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In supersymmetric quantum chromodynamics (SQCD) with N ‘‘colors” and M “flavors” (N < M),
quarks are generated as quasi-Nambu-Goldstone fermions in ¢,@; and leptons as chiral fermions in
e”b"éaci"f’c‘ccﬁ),- (N =4) with antisymmetrized ‘“‘colors” (a =three colors, i =weak isospins). Mass pro-
tection symmetry is SUN —1)p .z XSUM —N + 1) XSUM —N + 1) X[U(1)’s] supported by
complementarity and an effective superpotential. The remaining chiral symmetries are necessarily all
broken once supersymmetry is explicitly broken. Masses for quarks and leptons are found to be con-

trolled by the scale

Mp=Mssp(Mssp/As)"

with k=M —N)/[2p—(M —N —2)] for

2p>M — N —2, where Mssp is the supersymmetry-breaking scale and A is the scale of SQCD.

I. INTRODUCTION

In supersymmetric composite models of quarks and
leptons, the lightness of quarks and leptons is linked to
the Nambu-Goldstone mechanism."? In the absence of
spontaneous supersymmetry (SUSY) breaking, quasi-
Nambu-Goldstone fermions (QNGF’s) are generated as
massless particles in the Nambu-Goldstone superfields
(NGS’s) associated with spontaneous breakdown of global
symmetry G to H (Ref. 2). If the subgroup H further in-
cludes chiral symmetry, composite fermions called chiral
fermions® (CF’s) will also be generated to satisfy
anomaly-matching conditions on H (Ref. 4). Since
QNGF’s are controlled by the coset space G/H and CF’s
are controlled by the anomalies of H, the spectra of
QNGF’s and CF’s are entirely determined by the sub-
group H, which is strongly constrained by the underlying
dynamics for composites.

The simplest underlying dynamics is given by super-
symmetric quantum chromodynamics (SQCD) with N
“colors” and M “flavors” that contains the gauge
superfield W4=(1,G,)% (4,B=1,...,N) and the
matter  superfields ®VA=(¢" )4 and D,
=2 v¥), (A=1,...,N;i=1,...,M). It possesses
G =SUWM); XSUM)p XU, xU(1), with Qp=(1,

J

In this paper we examine

—1,0) for (®"V, &Y W) and Q,4=(N—M,N,—M,0)
for (¢'"?,4'"* 1,G,), which undergoes spontaneous
breakdown to H =SUWM); g XU(l)y for N>M, H
=SUWM); . g XU(l)4 for N=M, and H=SU(N), . g
XSUM —N)p XSUWM —N)g XU()y xU(1)y; for N
<M (Refs. 5-7). Since the spontaneous SUSY breaking
will be induced if N >M (Refs. 5 and 6) the QNGF
mechanism calls for SQCD with N <M.

In SQCD with N <M, if there are at least six “‘flavors”
(M > 6) consisting of three colors of ¢, 3.3, one B —L of
¢o and two weak flavors of @;_;, with the V — A4 cou-
pling to the weak bosons W+ for &y, quark-lepton super-
multiplets are generated as NGS’s, €1,00,; and ¢ G0 &
for N=4 and 6 with M =6 (utilizing the minimal
“flavor”” number) and for N =4 with M =8 (utilizing two
sets of the weak flavors). Dynamical examination on
mass generation, however, implies phenomenologically
unfavorable features:>° The models contain (1) light lep-
toquarks in €00 % and ¢.,¢%° associated with
[SU@) ] X[SU@)c]lr —[SU@)c]L g for N=4 and 6
with M =6 or (2) the appreciable mixing of quarks and
leptons with their mirrors in (€@ Y0 &*® §)eL40 and
(€™ A B §)e §° (Ref. 10) for N =4 with M =8
(since Wy has the V — A4 coupling).

