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We use the renormalization group to improve the ultraviolet aspect of the program of Yennie,
Frautschi, and Suura for the cancellation and exponentiation of infrared divergences in Abelian

gauge theories. Possible applications to high-precision Zo physics at the Stanford Linear Collider
and CERN LEP are considered.

I. INTRODUCTION

There is currently some amount of interest in testing
various aspects of the SU(2)~ XU(1) model of Glashow,
Salam, and Weinberg to the level of —1% at the Stand-
ford Linear Collider (and CERN LEP) on or near the Zo
resonance. ' Such tests would require that the radiative
corrections to e +e ~y, Zo ~X be known to -0.3% ac-
curacy. In what follows, we wish to present a theoretical
framework in which such an accuracy on the radiative
corrections may be achieved.

Specifically, we will use the familiar method of Yennie,
Frautschi, and Suura (YFS) as the basis of our frame-
work. It is well known that this theory implements the
cancellation of infrared divergences to all orders in o, in
an arbitrary QED process; hence, an entirely analogous
statement can be made for an arbitrary (unbroken) Abeli-
an gauge theory. In what follows, we will illustrate our
theoretical framework with pure QED since all of the in-
frared (IR) divergences in the theory of ultimate interest
to us, the SU(2)L XU(1) model, are in fact due to QED. It
will be obvious how one applies the framework which we
shall develop to an arbitrary process in an arbitrary
theory containing an unbroken Abelian gauge symmetry.

At first sight, it may not be apparent that the YFS for-
malism by itself is not sufficient for our rather practical
purposes. Thus, we will record, in what follows, our ver-
sion of the relevant numerical estimates which make it
clear that, in addition to the IR summation of the YFS
theory, one also needs some kind of ultraviolet (UV) im-
provement of the respective perturbation series to obtain,
in a practical way, the 0.3% accuracy desired at the SLC
and LEP on the Zo resonance. This need for UV im-
provement has been realized by many authors.

We will here find it convenient to use the
renormalization-group equation, as formulated by Wein-
berg, in arriving at the desired UV improvement of the
YFS theory. In doing this, then, we shall arrive at a
theoretical framework in which both the IR and the UV
large logarithms are treated to all orders in perturbation
theory. For practical applications, the various solutions
to the respective renormalization-group equations will
only be treated to the leading large logarithm behavior,
since this will be sufficient for our purposes. A complete

treatment of the SU(2)LXU(1) theory with regard to
e +e ~y, Zo ~X at the SLC and LEP will be taken up
elsewhere.

We should emphasize that the framework which we
shall develop is related to the works of Tsai, Altarelli and
Martinelli, and Kuraev and Fadin, for example. The
work of Tsai is based on the Gell-Mann —Low formulation
of the renormalization group and involves an approximate
treatment of the mass effects in the respective cross sec-
tions, for example. The works of Altarelli and Martinelli
and of Kuraev and Fadin use the partonic representation
of the renormalization group provided by the Altarelli-
Parisi equations and do not effect the IR exponentiation
of the YFS program. We emphasize that the physical
idea to use the partial differential equations of quantum
field theory to improve the UV aspect of the radiative
corrections to e+e annihilation processes is common to
the works of Tsai, Altarelli and Martinelli, Kuraev and
Fadin, and to the analysis presented herein.

Our work is organized as follows. In the next section
we review the familiar problem of initial-state radiative
corrections to e+e ~X in order to obtain an estimate of
the order of perturbation theory which is required to ob-
tain —0.3% accurate radiative corrections to
e+e ~y, Zo-X at ~s -Mz, , where ~s is the e+e
center-of-momentum energy and Mz, is the Zo rest mass.
In Sec. III we review the relevant aspects of the Yennie-
Frautschi-Suura program. In Sec. IV we combine the
renormalization-group program of Weinberg with the
YFS theory to obtain a rigorous UV improvement of the
YFS theory. We use QED to illustrate the formalism and
show how one applies this formalism to the SU(2)~ X U(1)
theory. Section V contains an example of such an appli-
cation. Section VI contains some concluding remarks.

II. ESTIMATE OF IR AND UV EFFECTS
IN RADIATIVE CORRECTIONS

AT THE SLC AND LEP

In this section we wish to determine the generic size of
the various radiative corrections to the Born processes in
e +e ~y, Zo ~X with an eye toward developing a 0.3%
accurate radiative correction theoretical framework. Since
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the dominant IR effects and the dominant UV effects are
already characterized by the pure QED part of the
SU(2)L XU(1) theory, we may consider the case of pure
QED at &s =Mz, for our purposes in this section.

