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Analysis of a quark model with charm and color for inclusive processes
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The qqq model of Mitra for meson-baryon processes is reformulated to study inclusive processes
incorporating charm and color degrees of freedom. Predictions are made in terms of sum rules for
various inclusive cross sections. Agreement of the sum rules with data is good for do. /dp&' and
do. /dx in the available range of p&'/x. However, overall analysis of the Aavor-symmetry breaking in-

dicates that symmetries alone are not adequate and the underlying theory should contain a suitable
mechanism to generate Regge-type behavior in the inclusive distributions. We also incorporate
proton-wave-function modification due to gluons in our model.

I. INTRODUCTION 3+B~C+X .

The physics of quarks has been receiving wide theoreti-
cal and experimental support during the last two de-
cades. ' While the discovery of color degrees of freedom
in e e physics has resolved their spin-statistics prob-
lem, the discoveries of c and b quarks through P(3.1)
(Ref. 4) and Y (9.4) (Ref. 5) families have established the
existence of at least five species of quarks. Similarly
through the field-theoretic notion of non-Abelian gluons,
one is able to explain the approximate scaling observed in
deep-inelastic lepton-hadron scattering. Indeed the
theory of quarks and gluons (QCD) is currently emerging
as the most viable theory of strong interactions. This has
initiated several theoretical investigations to include
QCD-motivated effects in existing quark models. In par-
ticular, the quark model of Le Yaouanc et al. ' has been
successful in explaining several aspects of hadron physics,
viz. , decays of hadrons, magnetic-moment ratios, and the
like. Similarly the bag models" developed in the 1970s
based on the confinement hypothesis played an important
role in understanding the long-distance quark dynamics.
More recently De Rujula, Georgi, and Glashow' and
Isgur and collaborators' have systematically studied
gluon-exchange effects within the quark models.

In purely hadron-hadron collisions at large p&, two
QCD-based models have emerged in recent years, viz. , the
quark-gluon scattering model of Feynman, Field, and
Fox' and the constituent-interchange model (CIM) of
Blankenbecler, Brodsky, and Gunion. ' In the first class
of models, the basic collision subprocesses responsible are
qq ~qq, qg ~qg, and gg ~gg (q ~quark, g ~gluon),
while in the later class "higher-twist" subprocess
qM~qM (where M denotes a meson) participates
predominantly.

It is, however, not clear how these perturbative field-
theoretic models wi11 be relevant in the low-pz regime or
in the usual fragmentation regions. In such regions, it is
still meaningful to talk in terms of quark models with
plausible incorporation of QCD and try to extract infor-
mation about the underlying theory. '

A class of processes where such study can be pursued
meaningfully is the inclusive processes,

Since only one particle's momentum needs to be mea-
sured, the experimentation of such processes is much
easier. On the theoretical front, Feynman, ' and Benecke,
Chou, Yang, and Yen' advanced the hypothesis of scal-
ing and limiting fragmentation for such processes support-
ed by experiment. Subsequently, Mueller' related the in-
clusive distributions to a three-particle~ three-particle for-
ward amplitude and then used a Regge-type theory for
the latter.

The aim of the present paper is to make an analysis of
this class of processes within a quark model proposed by
Mitra in the 1960s and later pursued by others. '

The model was reformulated recently for exclusive
processes in view of the current development of quark
physics.

Historically, the motivation of Mitra's model was to
take into account the nonadditivity idea in quark models
by assuming the dominance of qqq scattering in meson-
baryon processes. By additivity one means that collision
processes are dominated by interaction involving two
quarks at a time, the other quarks present in the projectile
and the target remaining as spectators. Any deviation
from this basic assumption implies nonadditivity. The
necessity of nonadditivity grew in view of the limitations
of additivity in explaining certain phenomena such as the
sharp break in the high-energy proton-proton differential
cross section or in incorporating baryon-antibaryon pro-
cesses involving triple-quark exchanges. In Mitra's
model, the nonadditivity idea was taken into account on
the basis of the hierarchy of the elementarity of various
hadrons. On this basis, mesons are considered more ele-
mentary among hadrons as they have tighter structures
than the baryons. This picture is reasonable if the force
between a quark and an antiquark in a meson is appreci-
ably stronger than that between a pair of quarks in a
baryon. Indeed in QCD, the strength of the color force
between a quark-antiquark pair is twice as large as the
similar force between a pair of quarks inside the
baryons. The idea that mesons can be treated as ele-
mentary also seems to be reinforced in recent times by the
pseudoscalar-emission-model results of Koniuk and
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Isgur ' and Godfrey and Isgur. Under such an assump-
tion, it is reasonable that meson-quark scattering
Mq ~Mq is a dominant mechanism for hadron-hadron
collisions. However quarks, being the ultimate constitu-
ents of hadrons, are more elementary than mesons.
Hence it is reasonable to assume that the active quark of a
baryon will interact with qq composite structure of the
meson so that the meson-quark scattering occurs through
the three-body qqq~qqq processes (Figs. 1 and 2). Thus
in the context of present-day hadron-hadron collisions,
nonadditivity and a hierarchy basis justify the Mq~Mq
transition to be the dominant mechanism in the meson-
baryon processes similar to CIM of the large-p~ regime. '