G—H =SUN —1); ;g XSUM —N +1); XSUM —N + 1) X[U(1)s] (N <M),

in which quarks and leptons are provided for N =4 and
their mirrors and leptoquarks turn out to be absent. The
dynamical issue of supporting this breaking pattern is first
examined by employing complementarity>!""!? and then
by finding an effective superpotential that is taken to be of
the Taylor-Veneziano-Yankielowicz type.> By using an
effective Lagrangian, we find that masses of light compos-
ite fermions are characterized by the SUSY-breaking
(SSB) scale Mssg and the SQCD scale A, as
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r
Mgsg(Mssg /A ) with k=M —N)/[2p—(M—N —2)]
for2p>M —N —2.

II. SYMMETRY BREAKING

A. Complementarity

Complementarity relates two phases of massless SQCD,
the Higgs phase and the confining phase,'! and postulates
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that the same symmetry-breaking pattern and the same
spectrum of massless particles are generated in both
phases.!> The anomaly matching that is trivial in the
Higgs phase is automatic in the confining phase. In the
Higgs phase, if the scalars ¢'!*?’ develop nonvanishing vac-
uum expectation values (VEV’s),

(VY | go=(d'VA) < AS/ (1a)

(ibA=1,...,N—-1),

() | gmo=(8""y ) « AS/

)lOC

the symmetry G X SU(N
Hy=SUN —1). 4 g XSUM —N +1)r
XSUM —N +1)g XU(1), XxU(1), XU(1)y , (2)

spontaneously breaks to

where Q,=[(M —N +1)Qy—(Q; +Qr)I/M, Q.=0,
+Qy+Qs, Qu=[(M —N)Qp —Qr)+(M —N+1Q 41/
M with Q; p=(M —N +1,1—N) for (i=1,...,N—1,
i=N,...,M), and Q,.=(1,1—-N) for (A4=1,...,
N —1,4 =N). In the confining phase, the same breaking
G —H, is generated by
< 2 (b(l)lA(D(Z)jA> =< 2 ¢(1)iA¢(2)jA>
4 ‘0:0 A

< A8 (,j=1,...,N—1). (3)

The U(1), charge is defined by Q.=Q, + Q) instead of

Q0.=0,+09y+Q,. The spectra of massless superfields
in both phases are shown in Table I. Composite fermions
in ¢ @ and ¢¢ € are QNGF’s and other fermions are CF’s.
All anomaly -matching constraints are satisfied by these
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QNGF’s and CF’s.

To implement quarks and leptons, SUN —1);  r is
identified with the color-SU(3)c symmetry (N =4) while
SU(M —N +1); g take care of the chiral version of the
weak-isospin SU(2),, symmetry (M =odd >5). The scale
of SQCD A, is taken to be about 1 TeV in order to ac-
count for the electroweak scale Gr~!/?=~300 GeV. The
“flavor” superfields consist of ¢,-1,2,3 and W;_1,. ., M3
Since ¢y is absent, no leptoquarks are generated. B —L
can be taken as Q./(N —1). The model thus contains

quarks as QNGF’s in €,,@,; and ¢ §°® § and leptons as

CF's in (€40 £¢ %250 and (€™ 8,0t W §
(Ref. 10) without their mirrors. Generations can be as-
cribed to the copies of two weak flavors. Since
M <3N =12 for the asymptotic freedom of SQCD, at

most four generations (M =11) are allowed.

B. Effective superpotential

The symmetry breaking of G—H, in the massless
SQCD should be described by an effective superpotential
W containing composite superfields 7% _, ®'VAp2, .
An effective superpotential is taken to be of the Taylor-
Veneziano-Yankielowicz type that consists of two parts:®
Wear=WQ@+wWl, where W is responsible for the

anomalous U(l),om transformation 8§®'»¥= —ip12)
Composite superfields required are S, T, Y%, and U
denoted as
S =(g /32 YWEWS (4a)
T/=VAp?, (4b)
Yﬁ'i"'l‘N]:E(A)cb(“i/?l "'(I)(“;:/N , (4¢)
y Pl Mg o e (4d)

TABLE 1. (a) Transformation properties of superfields "2 and W under H in the confining phase. (x,y) in U(1)y denotes Qy for

(J =0,J =1) of ®"? and for (J =1,/ =1) of W. (adj denotes the adjoint.) (b) The same as in (a) but for massless superfields in the
Higgs phase or in the confining phase.
(a)