Focusing then on the initial-state QED radiative correc-
tions to e+e ~X, we have the well-known diagrams in

Fig. 1. Textbook formulas allow us to write the cross
sections associated with Fig. 1 as

do. =dcro(1+6)+ f (1—k/&s +2k /s)[ —1+in(s/m, )]doo[2&s (&s /2 —k)],k&I o k

I [ —1+in(s/m, )][in(2k'/&s )+—'„']——,", +~ /6I (2)

where we imagine that k0 is the separation between soft
and hard real photons and do. o is the respective Born ap-
proximation differential cross section.

What we see in (1) and (2) are the following.
(a) The infrared effect involves radiative corrections of

size

(2a/~)[ln(s/m, , ) —1]ln(&s /2ko),

where k0 is some typical energy resolution-related photon
energy. Thus, in a Monte Carlo simulation of the
differential cross section, it may be desirable to take
ko &&&s/2 so that, for &s =Mz„, such IR effects are
~ [1n(&s /2ko)]&&0. 108. Hence, we would need to sum
up all such effects since they may be —100%%uo of the Born
process in each order of the loop expansion in QED or the
SU(2)I X U(1) theory.

(b) The UV effects, which contribute to the factor of —,",

in (2) and to the hard bremsstrahlung, are also large, i.e.,
they are -0.11 of the Born process; 0.3%%uo accuracy
would require computation of these effects to order
I (2a/n)[ln(s/m, ) —1] I

"5 0. 1%. This implies that
n ~ 3. The cross section would therefore, at the least, in-
volve as many as 3 loops of perturbation theory. Point (a)
clearly indicates that we need to use the YFS program,
which rigorously sums all large IR effects to all orders of
perturbation theory. Point (b), from a practical stand-
point, requires a UV summation of large logarithms to
three or more loops in perturbation theory and, hence, is
most conveniently achieved by using the renormalization-
group equation. We are thus led to consider the
renorrnalization-group improvement of the YFS theory.

We shall begin our discussion of this renormalization-
group-improved YFS theory by reviewing the relevant ele-
ments of the YFS theory itself. This we do in the next
section.

III. YENNIE-FRAUTSCHI-SUURA THEORY

A, (p„p-, )= g At„(p„p-, ),
n =0

(3)

where A.„(p„p,-) is the contribution of all n virtual y loop
graphs to JM. The result of Yennie, Frautschi, and Suura
is that

r=0
„(aB)"/r!, (4)

where ~~ do not have virtual infrared divergences and
are of order a relative to JVO

——~o. The famous virtual
infrared function B is such that (here, we use the photon
mass mr to cutoff the infrared divergence in B)

In this section, we wish to review the relevant aspects
of the program of Yennie, Frautschi, and Suura as it re-
lates to e+e ~Zo~X at the SLC and LEP. Here, we
shall have the full SU(2)r )& U(l) theory in mind.

Consider, then, the expansion of the full connected am-
plitude for e+e X at &s =Mz„ in terms of the num-

ber of virtual-photon loops. We illustrate a typical contri-
bution to this amplitude JM in Fig. 2. We may write

pe

X +

.e+
e'

'e

e+

(a)

+
Pe

pe

FIG. 1. Order-o. radiative corrections to the initial state in
e+e ~X in QED: (a) virtual effects; (b) bremsstrahlung.

FIG. 2. Virtual-photon correction to e+e ~X. This is a
typical graph.
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l CX d k
aB(p„p,-)= (2') k —mr +ie

—2p,-„—k„
—2p-. k —k —i e

next the differential cross sections for the processes
e+e ~n(y)+X', where n(y) represents the emission of
n real Photons of four-moment k1, . . . , kn. For a given
value of n, this differential cross section is (here, E» =P»,
where P» is the four-momentum of X')

Hence

2p,„—k„
2p, .k —k 2 —ie

1
der =exp[2 Re(aB ) ] n!

n d3k. n

xf g, '. . .5 & E —g—k; dE
, (kj'+my')'"

At(p„p , ) =-exp(aB ) g ~„.
n=0 n'=0

This is the famous exponentiation of virtual infrared
divergences of the YFS program.

