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New supersymmetric left-right gauge model: Higgs-boson structure and neutral-current analysis
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If the particle content of a supersyrnmetric SU{3)& SU(2) & SU(2) & U(1) gauge model is extended

to include new quarks and leptons as given by the 27 representation of E6, an unconventional left-

right assignment is possible, resulting in a number of desirable features, one of which is a simpler

Higgs-boson structure. Also, a conserved multiplicative quantum number can be defined as a gen-

eralization of the usual R parity in most models of supersymmetry. This prevents WL, -W& mixing

and makes possible a massless Dirac neutrino whose right-handed component is effectively inert.
From neutral-current constraints based on present experimental data, lower bounds of about 180 and

210 GeV are obtained for the second W and Z bosons of this model, respectively.

I. INTRODUCTION II. DESCRIPTION OF MODEL

The standard SU(3) X SU(2) XU(1) gauge model is re-
markably successful so far in describing all of particle
physics, but it may not be a complete theory, and other
phenomena outside the purview of the standard model
may become observable at energies below a TeV. One
such possible extension is supersymmetry which helps to
stabilize the electroweak mass scale against large radiative
corrections. Another is left-right symmetry which is a
natural extension of the standard gauge group. Each can
be considered separately or both can be combined to form
a single theory, but there does not seem to be any qualita-
tively new physics in their combination which is not al-
ready present in their separate manifestations.

Then came superstring theory' and the discovery of the
E8&&E8 heterotic string, whose low-energy manifestation
may well consist of matter superrnultiplets belonging to
the 27 representation of E6 interacting with one another
as well as with gauge bosons and fermions belonging to a
subgroup 6 of E6. The most popular choice of G appears
to be SU(3) X SU(2) X U(1) X U(1), and many studies have
been made in its name. On the other hand, if G turns
out to be SU(3) X SU(2) X SU(2) X U(l), then a new super-
symmetric left-right model is possible, with qualitatively
rather different physics beyond the standard model than
in conventional extensions.

In Sec. II the model is described in some detail. In
Sec. III the part of the Higgs potential relevant to the
spontaneous breaking of the gauge symmetry is analyzed.
In particular, it is shown that an upper bound of &2 M~
exists on the mass of one of the neutral physical Higgs bo-
sons. In Sec. IV present experimental data are compared
against the effective neutral-current interactions of this
model, and lower bounds on the masses of the second 8'
and Z bosons are obtained. Finally, in Sec. V there are
some concluding remarks.

The fundamental 27 representation of E6 can be decom-
posed according to its E& [=SO(10)] and E4 [=SU(5)]
contents, namely,

27=(16,5)+(16,10)+(16,1)+(10,5)+(10,5)+(1,1) .

(2. 1)

At the E6 level, the only allowed Yukawa coupling is for
the product 27&27&27. If one assumes that all cou-
plings forbidden at the E6 level are also forbidden at a
lower level, then all Yukawa interactions must be con-
tained in the terms

(16,5)(16,10)(10,5),
(16,5)(16,1)(10,5),
(16,10)(16,10)(10,5)

(10,5)(10,5)(1,1) .

(2.2)

Two things are immediately apparent from the above.
First, a multiplicative quantum number can be assigned as
follows: even (odd) for the (16,5),(16,10),(16,1) fermions
(bosons) and the (10,5),(10,5),(1,1) bosons (fermions).
Second, if (16,5) is interchanged with (10,5) and (16,1)
with (1,1), the allowed Yukawa interactions remain the
same. Hence there are two possibilities and they are sum-
marized in Table I.

The standard-model quarks and leptons can be
identified with the (16,5) and (16,10) fermions of option
(A) or the (10,5) and (16,10) fermions of option (B). The
standard-model Higgs bosons are then contained in the
(10,5) and (10,5) bosons of option (A) or the (16,5) and
(10,5) bosons of option (B). Therefore, the aforemen-
tioned multiplicative quantum number is nothing but an
extension of the usual R parity in most models of super-
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TABLE I. Possible assignments of A parity.