The present model is, however, based on the quantum-
mechanical discipline of nonrelativistic three-body scatter-
ing rather than formal field theory. As it was construct-
ed basically out of the available symmetries without expli-
cit dynamics, a theoretical study of the model and its
experimental confrontation with recent data will, there-
fore, serve a useful purpose: it will provide information
about when symmetries alone are adequate and when dy-
narnics must be used.

Further, we will also endeavor here to incorporate
proton-wave-function modification due to gluons in our
model. To that end, we use a simple QCD-motivated an-

satz as conjectured in the recent works of Lepage and
Brodsky.

In Sec. II we summarize the essential formalism of the
model. We have considered up to the c quark and hence
symmetries up to SU(4)f only. The large mass differences
between the c quark and the (u, d, s) quarks indicate
SU(4)f might be badly broken symmetry. As the mass
differences between the b quark and (u, d, s) quarks are
still larger, higher symmetries such as SU(5)f or beyond
(due to the expected t quark) may not be very meaningful.

In Sec. III we discuss some of the results and their ex-
perimental comparisons. Section IV deals with summary
and conclusions.

II. THE MODEL

A. The qqq wave function with spin, SU(4), and color
degrees of freedom

The method of writing down the qqq wave function
with spin, SU(4), and color degrees of freedom can be ob-
tained from the procedure developed in Ref. 20. The spin
part does not change; but we incorporate it to make the
work self-contained. We denote the quark indices by 1

and 2, the antiquark index by 3. We shall write down the

P

FIG. 1. Meson-baryon exclusive processes in the present
model with (a) 2, (b) B, and (c) C terms of Eq. (2.58).

FIG. 2. Meson-baryon inclusive processes in the present mod-
el with (a) 3, (b) B, and (c) C terms of Eq. (2.58).
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various functions using such a basis function to bring out
the required condition of a pseudoscalar 15-piet of mesons
made up of qI and q3 scattered on q2.

[1+(12)SU(4)]y
v'2 (2.9)

where the permutation operator (12)„ in SU(4) space is
given by

Spin functions (12)sU(4) )
(

) +g(1) g(2))
2 2 (2.10)

1X'(2, 13)= —a2(a)p3 —a3p) ) =X .v'2 (2.1)

For the odd-parity qqq wave function, on the other hand,
it is most convenient to use the vector basis function

X'(2, »)=ia(2)X=X . (2.2)

Since the spin-permutation operator (12) is defined as

(2.3)

Let a; and P; represent the spin-up and spin-down
states for quark number l. Appropriate to the collision of
a pseudoscalar meson (P) made up of q, and q3 on q2
(elastically or inelastically), the qqq wave function with
even parity can be most conveniently represented by the
basis function

As noted earlier, a more convenient expression for
((() in terms of 15-piet of meson states can be obtained from
the correspondence

v'2 (2. 1 I)

where A,
"' (a= 1, . . . , 15) are the SU(4) generators acting

on quark number one and a are the corresponding
meson fields. We also note that the matrices A,

'" would
represent the SU(3) Gell-Mann matrices with
a= 1, . . . , 8 if transitions among (u, d, s) quarks alone are
considered. Similarly, exclusion of transitions (u~s ),
(d~s ) would reduce them to the Pauli matrices o
(a =1,2,3) representing the generators of the SU(2) isospin
group.

Thus one has

the symmetric and antisymmetric spin functions will be
given by

6

v'2
C

(2.12)

and

X...= —[1+(12) ]X,1

v'2

X, .= —[1+(12) ]X
1

(2.4)

(2.5)

which, in matrix notation, becomes

2

3. Color u)ttue functions

(2.13)

for even- and odd-parity qqq wave functions, respectively.
Besides X and X defined by Eqs. (2.1) and (2.2), one has
also another pair of basis functions X' and g„ for a spin-
quartet state of the qqq system. Here X' and 7„are vec-
tor and tensor basis functions for odd- and even-parity
qqq wave functions, respectively. They are defined as

(2.6)

In order to write the proper color wave functions, we
note that the mesons are color sin glets according to
known phenomenology as well as QCD expectations.
The qqq wave functions should therefore be consistent
with the boundary condition that quark number 1 and an-
tiquark number 3 occur in the state

R" R ' '+B"B '+G'"G

and
3

(&)- (3)—~qp qp (2.14)

(2.7)

As these two functions are totally symmetric in all parti-
cles, they correspond to the spin-quartet state of qqq sys-
tem.