To complete our review of the YFS theory, we consider

where ~'„"' is now the special case of ~„ in (6) in which
X in Fig. 2 involves n real photons. See Fig. 3. The
second theorem of the YFS program is that

n'=0
(n) =S(k)) S(k„)PO+ g S(k)) . S(k;, )S(k;+)) S(k„)P)(k;)+

+ g S(k;)P„)(k), . . . , k; ),k;+(, . . . , k„)+P„(kt, . . . , k„),
1=1

where PJ is infrared divergence free and is of order a~ rel-
ative to po. The real infrared divergence function S is

given by
'2

«[+& —&xI d k—
k

(12)

S(k)=—
4~2 k-p-,

Pep
k.p,

(9)

do. =exp[2a(ReB+B)] f dy e
2 7T —QQ

oc d'k
x pp+ g, f Q 'e 'p„dE»,

n=1 j=1 J
(10)

where we have defined

d k

(k +m~ )'

It follows that our cross section for the emission of an ar-
bitrary number of real photons can be represented as

It may be verified that ReB+B is free of infrared diver-
gences so that do. is indeed a physically meaningful quan-
tity. The result (10), then, exhibits the cancellation of IR
divergences to all orders in a.

As it stands, (10) is still not quite general enough for
our purposes, for we generally wish to consider final states
L' which involve charged particles: e+e, p+p, qq,
q 'q '*, etc. Thus, we wish to generalize (10) to the cir-
cumstance in which X contains the charged-particle pair
ff for charge ef in units of the positron charge e. This
case has also been discussed by Yennie, Frautschi, and
Suura. In fact, Yennie, Frautschi, and Suura have also
considered the scenario in which the volume in momen-
tum space in which the detection of soft photons is not
possible is bounded by a surface which depends on the
spherical angles of the respective photon momenta.
Hence, we would also like to record the generalization of
(10):

der =exp[2a(ReB+B)) f d y e
(2'�)

x' oo d k
x po+g, fg e 'p.

n =1 ' j=1 J

k )&de d Px,

FIG. 3. Real-photon emission in e+e ~n(y)+X'. This is a

typical graph. where, now,
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max
2mB =

4~ (k2+m 2)1/2
pep

p,--k

2

per pfv per

p, .k pf -k p, .k+ef Pfp Pep—ef
pf-. k p, -k

2

pfs pep—ef pf. k p,—,-k
pf p pep+ef

pf k p — k
Pfs Pfv—ef

pf k pf'k
(14)

B= —I d k

m

2pep kp 2ppp +kp

k +2k -p, +i e k —2k p-, +i e

—2p,„—k„2pf„+k„+ef +
k +2k.p +is k +2k-pg+ie

—2p,„k„2pf-„+k„
k +2k -p, +i e k +2k .pf-+ iE

2 —2p- —kz 2pf +k
f 2 +

k +2k.p-+i@ k +2k.pg+ie
—2p,-„—k„

+ef
k +2k-p,-+i@

2pf„+k„+
k +2k p-+ig

2

2pf& k& 2pfp+kg
k 2 —2k.pf +i e k 2+ 2k.pf +i e

(15)

and

d k-D= Se '~ —OK „—k
k

(16)

with

max d k
2 2 1/2(k +mq )

(17)

Here, K „may depend on the direction of k.
It is the result (13) that we will use in our study of

e+e ~ZO~X, where we assume that X contains the ff
pair for charge ef. In (13), all infrared divergences are
canceled in the sum ReB +8 to all orders in a.

As we illustrated with the QED part of the
SU(2)i. X U(1) theory, there remain large UV effects in the
f3„ in (13). Thus, in the next section, we wish to use the
partial differential equation of Weinberg to sum up such
effects.

electric charge of the positron, we would have renormal-
ized mass parameters for the fermions in the presumed
three families of quarks and leptons, we would have the
mass parameter of the 8'+— and Zo bosons, and the mass
parameter of the physical Higgs particle (or the quartic
coupling of the physical Higgs particle), as a minimal set
of masses and couplings. The physics beyond the stan-
dard model would enlarge this set. The coefficient func-
tions P, yo, and yr are computable in renormalized per-
turbation theory. The detailed application of (18) to (13)
for the full SU(2)l XU(1) theory will be presented else-
where. Here, to illustrate how this application is effected,
we will restrict ourselves to the QED part of this latter
theory.

Specializing (18) to QED [note that (18) tacitly
presumes the gauge of Landau], we can write (Q;eR is the
electric charge of fermion i)

P(eR)= g Q 'eR'+
12

IV. RKNORMALIZATION-GROUP-IMPROVED
YFS THEORY =3 22ye= -Qr eR +

I
(19)

In order to address the physical consequences of the
large UV effects in (13), we will appeal to the
renormalization-group equation of Weinberg. We begin
this section, then, by reviewing, briefly, the origin of this
equation.