Option (A)

(16,5),(16,10),(16,1)
(10,5),(10,5),(1,1)

Fermions Bosons

Option (B)

(10,5),(16,10),(1,1)

(16,5),(10,5),(16,1)

Fermions

symmetry, which is conserved as long as only those neu-
tral scalar bosons with even R parity have nonzero vacu-
um expectation values. In fact, the two options are
equivalent if the low-energy gauge group is the standard
SU(3) X SU(2) XU(1) or its U(1) extension. However, if it
is the left-right extension, the two options are not
equivalent and in this paper, we will only be concerned
with option (B). The particle assignments under
SU(3) X SU(2) X SU(2) X U(1) are

(u, d)L'(3, 2, 1, '),
dL'(3, 1, 1, 1),

(h', u')L, .(3, 1,2, —
—,'),

hl. .(3, 1, 1, ——,'),
U, E'

:(1,2, 2,0),
e

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(e', n )L:(1,1,2, —,
' ),

(vF, E)L .(1,2, 1, ——,
' ),

NL. (1, 1, 1,0),

(2.&)

(2.9)

(2.10)

where the superscript c denotes the charge-conjugate state;
hence ttL can be interpreted as fR. In the above, the R
parity is even for u, d, v„e, and odd for h, E,vF, NE, n,
with the opposite assignments for their supersymmetric
scalar partners. In particular, the scalar bosons vE, N ~,
and n all have even R parity; hence, the spontaneous
breaking of the gauge symmetry through their vacuum ex-
pectation values does not disturb its conservation. Fer-
mion masses are generated as follows: m„comes from
(N ~ ); md and m, come from (v~ ); m~ and m~ come
from (tt ); v, combines with ¹ to form a massive Dirac
neutrino through (N ~ ) if the (10,5)(10,5)(1,1) term is
present; and v~, N~, and n form a 3&3 mass matrix
through (n ), (v~), and (N ~). If the (10,5)(10,5)(1,1)
term is absent, then the R parity of N' has to be odd in-
stead of even, resulting in a massless Dirac neutrino. The
role of N' here is rather analogous to that of a possible
right-handed neutrino v~ in the standard
SU(3) XSU(2) XU(1) model. It is inert with respect to the
gauge interactions, and it is only needed if the neutrino
has a Dirac mass. However, if we go beyond
SU(3) X SU(2)X SU(2) XU(1), N' will have nontrivial in-
teractions. In fact, Aux breaking of E6 can be used' to
take it down to SU(3) X SU(2) X SU(2) X U(1) X U(1), but to

0 m~ m'

m~ 0 m,
m' m, 0

(2.1 1)

where m'=mE(N~)l(n). This means that m„ is
roughly given by 2m, (NE)/(n ) which is less than 1

MeV. On the other hand, a diagonal mass for n is possi-
ble through radiative corrections. For example, the dia-
gram of Fig. 1 is finite if there are soft-supersymmetry-
breaking terms of the form EE'n. A rough estimate for
m„ is then 10 mE which may well be a few GeV. Note
that R parity is not broken by such a mass term.

Since W2 has odd R parity, it is produced only in pairs
or in association with another particle of odd R parity.
At present, no firm experimental lower limit on M~, is

known. However, the Higgs-boson structure relates M~,
to Mz, and Mz, , so that neutral-current constraints can
be used to limit both Mz, and M~, . In the next section
the Higgs-boson structure is worked out; then in Sec. IV
the effective neutral-current interactions are compared
against the data.

III. HIGGS-BOSON STRUCTURE

In conventional left-right-symmetric gauge models, the
minimal Higgs sector usually consists of the multiplets
P(1,2,2,0), b, l. (1,3, 1,1), and b, z (1,1,3, 1). The complex

E

t

l 1
Ec

FIG. 1. Radiative mass term for n in the presence of soft-
supersymmetry breaking (EE 'n ) and spontaneous gauge-
symmetry breaking ((n )&01.

break U(1) X U(1) to just U(l), N ' must develop a large
vacuum expectation value. Therefore, if R parity is to be
maintained at this higher level, N' should be odd. This
indicates that there may be a connection between the
smallness of the neutrino mass, if it exists, and the non-
conservation of R parity at the mass scale (N').