Superfields SUMN)  SUN—1),,rg SUM —N+1), SUM —N+1)x UMD, U1, U(l)y
PVASL N e N* N—1 1 1 0 1 (OM—N+1)
d)(lm:l,‘.‘,‘,a' @%A N* 1 1 M—_N+1 _1 0 (N —M,1)
Qi N ega N N—1* 1 1 0 -1 (OM—N+1)
DVEN M Dy, N 1 M—-N+1 1 1 0 (N—M,1)
wh adj 1 1 1 0 0 (N—M-—1,0

()]

Higgs phase Confining SUN —1); .z SUM —N +1), SUM —N+1) U, U, U(l),
gA=l L Vo 218 % 1+adj 1 1 0 0 (OLM—N+1)
Dra=, ..., N-1 (2703 N-—1 M—-N-+1 1 1 1 (N —-M,1)
DgA=, N -1 cs0 % N-—-1° 1 M-N+1 -1 -1 (N —=M,1)
Dp4—n [eg1y ‘o, 1 M—-N+1 1 1 1—N (N —M,1)
§e=N ey 'o§’ 1 1 M—_N+1 -1 N-—1 (N —M,1)
[EI =81 e e,y (STl %4, ) and similarly for [¢, ]V~

N —
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[y~ Jw 1] By By 14
U[,' . IJ—EAI"‘AN~1A6
A Ay _
Xq)(]) 1 q)(l)INN_l]
X(D(Z)JBII . (Dl2)17\ (4e)

Vl’

where the repeated indices are all summed and e(A4)

8W = —2iMS since S |y contains FF, leading to
TOW /0T =MS. The invariance of W, 5|4 under

U(1) 4 reads
[—M(S3/3S —1)+(N —M)3/0T1W =0 .

By considering other invariances, one obtains

denotes the antisymmetrization of the indices A4;. Quarks WR=5{In[SY Mdet(T)) /AN M]+M —N} . (5)
represented as QNGF’s in ¢ @ will be described by T and . (y ;
U and similarly for singlets in ¢¢ €. Leptons as CF’s in The remaining Wey is the function of Zyy
[¢ €1’@ are described by Y ‘1'% =det(T/)/Xu,y:
W@ can be constructed from S and T only. The
. wi=s (Z (Z , 6
anomalous U(l)yom transformation of SLexr=0Wer | oo e VviZo)+/v(Zy)] (©)
+H.c. =2M(gscz/32772 JFF can be translated into where
|
: : , L 12
Uy inv )y Uy in - iM IN )
Xy= | 5 elii'jj ol Ugh 0 NI - T T - TR (7a)
Xy=——eli HY{L) ...y e o (7b)
Y“NY WSy iy] N1 v
-
with Ny=[(N —DI*[(M —N +1)!]* and Ny=[N'P’(M  where  zy=2Zy|g_o= 1N 0'7/m;  zy=Zy | 9—o

—N)!. As is readily recognized the fields Zy, y are neutral
under G X U(1)apom. Since the condensation of (3) corre-
sponds to {(T7) |g—ox &l (i,j=1,...,N —1), the sym-
metry breaking G—H, described by complementarity is
realized if Weg=W{ + W allows (Zy) | g—0#0 and
(Zy) } o= 0=0. The formation of the condensate
(U[1 '”) is thus essential for G— H in this kind of
effectlve Lagranglan approach Namely, the formation of
the condensate (U *1]) spontaneously chooses
(Tng 0o ® (i) 2 N—l) while that of

(Y{i"..») and (Ym[1 o N]) spontaneously chooses
(T?) | gm0 & (,j=1,...,N).°

Possible condensations generated by W,y are
7 =T |g—0 i=1,...,N—1), m,,_(T,'M,1 )l o—o
(i=1,...,M—N+1), m_<U[ Vo1 le=o,
Ta={ Y1 . N)) [ om0, m=(Y2I Vl) ie 0, and
m.={S) |9—o. The VEV’s are determined by