The basic idea of Weinberg is that multiplicatively re-
normalized Green's functions I I I of a theory may be
subtracted with the massless limits of the subtraction con-
stants for the theory at a Euclidean scale p. The fact that
the unrenormalized theory is independent of p then im-
plies the equation

AI'"'=(uf ),(vf ),(u, ),(v, )„,AI, ,
' ', (20)

(njv~vl
then JM is an amputated connected multiplicativelyala&

renormalized (on-shell) Green's function. Thus, it satisfies
the appropriate version of (18):

rr=nrO(eR )leR

where n~ is the number of external photon lines in I .
With regard to (13), we note that, if we write the respec-
tive amplitudes At'"' as (we suppress the amputated pho-
ton labels)

P +WgR ) 1 6(gR )mR 1 I (gR )
(3p ~gw 0mg

(18)

(3 a a
S

Z
+«eR)

Z
—g) o, (eR)m, R

Bp a", ' ' a-
where, for simplicity, we imagine we have one renormal-
ized coupling gq and one renormalized mass mq. In the
SU(2)1 XU(1) theory, we would have two couplings, eR
and g~R, where g~R is the SU(2)L, coupling and eR is the Further, it is convenient to write

(21)
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p, —= (kelso/2, (A, so/4 —m, )' z),
p, :—(A.+so/2, —(k so/4 —m, )' z),

and, in A, '"',

ine, here, that V so&2m, and that A, & 1. Then, since
'Y ) )=nP(eR )«R

a a a
+p(eR ) —& [1+)e, (eR )]m R

Be~ ibm;~

pfo+p-o=k Qso —y ko;, k, =kko;,

pf+pf ——A, g ko; .

(23)
so that, using

n/3—(eR )/eR +D „).) PL, ,
' '=0 (24)

(25)

We can always do this in the physical region provided
that A, +so & 2mf and kelso & 2m, . We will always imag- we find the solution

n'=0

oo {n)v ~ (n)~'"' "'=exp[a(1)B(so,m R(~))] g rn„"",",'(p;'(1), m; R(t), a(~), /i. )~ ""'exp —f 'y z)„)(eR(a'))d~'/t'
n'=0

QC
(n)=e xp[ a(1)B(s o, m, R(A, ))] g rn„~ „'(p;(1),m;R (k), a(k), p)A, '"

[eR (A. )/eR (1)]
n'=0

(26)

D (.) = —2 —n, (27)

where D&(.) is the engineering dimension of JM'"' and is

given by
m~R (~)= [m~R ( I )/I]exp —f ye, (eR (~'))dX'/X'

—ce /b00

= [m;R ( I )/A, ][eR (A, )/eR (1)]

where

(30)

eR (X)=P(eR (k) ),
(28)

p(eR ) =boeR + . ' ' ye, . (eR ) =ce.eR (31)

and

m;R (k) = —[1+)'e.(eR (k) )]m,R (&),d
i

Note that, even though ff may be ee, the error on the ap-
proximation in (30) is a factor of order

exp[ —a(A )+a(1)]= 1 —6.4)& 10

a(A, ) =eR (A. )/4' . (29)

We emphasize that (26j is a rigorous consequence of the
renormalization-group equation.

The running masses m;R (A, ) are

Thus, one-loop coe%cient functions should be adequate
for our purposes, provided that n is not too big.

The itnportant point to note about (26) is that it has the
same algebraic structure as the original amplitude JR in
(6). Thus, the YFS program can be applied to (26). In
this way we arrive at

do. =exp I 2a( I )[ReB(p;(1),m;R (1 ) )+B(p;(1),m R (k),K,„/A, )]]

oo n 3
I

, f d ye ' ' po(qo)+ g f Q e " 'p(q) dEr d'Pr
(2'�) n =1 ' I'=1

(33)

where

2D ( )P„(q„)—:A. P„(p,(1),ko/, m;R (A, ),a(A), p)

X [eR (&) /eR (I)]
and

D =D(p; (1),m;R (A, ),a(A—. ),IC,„/A, ) .

The result (33) is the basic result of this paper.