As for the gauge bosons and fermions, R parity is even
and odd, respectively, except for the second 8 boson
which links particles of opposite R parity; hence, its own
R parity must be odd and that of its supersymmetric
partner even. Consequently, there is no mixing between
the two 8' bosons of this model, and that is why a mass-
less Dirac neutrino is possible. Phenomenologically, the
astrophysical limit on the effective total number of neutri-
nos, namely, " N„&4, is not violated by the existence of
N"s because they are inert. The mass of the second 8'
boson is not constrained by the KL-Az mass difference'
because Wq does not couple to d and s quarks; it is also
not constrained by polarized p+ decay' because n is

presumably heavy. Actually, there is a potential problem
here with m„. Because of left-right symmetry, the 3&3
mass matrix spanning v~, N~, and n is of the form
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(t' l l 4 12

$(1,2, 2,0)=
+2i hatt 22

E' X'
&e

(3.1)

triplet b.R is used to break SU(2)R and supply a large Ma-
jorana mass to the right-handed neutrino. Together with
a small Dirac mass coming from P, the seesaw mecha-
nism' then assures a very small Majorana mass for the
observed left-handed neutrino. However, there are no
triplets in the 27 representation of E6. So we must con-
sider

v, N'(NR) which may or may not be zero, but if it is
zero, then R parity will ensure that it remains zero, at
least at the level of SU(3)XSU(2)XSU(2)XU(1). Note
that in conventional left-right models, both neutral com-
ponents of P(1,2,2,0) must acquire nonzero vacuum expec-
tation values. Here, it is possible to maintain ( v, ) =0,
again because of R parity.

As discussed before, there is no mixing between the two
W bosons of this model. Their masses are given by

HL1
HL(1, 2, 1, ——,')= (3.2)

MW1 —2gL (U + UL )

MW, = ,gR (U—+DR )

(3.7)

(3.8)

and

~R1
HR(1, 1,2, —,')=

e

n
(3.3)

Since it is assumed that vR is only a few times greater
than vL and v, gR should only differ very slightly from
gL. For simplicity, gR

——gL wi11 be used from now on.
Let

The nonzero vacuum expectation values are 2= sin Ow (3.9)
&XF. ) =U,

&VR) =UL,

&n)=VR .

(3.4)

(3.5)

(3.6)

The mass of the neutrino comes from the term

v
2

v2+ vL2
(3.10)

then the 2 & 2 mass matrix spanning the standard Z boson
and the extra D boson is given by

(1 —x) 'Mli
1

Mw

1 —x V'1 —2x
—y

2Afz D
X

1 —x

Mw—3' v'1 —2x
1 —x 2 x

2W +
XMw—2y
1 —2x

(3.1 1)

If Mw, ~~Mw, , then Mz, ——Mw, /cosOW as expected. Note that there is in general some mixing between Z and D, but
the effect on the mass eigenstate Z~ is usually quite small. To a first approximation,

Mw,
Mz, = ' 1—2

1 —x

'2 2
Mwi—y

1 —x MW2
2

(3.12)

Consider now the most general superpotential involving p, HL, and HR as supermultiplets:

lV —~rtrij HLaHR~i p&j a +Prtiij Okl

haik

&jl

where the parameters k and p are real because of left-right symmetry. The scalar potential is then

V =4P rtr,*jitter +2@A,(g,*rHLrHR +H. c. )

+~ f. I 412HR2 —62HR1 I
+

I 411HR2 —421HR1 I
+

I
rtr21HL2 —0'22HL1

I

+
I 411HL2 —0'12HL1

I
+(HLiHL;)(HRrHRj))