W. =0Wez /01 =0 (I =ci,wi,u,ya, ) with
W.i=[1+zyfulzy)+zyfylzy) Xm/m)

(i=1, ,N—1), (8a)
W.i=[14+zyfylzy)m/my) (i=1), (8b)
Wiowi=2, . . M-N+1=T3/Ty

(i=2,....M—N+1), (8¢
W..=—zufulzu)m/m,) (8d)
Wipa = —2yfy(zy \my /Ty ) (8e)
W= In |(m/AS)N M Nﬁl (7ei / Asc?)

i=1

M—N+1

| |

i=1

(7T wi /Ascz) ]

+fulzy)+fylzy), (8)

= 1! T M1 /Ty Ty The solutions should be given
by 7 ~Ay? and 7, ~AY " and 7, = 1=y =1, =0.
Since 7, =1m,,=0 are requlred to be exact constraints val-
id even in the presence of SUSY breaking, that is, the

SUSY breaking should not generate m, ,, < M&3*", the
form of fy(Zy) can be taken as
frZy)=hZy !, (9a)

which yields /Y VY like the ordinary Higgs-boson cou-

pling. As a result, Eq. (8e) is satisfied by 7, ,,=0. From

W., =0 in Eq. (8f), the singularity due to m,; =7, =0 in
& dictates fy(zy) [because fy(zy)=0 from m,; ,,=0]:

M—N+1
fU(ZU): —In (7TA/ASC3)AVVM H (7TwI/Asc2)
i=1
+const , (9b)

where const represents the terms from . /A. Since
/7 =0 from Egs. (8b) and (8c), Eq. (9b) is consistent
if

fuZy)=pIn[Zy —{Zy) | g—o]+regular (p>0),

(10)

where regular stands for the regular terms such as InZy.
The singularity due to  /m,; =0 is transferred to the one
due to Zy=(Zy) | g—o- One observes that QNGF’s in T
and U are placed in the singular part In(Z, —{Z;) | 9—¢)
with {Z; ) | _o5=0 while CF’s are contained in the regu-
lar part < Zy ! with (Zy ') | g_o=0. For comparison,
we note that SQCD with N =M is described by
Will=—pInZy (0<p<1) (Ref. 8) leading to 7, ~A,>
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(i=1,...,M) and m, ,,~A™ without U and SQCD In the effective superpotential, W inass 18 equlvalent to
with N <M possessing the chiral SU(M — N) symmetry is Whe=3SM 'm and IWR+wWR+wW )/
by Wi =S[pIn( ZY—(ZY) |9 0 +regular] (p>0) (Ref dm; =0 gives

9) leadmg to m~A’ (i=1,...,N) and 7, ,,~A."

without U. TA=MiTwi - 1D

It should be noted that W' correctly produces the

Therefore, the form of Wy i i in thi .
anomaly relation of the Konishi type>'? in the massive s unique in this respect

SQCD with III. EFFECTIVE POTENTIAL
M
Woas= 3, m DD Our  starting Lagranglan L. is given by
i =1 Lﬂ” LO+[ eﬂ‘+Wmdss !96+HC ] Lmass with
Lo= 3 K/(Q1,91) | go3 » (122)
I

L= [ EIJ'IZL

E(Ascﬁz | T’j|2+ASC—(4N-6) ‘ U‘j|2)+ASCv—2(N-1) ‘ Y,-(l) ‘ 2]
J

i

+ E.uij [2 (ASCVZ \ le|2+Asc——4(N76) l Uljll)_’_Asc—Z(N—l) ] Y(l)jlzl
J

+ S AT+ T*) +my(S +s*>} l ; (12b)
i 6=6=0
where
Ui=[(N =207 3 €0 e ok TN
(k1]

Y5”=[(N—1>!]"%ek‘"'“’*‘Y&’.~A-kl\v,1i1
and similarly for Y'?Y. L, is the kinetic term for the composite fields Q;=S, T, Y2 and U taken to be
’K /30330, =68,,G,~((QFQ,); and L, to the SUSY-breaking mass terms p; 2¢'"*¢'V, up26'®*¢'?, u?¢'V¢'?, and
m)\)\.)\