2. SU(4) functions

The basis of SU(4) part of the qqq wave function is
chosen as

(2.8)

where the SU(4) states are indicated by the subscripts
a, b, c,d (=1,2,3,4) and the individual particles are dis-
tinguished by the superscript (i). The corresponding sym-
metric and antisymmetric functions (}),, are now given by

where the color indices P run from 1 to 3 corresponding
to colors red (R), blue (B), and green (G), respectively.
Hence the qqq color wave function is written as

1 y q(2)q())q (3)

p
(2.15)

( 12) (
(

2 +pc(1) gc(2))
C 2 3 (2.16)

so that the symmetric and antisymmetric color wave func-
tions will have the structure

—[1+(12),]rl .
1

v'p (2.17)

The permutation operator between quark number 1 and
2 [(12),] for SU(3), is
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For our subsequent analysis we will use the correspon-
dence

(g„g,'), (tj'j„g, )-= =-X, ,

(q5isv q51sv) (q6tsv q6tsv)

(2.22)

(2.23)
3

(1)—(3) c c(1j— gqp q p ~ —~o~o
1

2

where Xo is a SU(3), -color-singlet matrix

(2.18)

(2.19)

Similarly for the negative-parity components of the qqq
space wave functions, we need another set of six pairs of
functions defined as

satisfying the general condition

Tr( k; s(.J
)' =25;~ (i =0, 1, . . . , n )

for any SU(n)f.

(2.20) They will be associated with spin functions P„X,, and 7
as

(2.24)

4. Space wave functions

For positive-parity components of the space wave func-
tions we need six pairs of wave functions defined as

:+a (2.25)

(2.26)

(qt ql ) (q2 q2 ) (q3 q3 )

(q4 q4 ) (q5pv q5tsv) (q6tsv q6tsv)

These will be associated with spin functions g„1',, and

+pv as

(2.21)

5. Total qqq wave functions

Using the spin, SU(4), color, and space wave functions
defined in Eqs. (2.1)—(2.26), one can write down the total

qqq wave function consistent with Fermi-Dirac statistics
for both positive- and negative-parity components. For
the positive-parity case, it is given by

= ( tjjs 'gs +ga 'ga )&s Pa + ( ti s 'ga + fa 2)s )&s Ps + ( gs 'gs +4a 'g a )&a Ps + ( tt s 'ga + tta 7)s )+a Pa

+ (0,'" n, +4.'"'~. )~.A. + (4,'"'~. +P.'"'n, )~.A.
while for the negative-parity case, it has the representations,

= ( ttts gaia + fa 'g s ) ' &s 4s + ( fs ris +4a 'g a ) ' &s t() a + ( tits ria + fa 'g s ) '&a Pa + ( Ws 'gs +Wa ria ) &a tt's

+(4'n. +Kn. ).&'0. + (A' n. +0'n. ).&'4.

(2.27)

(2.28)

In Eqs. (2.27) and (2.28), while the spin, flavor, and
color parts are explicitly given [Eqs. (2.4) —(2.7), (2.9), and
(2.17)], the orbital parts are not given in any explicit
forms. They will in general depend on the form of the in-

teraction V(p~,p2,p3) in the qqq system since the
Schrodinger equation reads,

D(E)(0+'+0' ) = V(pi, p2 p3)(4"'+0
where

(2.29)

3 p.
D(E) = g —EMq .

i =1 2
(2.30)

Here E is the energy and p; (i = 1,2,3) are the momenta of
the quark/antiquark number 1, 2, and 3 each with mass

Mq. Thus to find the nature of the orbital functions, one
needs the structure of the three-body potential
V(p~,p2,p3). As in Ref. 20, their structures can be ob-
tained in terms of spectator functions characteristic of
three-body wave functions and factorable two-body forces.

Neglecting qq forces compared to qq forces, one then
can write for P,', g,' of Eq. (2.27):

Qs =D '(E)[u(p(3)U (p2s)+u(p23)U (p, s)], (2.31)

Qa' =D '(E)[u(p)3)U, '(p2) —u(p23)Ua(p, )], (2.32)

M~(p
~

V
~

p') = —kou(p)u(p') . (2.33)

However if the residues of these spectator functions are
used as mere parameters, the dynamics of the model is
completely hidden and algebraic structures of the scatter-
ing amplitudes or inclusive distributions are independent
of the above assumption.