2

+ (4
I HL1HL2+& 1& 2 I

+4
I HR1HR2+Wla42a

I
+

I

Hr* 1HL1 HL2H. I 2+falpa1-8x
2

+
I
HR1HR1 R2HR2+&1A'1a —42A2a I

)+ — (Hr*.;Hr.; HR;HR; )', —
8(1 —2x )

(3.13)

(3.14)

where all the terms arising from the gauge interactions have also been included. To this we add the most general soft-
supersymmetric-breaking terms

V'=m
1 p; p; +rmj(rtl2&pklE;karl +H c )+m3 (HL;HL. ; +. HR;HR; )

+RA(plHLaHRPePeja+H. c. )+B(rtr(~&HL&HR; +H. c. ) . (3.15)
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The resulting stationary conditions are

v m) +A, (UL +vR )+ (2u —
UL

—vR ) —AAUI UR
——0,2 2 2 2 e 2 2 2

4x
(3.16)

UZ —U UZ —VR2 2 2 2

UL m3 +A, (u +uR )+ +
4 x 1 —2x

—XAUUR ——0, (3.17)

VR —V VR —VZ
2 2 2 2

UR m3 +A. (U +vL )+ — -+
4 x 1 —2x

—XAUvz ——0, (3.18)

and

Bvz UR —2mz U =0, (3.19)

where we have defined

m~ ——m ~ +4@2 — 2 2

B=B+2pk. .

(3.20)

(3.21)

Now it appears that with only three variables, i.e., v, Uz,
and UR, it is not possible to satisfy all four equations of
constraint in general ~ However, there is no cause for
alarm because R-parity invariance requires p, mz, and B
to be all zero, so that Eq. {3.19) is eliminated trivially.
Without R-parity invariance, Pz& = v, must develop a
nonzero vacuum expectation value which would then be
the fourth variable. The absence of the p term in the su-
perpotential of Eq. (3.13) is of course natural within the
context of E6 because 27 && 27 does not make a singlet.

Consider first the charged scalar bosons. If we define

2=mH
2

UZ

VUR

2

+ —A. (U +VR )
2x

(3.26)

gt =&21mgp),

&2Im(p)2+ tanOL HL )+ tanOR HRp)
qO

(1+tan'OL + tan'OR )
'"

(3.27)

(3.28)

Then their masses are given by

Note that H ~ and Hz have opposite R parity, so they do
not mix.

Consider next the imaginary components of the four
neutral scalar fields. Two are eaten up by the Z~ z bosons
and we are left with again two physical scalar bosons of
opposite R parity. Let

tanOz R ——

then

VZ, R
{3.22) z kAVZ VR

m~p + (u~ +uR —2u )
1 2x

(UL +VR ) (3.29)

GL ——cosgL HL 2
—sin OL p ~ ~,

GR coseR HR ]
—si——nOR (t 2p,

(3.23)

(3.24)
VZ VR UVR VUZ

m~p =A A + +
2 V VL U

(3.30)

XAVR
+

UVz
(u'+ UL '), (3.25)

and their charge conjugates are the would-be Goldstone
bosons absorbed by the 8'~ 2 bosons, while the two corre
sponding orthogonal combinations have physical masses
given by

Consider finally the real components of the four neutral
scalar fields, all of which are physical. The one with odd
R parity is H

~

——&2Reg2~, and it has a mass equal to that
of 1tj~. Hence, p2~ remains a complex neutral scalar boson.
The other three, i.e., &2Rep~q, &2ReHI ~, and &2ReHRq,
have even R parity, and their mass matrix is given by

A, c4vz UR e 2U 2

+ —k AUR + 2k — UUz
2x

2
—k AUz + 2A. — UUR

2x

2

J@H = —A AUR + 2X — UUz2=
2x

A, AVUR
+ Uz

vz 2x 1 —2
—EAU+ 2X— e2

4
VI VR (3.31)

2—XAUz + 2k
2x

UUR —A. AU + 2A,
e2

2 —4x
A Avvz e+

UR 2X 1 —2X
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Complicated as it might seem, one of the eigenvalues of
this matrix 1s actually bounded from above by 2M w,
This can be seen as follows. Let

