,„=g g Z;"[ey„(gv, —g~, ys)e+v?'~(gv —g~, rs)v
i =1,2

the three-colored quarks with the anomalies of the lepton-
ic sector, we get the constraints

+ur„(gv, g—~, rs)v

+d'Yq(gv, . —gw 3's)d l

Yi ———Yi /3,
Y) —Y, =(4Y,„+y, d

—5Y'( )/3,
( yL )2 ( YR )2 (

y'L )2 2( YR )2+( yR )2
(12)

Z& ——Z, Z~ =Z', and gv, g„' (a =e, v, u, d) are functions of
the eight parameters, the three Weinberg angles O, g, g,
and of the five parameters Y, , Y, , Y', , Y», Y &&. At
this point many authors pick up particular values for the

parameters, or special relationships between them for the
particular version of the model they are working with (see
Refs. 4—9). Doing so, the model remains unrenormaliz-
able due to the presence of several triangular anomalies
[here there are many more anomalies than expected due
to the presence of two U(1) groups]. Demanding a natu-

ral cancellation of the anomalies in the hadronic sector for

2(y ) —(y ) =3(y ) +3(y ) 6(y'/L)

where the constraints came from the Feynman diagrams
with a triangular loop of fermions (quarks or leptons), and
one, two, and three gauge bosons at the vertices.

The set of equations (12) have, for a unique solution, '

y L YL/3 YR 2yL
(13)

Y» ———4Y] /3, Y,d ——2Y, /3,
which means that out of the original five free parameters
for the first generation, we have only one left to play with:
namely, Y&. Now gz and g~ may be written as

g~ —g„= gz — gz — gv ——
g&

—— [1—sinO cot&/&[a Y, (tang+cot/)+tang]I,e d ~, „sing L

4 cosO

gv =
I 1 —4 sin2O+3 sinO cot/[a Y, (tang+cot/)+ tang] I4 cosO

gv =
I 1 ——', sin O+ —,'sinOcotp[a Y~ (tang+cot/)+tang]I,

4 cosO

(14)

gv = [ 1 ——', sin O+ —,
' sinO cot/[a Y, (tang+ cot/) + tang] ]4 cosO

and

Notice that the functions in (14) reduce exactly to the
ones in the standard model for g=~/2 in gv, g„' and for

/=0 in gv, g'„. According to (9) we have two ways of
getting such limits: a natural one by demanding
Mz &&Mz be valid for both versions and a mathematical
one by demanding the numerator in (9) to become zero by
the relationship a Y~ ——sin g in (9a), and the appropriate

1

one in (9b). The phenomenological analysis of the two
neutral currents has attractive features and will be pub-
lished elsewhere. The main fact is that the model
SU(2) )&U(1) XU(1)' can do exactly the same as the GWS
model does, and even better.

L;„,= G, ( PL P (eg +H. c. )

+ ( Gd p L f

ldll

+G„fL p &
u~ +H. c.), (15)

where P, = —iT2$& . Several comments are in order here.
The main fact is that (15) has to be SU(2) invariant, as it
is indeed; but it also must be U(1) and U(1)' invariant,
and it is this last invariance that imposes the new restric-
tion, which is, for (15),

I

Y~ for version (b)? Yes, if we demand the fermionic
masses to be generated by Yukawa-type terms, as in the
GWS model.

Let us work with version (a). Masses for the electron
and the two quarks in the first generation may be generat-
ed by

IV. FURTHER CONSTRAINTS
Y~ ———Y, (16)

When introducing the second and third generations of
quarks and leptons, we may keep the sequential model by
demanding

Y& (1st generation)= Y& (2nd generation)

where some relationships from (13) have been used.
Equivalently, we may replace the entire expression in (15)
by

= Y& (3rd generation)
or we may not. We have seen no reason for discarding
the sequential model. But, are there further constraints
between the free hypercharge parameters remaining:
namely, Yd. .. Y~, and Yf for version (a) and Yy, , Y~, , and

L;„,=G, (X/I p, eR+. H. c. )

+(GdXQI p~d~ +G„'X/I p, u~ +H. c. )

and the constraint now is

Y~ +y~= yL

(17)

(18)
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It is important to notice that we cannot mix any one term
in (15) with any one in (17) because it will imply Y& ——0
and then we will not get the appropriate symmetry-
breaking pattern. '

The only reason we see for preferring (15) as a mass
term over (17) is because it is simpler, easiest to handle,
and we do not have to worry about Y& in the entire calcu-
lation (as mentioned before, it will disappear out of the
algebra when we define V= v Yi).

So, for version (a) with a mass term given by (15), we
will have at the end only one free parameter to play with
for the entire model, which is Yi (Yr will remain hidden).

For version (b) we also have two alternatives for L;„,:
One is relation (15) and the other is L,'„,=L;„,(P i~ tiq).

Again, we cannot mix terms between the two alternatives

because it will imply Y&
——Y& with the same conse-

1 2

quences as before. ' For each one of the two Yukawa La-
grangians for version (b) we will have the constraints
Y& ———Y&, Y4, free for L;„, and Y@

———Y&, Y4, free for

L „,. Both ways are totally equivalent. In any case we
will have two free parameters to play with for version (b):
Y~ and one of the Y~. . After all, we notice that version

(a) has the fewest number of parameters: only one.
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' For example, a =0 and b =1 is the model in Ref. 5; a =b = 1

is the model in Ref. 6, etc.
' The physical fields are related to the mathematical ones by the

relationship

cosO sing' cosO cosg sinO

Z„= cosit cosg+. sinO sing sing —sing cosi(+ sing sinO cosg —sin1( cosO

Z ' —sing cosg+ cost( sinO sing sing sing+ cosP sinO cosg —cosg cosO

C„
C„'

Bp

i2For the particular model a =0, b&0, tang=sing=0 (cosg= 1)
and we need only two Weinberg angles O and P in order to di-

agonalize the mass matrix.
If Yz ——0 in version (a) or Y~ ——Y~ in version (b), the

1 2

symmetry-breaking pattern will be SU(2) X U(1) )& U(1)'
~U(1)& )&U(1) „ instead of the desired one. This model

could be suitable for dealing with the possible fifth force, as

long as we assign a dynamical role to the scalar Higgs field.
'4The covariant derivative for the GWS model is

iD„=id„+g( W'„T +H. c. )/&2

gZp+eA„Q+ (Q sin'O —Ts),
cosO

where Q= Ts+ Yaws/2.
'sAs usual QL =(1—ys)p'l2;pii =(1+ys)ttj'l2 for any Dirac

field f'.
' Notice the unsuspected result Y~(free) = —YG~s Y~.