(34)

(35)

The physical interpretation of (33) in comparison with
(13) is the following. The exponentiation of the infrared
effects occurs now with the running coupling a(1). The

2D („)p„are scaled by [eR(A, )/eR(1)] "A, '" . It is interest-
ing that the in variance of the physical masses
m; ~h„,( m;R, eR,p ) under the renormalization-group opera-
tor means that, if the amplitudes JM'"' are on shell, the net
effect of the running masses m;R(A. ) is to keep the
renormalization-group-improved amplitudes on shell. We
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«'(2) =eg (1)/[1 —2bpett'(1)ink], (36)

provides a basis for the Monte Carlo simulation of
e+e ffff+y, ff+y~y2 where y, ) ~, and y2 are hard
photons and arbitrar~ numbers of soft phonons are under-
stood, and ~here & s =Mz, , to the level of -0.3% of the

basic Born cross section in /3O

V. EXPONENTIATION OF MONTE CARLO
EVENT GENERATORS

Thus, a primary use of a formula such as (33) would be
in exponentiating large infrared eA'ects and summing large
UV eff'ects in a way which allows an event generator, such
as MMG1 in Ref. 7, to reAect the respective net eftects in
e +e ~L near the Zp resonance, for example. Accord-
ingly, in this section, we wish to show how (33) would be
applied to the results in Ref. 8 for e+e ~ltt+p (y),
which are the basis of the event generator MMG1. [The
application of (33) to the general one-loop calculation of

emphasize that {33) is a rigorous consequence of the
renormalization-group equation.

In the practical applications, we have in mind to work
to the value n =2 in (33). The error on this real hard
two-photon emission term due to the factor of
[eR(k)/eR(1)] in (33), which we approximate to the
leading order in P(e~(k)) in (28) and (31) is -0.02% and
this hard term is itself -0.85&(10 relative to the Born
cross section in /30. Thus, we see that the one-loop values
of' the coefficient functions are indeed adequate. Thus, the
result (33), taken together with the one-loop expressions
{30)and

'

where da(l loop )/dII„ is the one-loop cross section in
Eq. (2.27) of Ref. 8 and dcro/deal„ is the lowest-order
cross section in Eq. (2.2) in Ref. 8. a(1) is the fine-
structure constant at &s =2ply. , phys, for example.

Similarly, the cross section /3, is identified as (k = k
&

)

d A„dIIyk dk d fl„
where der ' is given by Eq. (3.13) of Ref. 8 and S(k) is
given by (17).

Clearly, the virtual infrared function B should be com-
puted in a complete way in order to make {37) as precise
as it is desired. We find

B=B~(p„p,)+B~(p„pf) -B2(pf~pf)

B2(P, ~—p , )+By(P,-~P , ,Pf Pf-
+ef B ~ (pe ~pf~pe ~pf ~ me ~m f )

where

(39)

e+e ~X from the standpoint of event generators will be
taken up elsewhere by Jadach and the author and by the
Mark II SLC Zp Mass and Width Physics Working
Group. ] In this way, we hope to clarify the relationship
between (33) and the results in Ref. 3, for example, and to
illustrate the type of applications we have in mind for
(33).

More precisely, in specializing (33) to the results in Ref.
8, we may identify Po(qo) as

do dOp
/30(qo) = (1 loop) —2 Re[a(1)B]

1+P,+ (1 —4m, /s)' ln
2~ 4w 1— ,'iP, O(s ——4m, ) — In(my /m, )

5 —2me
+

~sp,
—,
' ln

p 2

ln
rn ~-/s

1+P, + -,'«~ [—(I —P, )/(I+P, )]
e

1 (m y'/s )(1 —P, )+ — ln [(1—P, )/(1+P, )]—jn~
4 P, '(1+/3, )

(1+P, )(m y'/s )
+-,'L [ —(1 P, )l(1+P, )]+-,'1 '—

(1—/3, )P,

2

+ —,
' ln'(1+ P„)+

—2 2

+Li2[1/(1+P, )]+Li2(l —/3, ) +i g(s —4m, )[—,'lnP, —
—,'ln(m /s)]

S
(40)

and

B2= + [In(my lm, )+In(my /mf )]+ [ln(s/m, )+ln(s/mf )]4~ 4m 8~

ef (s,f —m, —mf ) (I+X+ )( I + X )

2m[ —t fs f+(m, —mf ) ] (I ~ —)(I ~+)

2
rn& t,f

S ftf (m, —mf )
2 2 2

——,'Li, [—2X /(1 —2 )]+—,'Li2[2X /(I+X )]

+Li2[ —2 l(1—X )]+Lip[ —X+/(1 —X+)]
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—Lip[2 /(1+2 )]—Lip[2+/(1+2+)]

(1 —2 )( I —X+)
+1n21n (1+X )(1+X )

,'Li2—[—2K+ i(1 —X~ )]

+ —,'Li, [2X /(1+2 )] .