The quark-lepton model (N =4) requires the following. (1) u;=const and u; g=const (i=1,...,N —1) for the
color-SU(N — 1) symmetry. (2) m;,(=m.)=0 (i=1,...,N —1) for the anomaly relation m_ ., =1m; =0 (Refs. 5 and
13). (3) m;=0 (i=N,...,M) to avoid spontaneous SUSY breaking due to the instanton effect."* (4) m;,=p,=0
(i=N,...,M) for W; and Z, based on the electroweak [SU(2)y ]° symmetry correlated to SUM —N +1),. In ad-

dition to these constraints, the present phenomenology requires that m; << Mg since the scalar partners of quarks and
leptons have not been discovered. This requirement is consistent with the massless SQCD defined in the limit of
Mg >>m; —0 but not with the massive SQCD in the limit of m;(5£0) >> M g5 —0.

The effective potential Vg is written as

N —1 5 M—N+1 5
2 I W;ci ‘ + 2 ‘ W;wi I

i=1 i=1

2
+GU l W;u \2+ 2 GY(a)l W;ya ‘2

a=1

Ver= Gr

M N-—1
+GS ‘ W;k [ 2+ 2 [(#iL2+.lLiR sC |7TI l2+/.L, i ]+ z (#iLZ_*',u'iRZ)Asc#MNMG) l Ty 12
i=1 i=1

+ A A_/ill pir et |y 1?’2—:11 pir A ung® | 7 |2 | +mymy (13)
The conditions of 8V .4/d7; =0 are given by m,, =0 and
GrWiilmy/mu)=GsWH + My > +Gr | mw |23 | W, |2, (14a)
J
(1+eGrWii(m/mei)=nX + (1 +€Gs W +M>+Gr |7 |23 | W |2, (14b)
j
eGuWhi(m/m)=0X+eGsW; —M,>*—Gy |m, || W.|?*, (14b)

Gr 3 Wh(m/mj)+€X +(N —M)GsW% +m,m+ | m. | *Gs | W, | *=0, (14d)
J
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with e=zf"(z), n=z[zf"(2)], and f(z)=pln(z —(z) |4_o) (z=2zy), where M >=(w;; *+pur )T’ A 2+’
(I =w,¢), My = S¥3 (i 2 pir D A=Y =0 and X = 3 Gr Wi (1, /10 ) — Gy W (/0 ).

By keeping leading terms of (z —(z))™' (=£7'>>1), i.e., e=pz /€ and n=pz(z) /&% and by adopting canonical ki-
netic terms for composites, i.e., G; =f; =const, we find that, for real VEV’s,

fT(ﬂ-}\/ﬂ-wi )2:fS W;}. +Mwiz )

friplz)m/em P =[p— D fs Wy — (M. +M,*)]/(N =2),

fulpz)m /Em, P =[(N —1—p)fs W, +(N —1)(M.*+M,*)]/(N =2),

A+p)fsWo=— [ SM > +mum | +E[(p— 1IN — 1M *+(p—N + DM, *1/[p{z}(N —2)],
J

where 7, =7, and M >=M_,*> (i=1,...,N —1). The
SUSY breaking by MM2 is not compatible with Egs. (15b)
and (15¢) because fy W;A~§MC’,,2 <<Mcy,42 while the
breakings by m,;, and M,;* are allowed if 1 <p<N—1
and fgW,, >0. This restriction on the allowed breakings
is not specific to the canonical kinetic terms but also valid
for noncanonical kinetic terms with G;0. Other general
properties which do not depend on the choice of the kinet-
ic terms are the £ and Mgsg dependencies of 7; (§—0 as
Mgp—0): (1) 7wi~A and 7, ~ASN"Y ()
Twi ~EA” ensured by the singular behavior of W' (3)
Ty =E*Mgsg A’ for Mgy dominated by m, and ML, R
and m, =& *MsspA” for Mgsp by ;.