B. Calculation of the meson-quark amplitudes

The standard procedure for evaluation of the meson-
quark amplitude within the spectator function technique
is first to obtain the space part by defining a set of param-

and similarly for other orbitals of Eqs. (2.27) and (2.28).
Here U,'(p) and U,'(p) are the spectator functions while
the potential function u (p) occurs through the definition
of the qq forces:
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eters which represent the space overlaps of the initial to
final qqq wave functions. Let these parameters be defined
as D'+' D'+' F'+' F'+' D'+' D'+' F'+' F'+' d'+'

s r a r s r a r s r a r s r a r s

d,'+, f, + ', f,+ ', which are to be associated with the
positive-parity final-state qqq space wave functions

tively. Similarly we define the space overlaps of the

negative-parity qqq wave function as F,' ', F,'
D( —) D( —) F(—) F(—) D( —) D( —) d( —) d( —)

f,' ', f,' ' corresponding to the space wave functions
1 1 2 2 3 3 4 4 5 5 6 6

Os~ pa~ Ps~ 4a& tis] pal Ps~ 4a~ /san |Ia] @s] ga] reSPeC
tively. Thus, after taking into account space overlaps,

qqq ~qqq amplitudes for positive- and negative-parity
components, respectively, become

g(+) (D(+)~ +D(+)~ )X y +(F(+)~ +F(+)~ )X y +(D (+)~ +D (+)~ )X

+ (F s+ yia +F a+ yes )Xa (It a + (ds yes +da 'ga )p(spvX]saba + (fs + 'ga +fa 'qs )p]spvX]sA's

R( '=(F,' )yi. +F( )y), )(p X, )p, +(D,' )21, +D( 'yi. )(p X, )p.

+(F( )q. +—F.' )y), )(p X. )P. +(D,' )g, +D ( g). )( pX. )P,

+(d,( )q, +-d.' )q. )(p X')P. +(f( )g. +f.' )q, )(p X')P, ,

(2.34)

(2.35)

where p is the three-momentum of the final-state detected
meson.

In the next step, we evaluate the spin overlaps which
can be done separately for the positive- and negative-
parity cases. For positive-parity functions Eq. (2.34) we
take overlap with the basis function X of Eq. (2.1) which
corresponds to the initial meson-quark system. Similarly
for the negative-parity functions Eq. (2.35) we must con-
sider the overlaps with the initial state (k.X), X being
defined in Eq. (2.2) and k being the incident meson
momentum. Ignoring the spin inelastic terms proportion-
al to o';"u~ ' that contribute only to the vector-meson pro-
duction, one then has

u pa ('fpay+ pay ~y

up
' ——( ifp y+—dp y~)y

d f3ygd~~g

D ac fpysfac5&r

Fa~a i (fpysdacs +d pysf acs )

and note the SU(4) relations

and

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

2&2 '

(2.36)

(2.37) This, in turn, yields

+ k,"A.
y

'(DP, DPy+FPy ) . (2—.48)

(k X) (p X, )=
2&2

(2.38)
1—

harp~ [ ,'( ]op +up+ )—+——,'up '+E p]
2

(2.49)

3[(k p)+irr' (k Xp)].
2&2

(2.39)

while terms like X X„„p„p,and (k X) (p.X') being spin in-
elastic do not contribute to pseudoscalar mesons at all.

In the third step, we evaluate the SU(4) fiavor overlaps
of the resulting amplitude with the initial qqq state with
respect to the basis function ((]] defined in Eq. (2.12). We
should now take the SU(4) overlaps of the initial state
m. A,

'" [see Eq. (2.12)] with the final SU(4) states ()]], and
(t, , defined in Eq. (2.9).

Thus we need to evaluate

and

1—vrp7y [ ,'( ]6p +up+'—)——,'up ' E—p), —
2

(2.50)

where we have defined

chic(l))$ (4+ ] gc(1) gc(2))(~cgc(]))g 71s= yyp p 7TQ Q (2.52)

In the fourth step one has to determine the color over-
laps. To this end we need to evaluate

(2.40) chic(]))T (
2 ] gc(1).gc(2))( chic(1))nn= '' ~2' 7TQ Q (2.53)

(2.41)

This requires the evaluation of the products such as
kp" A.