ef
[1n( —t,jim j )+1n( —t,j Im, )+bq~(p„pf, m„mf )+b2~ {pf,p„mf, m, )] — bq2(p, ,pf, m, ,mf ),

4w 2' (41)

where

X~ —Q t f[1+(m„—mf )/( t f)—]/[sf —(m, mf —) /t I]'j

bz&(p„pf, m, , mf)= } 1 —(m, —mj —t f)/( —2t j)—[(m, mf —t f—) l4t f mf lt—j)''
Xln}(m, —mf —t I)/{ —2t f)+[(m, mf —t f) l4t f mf lt f]' ' —1}

+ [(m, —mf t f)/( —2t I)+[(m, —mf —t I) /4t f mf /t f]'~ }

Xln}(m, —mf —t,f)/( —2t,f)+[(m, —mf t f) l4t,f mf lt f ]' }'
+ [1—(m, —mf t f)/( —2t f)+[(m, —mf t f) /4t, f —mf It f]
Xln}1—(m,, —mf —t j )/( 2t f)+[—(m, —mf —t f ) l4t,f mf !—if f]'

+ } (m —mf —tef )I( —2t,f ) —[(m —mf —t f ) l4tef —mf It„j]}'
X ln }

—( m, —mf —t,f ) I( —2t,f ) + [(m, —mf —t,f ) l4t,j —mf /t f ]

(42)

&s
b22(p„pj, m, , mj ) = 1+—,'1n2+

4V' t,j—,

X —}[sef—(m —mf ) /t j ] —V —t f'[1+(m„mf )lt f]}
S

X —
—,'(1+1n2)+ln —[s,f —(m, mf ) /t f]'—— ——[1+(m, —mf )lt,f]

s
{.

—}[s„f—(m, mj ) It,j—]' +Q .t,j[1—(m, mj )I—t,f]}-
S

——,'(1+1n2)+1n —[s,f —(m, —mf ) It,f] + — [1 (m mf )It,f]
S S

—}[s,f —(m, —mf ) /t, f ]' + Q t,j [1+(m, ' m—f ) /t, ,f ]}-
S

—
—,'(1+ln2)+ln —[s„f (m, ' mj ) /t, f—]' + ——[1+(m, ' mj )It,f]—

5 S

+ —[ [s,f —(m, ' —mf')'lt, f]'f' —Q t,f[1—(m, ' —mf')/t, f ]—}S

X ——,'(1+1n2)+1n —[s,f—{m, —mf ) It,f]' — ——[1—(m, —mf )lt,f]s 5
(44)

with

s=(p„+p-, ), s,f ——(p, +pf), t,j =—(p, —pf), p, =(1—4m, /s)'~2 (45)
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e/ is the electric charge of fermion f.
Similarly, we note that the real infrared function B which cancels the infrared singularities in Re8 may be represented

B(pe»e»f»f) ~(pe»e e)+B~(pe»f e f) 2(pf~pf) 2(pe~pe)

+B2(pe~pe Pf~pf)+e'f &(pe ~pf Pe ~p J~me ™f)

where, for a spherical cutoff K „for the photon momentum magnitude,

(46)

—2m, ln(2K, „/mr)Bi (p„p-„m, ) =
rtsp,

1

1 —P,
1

1+P,
5 —2me

ln(2K, „/m z )ln
rrs

1—
1+P,

(47)

B2(p„p/, m„mf )

efmf 2

ln( 2K„„„/m~ )
1

1+P/
efm, 2

1ln(2K, „/m r )
'Irs

1

1+P,

(s,/ —m, —m/ )e/ln(2K, „/mr )

4irI(m/ —m, —t,/) /4+m, [s,/ —2(m, +m/ )]] '

s f —2(m, +m/ )—2 2 mf —m, —tf2 2

2

(m/ —m, —t /)2 2 2

4
+m, [s,/ —2(m, +m/ ) ]

1/2

ln

(m/ —m, t,/)/2+—(m/ —m, —t,/)2 2 2

+m „[s,/ —2( m, + m/ ) ]

1/2

se/ —2(m~ +m/ )—2 2 mf —me2 2

+ (m/ —m, t /)—2 2 2

4
+m, [s,/ —2( m, +m/ ) ]

1/2

(m/ —m, —t,I)I2—2 2 (m/ —m, —tI)2 2 2

4
+m, [s,/ —2(m, +m/ )]

1/2

where

P/—= (1 —4m/ /s)'

Hence, we have completely specified Po and P&, we now turn to Po and P&.