IV. MASS SPECTRUM OF COMPOSITES

Since W4 contains U that mixes with 7 by f(Zy), Wy
should guarantee the decoupling of one combination of T
and U as Mssg—0 in agreement with complementarity.
The mass matrix M for quarks in NGS’s, T and U, is cal-
culated from 0°W, 4/08%,8%, with 7, =m,/V f,; and is
found to be

M=— (Wk/ﬁcaﬁwf)

1+{z)p/€& —(z)p7. /€T,
>< — - ~ 2 ~ 2 ) (16)

—(2)p7 /E7,  (z)pT l/E,
on the (T,U) basis, for a=1,...,N—1 and

i=1,...,M —N +1. We obtain

Miight = _r277')./( 1 +r2)7~7ca7~rwi (17a)
Meavy = — (147202 Ym0 /a7 ™) (171)

where the lighter field ~#T+ U and the heavier one
~T—rU. For Mgg=m, and/or Huwil.R >
Mpeavy ~ T3/ E i ~ Mssp while,  for = Mgsg=p,,,
Mheayy ~Mssp /& "“. The decoupling is thus only possible
for 7 ~&’Mgsp Ay} (Mgsg=p,;).'* The SUSY break-
ing is thus required to be dominated by u,’m, Wwith
T <0 for f¢W.; >0 in Eq. (15d). The u,; dominance is
allowed if g1, 2 >> oy 2,,uvaR2 while ,,;; g and m; can be
the same order as p,, because m,; /A", T3 /T Ag << 1.
Since p,,%m,; invalidates the mass generation of W= and
Z based on [SUQR)y 1%, W¥, and Z should be described
by composites.

We compute 7, ,; generated by the SUSY breaking

(15a)
(15b)
(15¢)
(15d)

{
from p,;, which are taken to be pu,=pu,
(i=1,...,0)>uy i=n+1,...,M—N+1) that
give  fsWo~—SI_ M,> Our  results!®  are
l<p<min(N —1,n —1) leading to n>3, r(=%./7,)
=V(N—-1—p)/(p—1),

Twi=1,....n=—Y§[mc |, (18a)
Twien +1, . ... MnN1=V(n—1—p)/nmy_1 . . » (18b)
m=2Vi(n—p—1/(p+ Ofrly |7 |E/Fr) 1w , (18c)
EX~M=N -2 _ (o JAPM N (18d)
where
C=9yn —1—p)w. /(A +p)fr]M N+
X[n/(n —1—p) M —N+1=n(A 2 /5 )N +1
and
Y=z [n(p—D/(N =2)n —1—p)]'/%.
The decoupling is then realized by p<M —N — 1.
Fermion masses are calculated to be
mg=frr*|m | /A +r?) | mem | (19a)
mi=hV fyafra | Tl /@O e | (19b)
my=frp{z) | m | /&mcme (19¢)
my=frplz)r?|m | /B+riém.m. , (19d)

where m, stands for quarks as QNGF’s, m; for leptons as
CF’s, mg for the color octet as QNGF’s, and m; for the
color singlet as QNGF. The mass splitting between
quarks and leptons is controllable owing to the difference
of QNGF’s from CF’s, i.e.,

mq/m[NfTASCZ(N‘“/h‘/fY(HfY(Z)

but is not predictive. Since m,; ~&7., the scale for these
composite fermions, M, is determined to be
Mp(~fr|m/memu |)

:MSSB(MSSB /ASC)("\/IVN)/[Zp——(AM —N-=-2)] (20)
with Mgsp=u,, and 2p—(M —N —2)>0, from which
Mp—small as p—small (> 1). For p=23 with M =7 and

n =4, one obtains Mp=Mgsp(Mssg/As)? and estimates
Mp~100 MeV if Msp=50 GeV and A,=1 TeV
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(~Gr~ %), which will fit the second generation. A simi-
lar result has also been obtained in SQCD with the chiral
SU(M —N) symmetry (N < M) although this case is un-
favorable owing to the presence of appreciable mixing
with mirror quarks and leptons.’

J

2 2 2 —1
Mmgq™= |CTUH WiV Trfr T

Jj=1

m512:fY(.uinzih.uwiz)/Ascz{N—-I) )

with ey =[(frr’/AD) +(m, /ALY )] and ¢y

=(p—1)/(N —=2)(p+1), where p,; =t,r(=luy) and

friy=Ffya(=fy) are assumed for simplicity and

Kuwiv? >>Mear g’ are used. Since p, can be the similar

order to Hu> <msq,sl )2> 0 lmply (msq,sl )2( ~.u“in2t,u‘wi2)
2 2

~Huwiv ~Hw -

The model contains light neutral and color-octet
QNGF’s with the mass ~ M and color-octet scalars with
the mass ~p.; g2 1.> <<i,°. The color octets can devel-
op heavy dynamical masses ( R 100 GeV) due to QCD be-
cause of larger color charges.!” However, the neutral fer-
mion remains as light as quarks and leptons.