IV. NEUTRAL-CURRENT ANALYSIS

The interaction Hamiltonian of this model for neutral
currents is given by'

V L UR ( VR + UL )
tanf3 =

U(VR —VL )
(3.32)

x(1 —x)

and

VL
tang =

UR
(3.33) [xJ3"+(1—x)J3 ' —xJ, ],

&x(1—x)(1 —2x )

(4.1)

e2

4x(1 —2x)
(3.35)

Hq =&2Re[cosf3$~2+ sinp(cosyHL ~
—sinyHR2)] . (3.34)

Then using the identity

where J~~",J3 ' are the neutral currents associated with the
SU(2)L,SU(2)R gauge groups, and J, is the electromag-
netic current. As far as the known quarks and leptons are
concerned, their couplings to the standard Z boson are as
usual given by

the diagonal mass term for II 2 is calculated to be
r

J3 —xJ, = —,v, y
(1) 1 —y5

2
Ve

2=mHo
2

cos P(2M', (3.36)
+ —,'( ——,'+2x)eye —

—,'( ——,
' )eyy5e

Now 02 is not necessarily a mass eigenstate, but any mix-
ing into the other states can only reduce its mass. Hence,
Eq. (3.36) represents an absolute upper bound of &2M~
on one of the neutral physical Higgs bosons of this model.
This bound is saturated only in the limit UL/v=0, for
which it is equal to 116 GeV. If vL /U=1, then it is re-
duced by half to only 58 GeV. Finally we have checked
that all mass eigenvalues can be positive, so that v, vL, vR

do indeed correspond to a minimum of the Higgs poten-
tial.

+ —,'( —,
' ——', x)uyu ——,'( —,')uyy)u

+ —,'( —
—,'+ —,'x)dyd —

—,'( —
—,
' )d yy, d, (4.2)

where the Lorentz index of the Dirac y matrix has been
suppressed for notational simplicity. The corresponding
couplings to the D boson are new and different from those
of the conventional left-right model; they are given by

xJ3"~(1—x)JP' —xJ, = ——,'(1 —2x)v, y
1 p5

2
v, + —,'( —1+—,'x)eye ——,'( —

—,'x)eyyge

+ —,
'

( —,
' ——', x )u y u —

—,
'

( ——,
' +x )u y y 5u + —,

'
( —,

' x )d y d —
—,
'

( ——,
' x )d y y qd . (4.3}

Mw,

Mw,
(4.4)

Then for deep-inelastic neutrino and antineutrino scatter-
ing off nucleons, the relevant quantities to be compared
against data are

[—,
' —

—,'x+g( —', x ——,'y)), (4.5)

Even though the mass matrix for Z and D is not diago-
nal in general, all one needs is its inverse to obtain the
effective current-current interactions of this model at low
energies. Let

[—,'x+g( —
—,'x )], (4.8}

where x=sin 0~ and y =sin OL as given by Eqs. (3.9),
(3.10), and (3.22). The standard-model results are of
course recovered in the limit $~0. The numerical values
of the above quantities have been derived from experimen-
tal data after radiative corrections. We use the recent
compilation of Fogli' and fit against those values, taking
into account the error-correlation matrix. In Fig. 2, we
show the one-standard-deviation allowed region in the
(x, g) plane for various given values of y, based on Fogli's
numbers, plus the constraint due to the measured values of
Mw, and Mz, , namely'

EL = 1

1—

[ ——',x+g( ——,'+ —', x+ —,'y)],

, [——,'+ —,'x+g( —
—,'x+ —,'y)],

(4.6)

(4.7)
Mw

2
——0.218+0.022,

Mz,
(4.9}
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FIG. 2. One-standard-deviation allowed region in x=sin 0~
and /=Ms, /Ma ' for various values of y =sin 01, , based on

neutrino deep-inelastic data and M~ /Mz
1 1

020 0.2 2 0.2 4

SIR Bx
FIG. 3. Same as in Fig. 2, but based on all neutral-current

data.

where Mz, is the smaller of the two eigenvalues derivable2

from Eq. (3.11). The maximum allowed value of g in Fig.
2 is about 0.20.