Considering first po, we have [the p; in (37) and (38) contain a standard phase-space factor relative to those in (33)]

Po ——X Po(p, (1),p-, (1),p„(1),p,—,(1),m, ~h„,/k, m„zh„, /A. , a(k) ),

(48)

(49)

(50)

where +so —=2m„~h~, and d tT =exp[2 (a1)(Re B+ B)]
1

(2~)

p/(1) = V so ~ so

2
' 4~zf

1/2
mf phys

X2

f=e, e, /t, and P (51)

X d 3'exp &3' p +p- —~x +D

3d k1,y.g, =
X po(qo)+ f e 'p )(qi)

1

with z, = —z,——:z and z„=—z„-. Here, k =Mz, /
2m& „h„,. For the constant bo in (36) we may take 8/12rt
with a(1)=—„', .

Similarly, for Pt, we have

Pi ——k /3i(p;(1), m; ~h~, /k, ki/A, , a ~a(1)a (k)) . (52)

This, then, completely specifies Po and Pi.
Thus, in our example Ez ——pf+pf-, P& ——pf+pf-, and

we have

(53)

where

d kD= f [e '~'" —6(K,„—k)]g .
k

(54)

We note that, as one may check from (39)—(49), ReB+B
does not contain infrared singularities.

The effect of e in (53) has been discussed in detail by
Jadach in Ref. 10. The basic result is that, for Monte
Carlo simulation, one should write (53) as
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do. =exp [2a(1)[ReB+B(p;(1),m;~ (k),E r,„/A, )]}

X 5(&s E—~ )po(&s )f p(e')dE'+0(e K—,„)po(&s) (e/E~, „) '"" dE~
0

+exp[2a(1)[ReB+B(p;(1),m;~(A, ),Ez,„/1,)]}

Xpi(k'), 5(e k'—) f '" p'(e' —k')d(e' —k')+8(e —k' —K,„)d k', &~.. . , . . . , a(1)A e k'—
k' 0

" e—O' E' (55)

where we have introduced

and

e=+s E~ =—&s Ef Ef-,——

p(e) = a(1)3
Ey, max

a(1) A

a(1)2 =—2a(1)B(p;(1),m;~ (k),K,„/A)

X [ln(2K, „/A, m ~ )] (56)

(57)

Monte Carlo methods, according to S(k)d k/k. In this
way, a one-loop event generator based on results such as
those in Ref. 8 may be rigorously exponentiated.

As a reminder, we have used Ref. 8 as a pedagogical
example. The method illustrated by (37)—(60) applies to
any electroweak Monte Carlo event generator.

Currently, there is an effort by Berends's group" to
create an order-a event generator for e+e annihilation
into p+p, (y, yy). Thus, it is of some interest to record
the analog of (37) and (38) at order a4.

In (37), we would use
(58)a(1) A 4 d 3

[2 Re[a(1)B]} dao
2 dA„

p'(e) = a(1)A

E
IEy, max

E.

with (61)

Ez,„——&s /2 —2mf /&s

s —2k'&s —4mf'
2(&s —2k')

(59) and, in (38), we would use

do~'(a') 81( 3)

dQ„dQrk, dki dA„dArkidki

—S(k 1 )pp, (62)

where do '(a ) is the cross section for single bremsstrah-
lung through order a; the analogous definition holds for
der(a"). In addition, to order a, the cross section
P2(ki, k2) may be identified as

[Note that f=p in (53).] Hence, here K,„ is the max-
imum energy of a photon which cannot be detected by the
respective detector. In order to implement (55), one
proceeds as follows. One uses p(e) [p'(e —k')] to choose a
value for e [e—k'] by standard Monte Carlo methods.
One sets the number n of Yennie-Frautschi-Suura "soft"
photons equal to 0 if e(K,„[e—k'(K,„]. One picks
n according to the Poisson distribution

—
n(

—)n —1

(n —1)!

n =a( 1)3 1n(e/K, „) for e )K,„
e —k'

n =a(1)A ln
+max

for e —k')K, „ (60)

where the n —1 variables used to generate P„1 in Ref.
10 may be used to choose the photon energies k1, . ~ . , k„
such that g;k, =e(g;k;=e —k'). The angular distribu-
tion of the n photons is then chosen, by the standard

}

do d00—S(ki)S(k2) —S(ki)pi(k2)dk1dkg dip
P

—S(k2)pi(ki ), (63)

where do. is the respective order-a double bremsstrah-
lung cross section. Formulas analogous to (50)—(52) may
then be used to obtain po, pi, and pq. The steps leading
from (53) to (55) may then be repeated. The net result is
to add to (55) the term