V. SUMMARY

We have demonstrated that quarks and leptons are gen-
erated, respectively, as QNGF’s and CF’s by SQCD with
N =4. The approximate mass-protection symmetry can
be taken as H =SU(N —1); g XSUWM —N +1)
XSUM —N + 1)z XU(1), XxU(1), XxU(1)y, which is
specified by the condensations ¢,,¢ %) |p_o~182A 7
and

s A S e P

The massless composite superfields consist of the
Nambu-Goldstone superfields associated with this break-
ing and the chiral superfields required by complementari-
ty to saturate the anomalies of H (Ref. 18).

The dynamical observation depends on the effective La-
grangian of SQCD of the Taylor-Veneziano-Yankielowicz
type, which can incorporate the anomaly relation of
(M) =m; ($"¢'?"). Composite quarks being QNGF’s
contained in the superfields 7" and U and ¢omposite lep-
tons being CF’s in the superfields Y'"2) are placed in the
effective  superpotential symbolically specified by
S{lndet(T)+p In[det(T)—(UU)/*]14+hY' VY ?}. The
SUSY breaking is so constrained as to be induced by the
SQCD gaugino mass given by mj;AA and/or the funda-
mental scalar masses given by 0,0 % | oo
.uwiL2 1 @Li J : 1 0=0=0" and .u“wl'R2 ‘ iy gl ! 2 1 0=0=0 that break
mass protection symmetries SU(M —N +1); g and U(1)y.
All chiral symmetries in G can be broken [by the term
fsW, in Egs. (15a)—(15d)] even if the SUSY breaking (by
m, and/or p,, g =const) preserves the chiral symmetries
SUM —N +1), g. This feature is in accord with the
QCD result: the spontaneous breaking of all chiral sym-

I#wr‘z—csq > b (T /i) l ’/(1+r2) ,

The scalar masses calculated are consistent with di-
agrammatic argument: Attach p; g’ to the line for
| $1 | 2( |62 |2) and p;? to the line for ¢! ¢'2". For ex-
ample, masses for scalar quarks msq2 and scalar leptons
my,? are calculated as

(21a)

(21b)

[
metries because SQCD turns out to be QCD well below
the scale Mssg. However, the consistency with the anom-
aly matching at Mg =0 in agreement with complemen-
tarity requires that the SUSY breaking be induced by
Mggp =11, from p,,;@,,® § | g_0, which explicitly break
remaining chiral symmetries.

The successive breaking of chiral symmetries is signaled
by

(T/)g_oli,j=N,...,M —N+D=(D,® )| s-0
~—8A K Mg /A L)
and
(S) | g=0=CAR) | gm0~ tMsspAs (Mssp/As)*

for k>0, where k=(M —N)/[2p—(M —N —2)]. The
consistency with the anomaly matching on H at Mssg =0
is satisfied by p<M —N —1. The quark-lepton masses
are controlled by the scale M (Ref. 19):

Mp=Mssp(Mssp/As)* (Mssp <<Age)

while masses for scalar partners are characterized by the
scale MSSB-

Other features can be summarized as follows. (i) The
mass splitting between quarks and leptons is due to the
difference between QNGF’s and CF’s; (ii) the mass split-
ting between up and down weak flavors is not large
enough because SU(M —N +1), p can be broken by the
SU(M —N 4 1)-singlet term fsW,, as in Eq. (15a) and
the large mass splitting is only possible by G W, << M,,;>
subject to the fine-tuning of m;m + 3; M,,;*=~0; (iii) at
most four generations can be included and large mass
splittings among generations will also depend on the fine-
tuning; and (iv) the nearly masslessness of neutrinos will
be ascribed to the seesaw mechanism?' based on
(v§) | g—o~As, whose inclusion in W5 is, however,
difficult.
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