"' and A,p"A,
"'k' 'A, "' in SU(4)-fiavor space. To this

end, we define

Since Eqs. (2.52) and (2.53) involve only color-singlet
mesons yyp with SU(3), -singlet operator s((')(", one has

~cf'~c( 4 + ] gc(1) gc(2))
v'2

(2.54)s
3

Q Q 3 2 r



88 D. K. CHOUDHURY AND R. C. GOSWAMI 36

ct~c( 2 ( gc ( I ) gc (2) }
v'2

0~0 3 2

For subsequent algebraic analysis, we define

s'=-'+-'A, "'A,""
3 2

T c 2 I gc(1) gc(2)
3 2

(2.56)

(2.57)

0 = rrprr [ A ( ,' 6)s +—ur(s+
'

) +Bu )s
' +cE p ],

where

(2.58)

Using these definitions and collecting all the results of
spin, SU(4), and color overlaps, the meson-quark ampli-
tude can be written by the following scalar:

(2.63)—(2.68) reduce to

' =—'[5(F,' —'+ 2F,' ') —+3( 2D,' '+—D,—')],
A ' '= —'[3(F,' —+2F,' —')+5(2D,' —'+D,' +—')],

(2
*) 2[5(f( )+2f(—))+3(2d( )+d( ))]

B =—'[(F,' '+ 2F( )
) —(2D ( —)+ D' ')]—

3

B '-'= —'[(F,'-'+2F.'-') —(2D ( +D-(-))],
b' —'= —'[(f' —'+2f.—') —(2d,' —+1,' —')] .

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

1 —(3A +'+A '+'+3PA' +PA '),
24&v

—(3B'+' B+'+3P—B' PB ' '}-,
24&a

(2.59)

(2.60)

C. Application to inclusive processes

In order to apply the model to inclusive process
3 +B~C+X, as a first step, we need to consider the ex-
clusive meson-baryon amplitude

4 —(3B'+' B'+ —+3PB' ' PB ')—,24'/'Z

with the following definitions:

P=k.p+i(T' ' (kXp),
A '=5(F,' '—T'~F,' —'S')+3(D—, S'+D,'*—'T'),

(2.61)

(2.62)

(2.63)

A ' '= 3(F, 'T'+ F ',——S') + 5(D, 'S'+D,' 'T')—, (2.—64)

(2' —=5(f( )T'+f 'S')+—3(d( —)—S'+d —'T')

B( ) (F( )7 c+F(+)Sc) (D( )Sc+D( )7 c)

B( ) (F( )7c+F( )Sc) (D( )Sc+D( )7c)

b( ) (f( )Tc+f( )Sc) (d( )Sc+d( )7 c)

(2.65)

(2.66)

(2.67)

(2.68)

Equation (2.58) represents the meson-quark amplitude in
the model, which is our main result.

In SU(4)f, Eq. (2.58) has three terms proportional to
and A."'A, ' ' representing the Aavor-exchange

effects. In SU(3), it has, on the other hand, two terms
proportional to 1 and 7(,

")
7(,
' ' due to Eqs. (2.56) and

(2.57).
From group-theoretical point of view, we note that in

SU(4)f qqq has a decomposition

A f=(0 IO
I of) . (2.78)

Here 0 is as defined in Eq. (2.58), P; and ()/f are initial
and final 3q composites of the baryons. P's have the fol-
lowing spin-, fIavor-, space-curn-color structures in 20 of
SU(4)f ..

ylff +yllgtl
20m (2.79)

where )}/' and 71', respectively, denote the symmetric space
and the antisymmetric color components of the baryon
wave functions. Similarly, (X',X") are the conventional
mixed symmetric spin states while (P', P") are the similar
quantities in SU(4)f space.

As a second step, we take modulus square of the ex-
clusive amplitude Eq. (2.78), sum over a complete set of
states, and obtain the inclusive distribution

d3
(2~)'(2' ),—(tt/;

I
0 0

I q; ),
dp

(2.80)

where E~ and p are the energy and momentum of the
detected particle, and

pl/2 i) 1/2( 2 2)

(4e 4()t 4)f ——4, @36e 4„e20,
while in SU(3), it has a similar decomposition

(2.69) =(s +m, +mb —2sm, —2s, —2m, mb )
2 4 4 2 2 2 2 1/2

(2.81)

(3@3(83), =3,e6e3), (1)15 . (2.70)

However, since qq mesons are color singlet according to
QCD, ' Eq. (2.70) is reduced to

[3c (3 3)c ]s.s).(=3. . (2.71)

Thus for color-singlet qq mesons, only the color elastic
amplitude 3, ~3, operates instead of several nonsinglet-
color transitions allowed by Eq. (2.70).