P~«', k") d'k d'k-
e px[2 (a1)[R eB+B(p;(1),m;g (k),Ez,„/A )]}

+max
X 6(e—k' —k") p"(e' —k' —k")d(e' —k' k")+9(e—k' —k"——K,„)

0 e —k' —k"
e —k' —k"

tlEy, max

a(1) A

dEg

464)
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where (here k' k"=k'k" —k' k" so that k =
~

k
~

=k for all k)

(&s —k' —k"+
~

k'+k"
~

)[s —2&s (k'+k")+2k'. k"—4mf ]E,",„= —,„,„,p"(e) =p(~)
2[s —2t/s (k'+k")+2k' k"] tI

y, max y, max

(65)

k;=pe ' pe'

k;=(e —k')e ' pe'
(66)

where the z; are such that z; = ink + Y. Here, for

Thus, it is clear how to extend (55) to order-a input.
(We ignore, here, the processes e+e ~p, +p +ff,
f=e,p, for pedagogical reasons; they pose no particular
problem but are expected to be insignificant at the level of
accuracy of interest to us here. )

Several comments are in order. First, the use of E,',
and E~ „for the respective upper limits of the radiated
photon energy is a refinement; these two can both be re-
placed by their maximum value, which is just E,,
Second, we have not allowed K,, to depend on the
spherical angles (0,P) of the respective photons. This we
have done for simplicity. The expression (55) is fiexible
enough to allow one to include a possible angular depen-
dence of K „. Indeed, let K „=minimum value of
K,„(0,$) for the respective detector. Then, if we set
K,„=K,„ in (55), we have a correct formula. We can
then include the effect of K,„(0,$) by amending our
prescription for choosing e (e —k') and n: if
E&K,„(e—k' &K,„) and n & 0, use the bremsstrahlung
distribution S(k)d k/k to pick the respective angles
(0;,(t; ) of the n photons with energies [k; I as determined
by the procedure in Ref. 10. Because of the angular
dependence of K „(0,$), soine subject of the n photons
with energies I k, , , . . . , k, I may not be detected. Let the
energies of the detected photons be I k;, . . . , k; I .
Then, treat the event as an event with n-j detected pho-
tons with &s E» ewhe—re ——only g& +,k;, of e(e —k')
is detected. In this way, we maintain a realistic descrip-
tion of the cross section in (55).

Third, we would like to emphasize that the value

6p ——8/1277

in (36) represents the Weinberg prescription for three fam-
ilies of quarks and leptons when one ignores the 8'+,

, and Zp. If we include the latter bosons, we would
have bp ——11/4877, which reflects the non-Abelian charac-
ter of the SU(2)1. symmetry group.

Finally, in the interest of completeness, we would like
to describe the procedure' which one uses to choose the
photon energies associated with (60). Specifically, these
energies are generated as

i=2, . . . , n, we take

z; =1nE+ (lnK, „—inc)(R; /n )

(z; =In(c —k')+ [lnK,„—ln(e —k')](R; /n )),
(67)

where we recall that n is defined in (60) and we note that
the R, +] are generated from a series of uniformly distri-
buted random numbers r; E(0, 1) with R~+i= —g+, lnr;, 1 &X & n —1, where (n —1) is the value of
iV for which R~+q first exceeds n. Then, Y is fixed so
that ki =e g—,":,'k;+i (ki =e—k' —g,":,'k;+i) and

zi =in@ [z) ——1n(e —k')], (68)

which means that, at the end of the process, we must re-
ject the entire event if z, —Y(lnK „, i.e., if k, (K
The prescription represented by (37)—(68) is now a practi-
cal way to implement (33).

What we see is that (37)—(68) afford one a method for
summing the large IR and UV effects in e+e ~pp(y)
without encountering mass singularity problems and
without presuming the parton model, at the level of a
realistic Monte Carlo event generator. To repeat, the gen-
eral application of such "exponentiated" event generators
will be taken up elsewhere. '

VI. CONCLUSION
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We have derived a rigorous renormalization-group-
improved version of the Yennie-Frautschi-Suura program
using the renormalization-group equation of Weinberg.
The detailed application of our formalism to the
SU(2)L, XU(1) theory for the processes e+e ~Zo~X
will be discussed elsewhere. ' We have, however, illus-
trated how one would use our formalism by giving an ex-
plicit recipe for the renormalization-group-improved ex-
ponentiation of the popular Monte Carlo event generator
MMG1 in Ref. 7.
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