We have also considered other neutral-current con-
straints. For elastic neutrino and antineutrino scattering
oft the electron, we use the compilation of Kim, Langack-
er, Levine, and Williams' for

backward asymmetry in e+e ~p+p, etc. , for which

(4.16)

This result is greater than that of the standard model by a
factor of 1/(1 —gy ), but it does not really limit g, because
we can always vary y to make gy small.

Using M~, = 82 GeV, our bound g & 0.21 implies that

gv= 1— [——,'+2x+g(1 —2x —
—,'y)], (4.10)

Mw, & 180 GeV (4.17)

1go= 1— (4.1 1)

Mz, ~ 210 GeV . (4.18)
For parity nonconservation in atomic transitions, we use
the two most recent results' for

gg~gv=, , [ ——,'+-', x+P ——,'+-', x)y], (4.12)

egg~gv =
1— , ( —,

' —
—,'x —

—,'gxy) . (4.13)

The measurements of the asymmetry in polarized-20

electron scattering off the deuteron are also used to fit

2 gg~gv —gg~gv= 1— , [——,'+ —', x+ g( —
—,'+ —',x)y],

(4.14)

2 g gvg~ —g gvg~ =
1— 2 4[——'+ 3x

+g(1 —2x —y+xy)] .

(4.15)

In Fig. 3 we show again the one-standard-deviation al-
lowed region in the (x,g) plane for various given values of
y, but now using all of the above data. The maximum al-
lowed value of g in Fig. 3 is about 0.21. We have not
used the constraint due to measurements of the forward-

V. CONCLUSION

If there is physics beyond the standard
SU(3) X SU(2) XU(1) model, it may or may not show up
at energies below a TeV. From an experimental point of
view, it will certainly be more interesting if the new phys-
ics is indeed accessible. In this paper, we have discussed
just such a model. It is a new left-right model based on
the particle content of the 27 representation of E6. It is a
supersymmetric model with a conserved multiplicative
quantum number which is a generalization of the usual R
parity. As a result, there are several notable features in
this model, beyond the well-known one that the lightest
particle of odd R parity is stable. The second 8'boson of
this model has odd R parity, so it does not mix with the
standard 8'boson. This paves the way for the possibility
of a massless Dirac neutrino. In other words, if the Dirac
mass of neutrino is zero at the tree level, it remains zero
to all orders because of R parity. Of course, it is also al-
lowed to be nonzero, in which case its value is arbitrary.
This model also has the interesting feature that the right-
handed mass partner of the neutrino is not the same as its
current partner, as in conventional left-right models. In
fact, the former is inert and the latter may be heavy. This
means that the astrophysical limit on the effective total
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number of neutrino, i.e., X &4, is not violated, and that
the constraint on M~, from polarized p decay is not

applicable. Similarly, since 8 2 does not couple to d and s
quarks, the KL-Kz mass diff'erence is also not a con-
straint.

The Higgs sector of this model is surprisingly simple.
Only three nonzero vacuum expectation values are need-
ed. In addition to the gauge couplings, only four other
parameters are required to specify the most general Higgs
scalar potential. Since particles of opposite R parity can-
not mix, there is also simplification in the mass matrices
for the physical Higgs bosons. In particular, we find an
absolute upper bound of &2M~, ——116 GeV on the mass

of one of the neutral Higgs bosons of this model, although
that value is likely to be much lower.

The neutral-current interaction of this model involves a
second boson D in addition to the standard Z, and the
two can mix in general. We have analyzed the constraints
due to present experimental data, and we find lower
bounds of 180 and 210 GeV, respectively, for M~, and

Mz . In the context of this model, prospects of many
new physics discoveries exist at forthcoming and proposed
high-energy accelerators.
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