We further note that the double-exchange terms
(A,"'Ag')f or (A,"'.A,

' '},, which represent higher-order
Aavor and color exchanges, are expected to be suppressed
in the present model. Under this approximation, Eqs.

d3
(2vr)(2E ),——(g;Io OIQ) .

dp
(2.82)

Equation (2.82) shows that for equal c.m. energies,
()t';

I
0 0

I g; ) will measure the relative strengths of vari-
ous single-particle distributions:

2EJ d 0.
(q, lo'o q, )-

dp
(2.83)

m~, m b being the masses of the particles A and B, while
&s is the center-of-mass energy. If masses are neglected
compared with the c.m. energy in the high-energy range,
one has
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o(A+B~C+X) Aqu+Bqv+Cqw (2.84)

As a consequence, the inclusive cross section
o ( A +B~C+X) for pseudoscalar meson production will
have the following simple structure in the model:

reason to believe that it is applicable to inclusive processes
where momentum transfer is not very large. We therefore
assume it to be a simple QCD-motivated ansatz within the
framework of nonrelativistic quark models. Under this
assumption, Eq. (2.83) is modified to

where u, U, and m are certain calculable flavor factors and

Aq, B, and Cq are functions of the residues
(D,' , ',F,—, +,——,P,' , ',d,'—+, ',f, ,—'), i—ncident and final meson
momenta, and the scattering angle.

It is interesting to note that the 24 space wave functions
occurred in Eqs. (2.27) and (2.28) yield only three model
parameters in the inclusive cross sections Eq. (2.84).
Hence it is expected to have phenomenological utility,
while keeping its results as model independent as possible,
even within the general framework.

D. Gluons in the model

cos P(Pq ~

0 "0
gq )+sin P(l(q

~

0 tO
~ g )

~Ep 8 0

dp

where

Xlgt +XPIPPP
7/

and

Xtgtt Xllgl
g

(2.86)

(2.87)

(2.88)

Gluons are important ingredients of the current theory
of quarks (QCD). Besides their traditional role in explain-
ing approximate scaling, they also modify the hadron
wave functions. Recently, Lepage and Brodsky have
proposed that gluon exchange generates a spin-flavor an-
tisymmetric component in the baryon wave function in
addition to the standard symmetric part. More recent-
ly ' such modifications have been considered within the
framework of quark models. In the present context, if
QCD generates a spin-flavor-antisymmetric part besides
the spin-flavor-symmetric state Eq. (2.79) the baryon wave
function assumes the structure

The inclusive cross section in the model is then
modified from Eq. (2.84) to

o ( A +B~C+X)=( A cos (t + Agsin P)u

+(Bqcos /+Basin (t)v

+(C cos /+Cousin P)w, (2.89)

where A~, Bg, Cg contain the modifications of the original
residue functions Aq, Bq, Cq due to gluons. In Sec. III we
will discuss some of the consequences of the Eqs. (2.84)
and (2.89).

Xl I +X/I lt Xl II Xlt I

cosP g — +sing P'
v'2 v'2

(2.85)

where the angle P is a measure of the quark-gluon interac-
tion at finite energies, and P'&g' implies that the space
wave function of the baryon is modified consistent with
Fermi-Dirac statistics. As the second term of Eq. (2.85)
has its origin in perturbative QCD, a priori there is no

III. PREDICTIONS OF THE MODEL

Using Eq. (2.58) in Eq. (2.83) and neglecting the C term
in leading order, we can obtain a large number of rela-
tions among various inclusive cross sections (2E& I
or)d o ldp, do. ldpq or do Idx (E~ =energy of the
detected particle, o T =total cross section). Denoting the
cross sections as cr(A+B~C+X), we record a few of
them that can be tested with available data.

TABLE I. Comparison of Eqs. (3.1) and (3.2) with data (Ref. 37) in terms of do. /dpJ'.

ess
(GeV/c)

do /dpi' jn mb/(CxeV/c )

K p K x m+p m+x K+p Kx ~ p m x K p m x
10.1 8 8.2 16 9

Eq. (3.1) Eq. (3.2)

LHS RHS LHS RHS

0.0

0.1

0.2

0.3

0.4

0.5

34
+0
22
+3
12.5

+1.5
8

+1
4.85

+0.35
3.1

+0.3

414.15
+12.6
153.1

+ 17.6
74.05
+6.25
42.7
+2.5
25. 1

+2.5
20
+0

8.0
+0.4

5.2
+0.2

3.3
+0.3

2.25
+0.25

1.45
+0.15

1.0
+0.1

295
+5
120

+10
50
+2
28
+2
18

+1
12.5

+0.5

130
+15

22.5
+3.5

5
+1

2.3
+0.7

0.35
+0.21

887.5
+ 15.13
361.63
+30.06
151.03
+6.09
84.7
+6.08
54.45
+3.05
37.81
+ 1.53

896.3
+25.2
350.2
+41.2
173.1

+ 15.5
101.4
+7.0
59.9
+5.7
46.2
+0.6

925.62
+ 19.68
367.03
+31.09
151.56
+6.31
84.72
+6.22
54. 11
+3.06

896.3
+25.2
350.2
+41.2
173.1

+ 15.5
101.4
+7.0
59.9
+5.7
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TABLE II. Comparison of Eq. (3.1) with data (Ref. 37) in terms of der/dx.

Process
]ab (GeV/c )

K p —+Kx
10.1

da. /dx (mb)
~+p~~ x K+p~K x

8 8.2
7T p ~7T x

8 LHS

Eq. (3.1)

RHS

0.1

0.2
0.3
0.4
0.5
0.6

12+1
11.5+0.5

9.5+0.25
8+0.5

5.75+0.25
4.25+0.25

15.53+1.41
12.18+0.18
10.23+0
8.83+0
7.59+0.53
7.42+0. 36

8.25+0.25
7.5+0.5
7.0+0.5
5.5+0.5

4.25+0.25
3.25+0.25

15.8%0.36
13.24+0. 18
11.3+0
9.35+0.18
7.59+0. 18
7.42+0.36

49.98+ 1.16
42.06+0.7
36.09+0.16
29.77+0.7

24. 1+0.62
23.28+ 1.16

55.06+4.82
47.36+ 1.36
39.46+0.5
33.65+ 1.0
26.68+ 1 ~ 56
23.34k 1.22

A. Sum rules

1. Sum rules in do. /dp& involving purely light-quark
transi tions

We have

3o(vr p~rr x)+ ,5, cr(K+p~—K x)

=2o(K p~K x)+2cr(tr+p~~+x),

3o (n. p ~m. x ) + —,', cr (K p ~~ x )

(3.1)

Eqs. (3.1) and (3.2) with recent experimental results. It
shows that the overall agreement with data is good.

2. Sum rules in (dcr /dx ) involving purely light quark-
transitions

Equation (3.1) can be tested in terms of do. /dx as well
(Table II) using recent data. Here too the overall agree-
ment is good within the range of x under consideration 3.

3. SU(4) sum rules in (2E~ /err )d o. /dp involving
charmed-particle production.

=2o.(a+p ~m+x )+ 2cr (K p ~K x ) . (3.2)

In Table I we present a comparison of our predictions,
I

We record below some of the testable sum rules con-
taining transitions from light (u, d, s) to charm quark (c):

cr(mp~vr x )
.=

,', o (K p —~K+x)+,'cr(~ p~—D x )+cr(~+p~~ x),

,', cr(K+p~—K+x)+3o(rr p~7r x)=2o(m p~D x)+2o(vr+p~n+x),

—,",,'o(K+p~K+x)+ ,'o(rr+p~rr+x—)+ ,'cr(7r p~D x—)=—,",o(K+p~K x)+ 3cr(~ p~~ —x),
—'cr(K p~F x)+ ,'cr(K p~n x—)+—,'cr(~ p~D x)=cr(K p~tlx),
—,'o(K p~F x)+ ,'o(~ p~K x—)+,'cr(K p—~vr x)=o(K p~rix),

,'o(~+p~t—rx)+o(m+p~rix)= —,'o(K p~F x)+ —,'o(K+p~K x) .

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

A comparison of the sum rules with experiment ' is made in Table III at average E, —5.5 GeV and average
P~,b —15.0 GeV/c. It is found, the agreement is good for Eqs. (3.3)—(3.5), tolerable for Eqs. (3.6) and (3.7), while poor
for Eq. (3.8). Thus our results indicate that symmetries alone are not adequate, and dynamics of the underlying theory
must be put to accommodate such symmetry-breaking eftects within the model.

We however note that for the production of charmed mesons alot of phase space is needed because for every charmed
meson in the final state, there must also be an anticharm state. So one would need at least 3 GeV just to reach thresh-
old. Thus the comparison at higher energies (E, »3 GeV) would hopefully be more meaningful than the present at-
tempt.

4. SU(3) sum rules in (2' /err)d cr/dp involving purely light quark transitions-

Equations (3.1) and (3.2) can also be tested in terms of (2E&/o r)d o /dp . This has been done in Table IV at average
E, —5.5 GeV and P~,b —15.0 GeV/c. The agreement is again good. We also list below a few more sum rules which
have been tested with available data in Table IV at the same E, and P~,b..

cr(m p~~ x)= ,'o(K p~—K x)+ —,'cr(K+p~K x)+cr(m+p~~ x),

o (mp~sr x ) = —,', cr (.K +p ~K +x ) + ,' o (K p ~K x ) + cr—(~+p ~vr x ),

(3.9)

(3.10)

3o(mp~m x')+,5, cr(K+p~K+x)=2cr(K p~K x)+2cr(vr+p~n+x), (3.1 1)
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o(K p~7)x)= —', o(K p~K x)+ 3—cr(K+p~K x),
4cr(m+p~rix)+ 3o—(tr+p~m x)=o(K p~rr x)+cr(K p~rix),
o.(K+p ~K+x ) = ",,o—(K+p~K x ),
cr(K p~K x)+2cr(~+p~~ x)=—', o(K p~K x)+o(K+p~K+x),

,'cr—(K p~K x)+ ,'o(~—p~m x)+ —,', o(K+p~K x)=o(K p~gx),
4cr(~+p~gx)+ 4o(r—r+p~nx)=. cr(K+p~K x)+ o(K p~gx) .

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

A study of Table IV reveals that the agreement is good for Eqs. (3.9)—(3.11), tolerable for the Eqs. (3.12)—(3.14), and
poor for the Eqs. (3.15)—(3.17). Once again it indicates the limitation of symmetries and calls for suitable dynamics in
the model.

5. SU(2) sum rule in (2Er /or)d crldp

We also compare the following SU(2) sum rule with data' in Table IV:

,'cr(~+—p~m+x)+ 2cr(rr —p~m x)+ 5cr(rr —p~~ x)=14cr(~+p~mx) . . (3.18)

The agreement is tolerable. However, certain degree of symmetry breaking still needs to be incorporated for better agree-
ment with data.

6. Quantitative estimations of SU(4), SU(3), and SU(2) symmetry breakdown
in the sum rules

In order to find the clues of the possible symmetry-breaking mechanisms we estimate the measures of breakdown of
the symmetries at the sum-rule level. This can be obtained by putting a few typical sum rules in terms of suitable ratios.

For SU(4) breaking, we have

,'cr(rr p ~—D x ) =1,
cr ( ~ p ~vr x ) ——,', o ( K p+~ K +

x) cr( rr+ p ~ rr x—)

2o (7r p~D x)
—,', o(K+p~K+x)+3o(~ petr x. ) —2o(vr+p~n. +x)

—,
' o (m. p ~D x )

,",o(K+—p~Kx)+ ', o(rr p~~ x—)—+''o(K+p~K+x) —,'o(vr+p~—~+x)

—,'cr(K p~F x)+ ,'o(vr p~D—x)
=1,

o(K p~qx) —
—,'cr(K p~m x)

—,'cr(K p~F x) —1
o(K p~rlx) ——,'cr(~ p~K x)——,'o(K p~rr x)

,'cr(K p~F x)—
=1

,
' cr ( ~+p ~ rr —x) + cr ( rr+ p ~rix ) —,

' cr (K +p ~K—x)

For SU(3) breaking, we have

—,', o (K p~m x) =1,
2cr(m+p~m+x)+2cr(K p~K x)—3cr(~ p~vr x)

cr(K p ~gx )

,
' cr (K p ~—Kx ) + —,

' o (K +p ~K x )

(3.3')

(3.4')

(3.5')

(3.6')

(3.7')

(3.g')

(3.2')

(3.12')

o(K p~m. x)+cr(K p~gx)
4o (rr+p ~rlx )+~4cr(rr+p ~rrox )

(3.13')

cr(K p ~rlx )

4o (rr+p ~gx)+ '3 cr(n+p~a x)——o (K+pKox)
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TABLE III. Test of SU(4) sum rules in terms of
(2EI, /o. T) d'o. /dp' at E, —5.5 GeV and Pi,b —15.0 GeV/c,
We compare the left-hand side (LHS) and right-hand side (RHS)
of each of Eqs. (3.3)—(3.8).

Equation

number

(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)

LHS (mb)

38.2+ 1.5
124.85+0.9
23.07+0.13

8.42+0.59
9.0+0.67

13.47+0.33

RHS (rnb)

40.78+0. 1

94.81+1.0
22.39+0.3 1

4.6+ 1.8
4.6+ 1.8

2.06+0.08

LHS
RHS

0.94
1.32
1.03
1.83
1.96
6.54

In Table V we evaluate the experimental values of the
above ratios. It is evident from Table V that the ratios
[Eqs. (3.3')—(3.8')] measuring the relative strengths of the
charm-changing to the charm zero transitions are in the
range from 3.5 )& 10 to 3.3 & 10 while those of
strangeness-changing transitions to the strangeness zero
transitions Eqs. (3.2'), (3.12'), (3.13'), and (3. 17') are in
the range 0. 1 —0.7. Evidently, SU(4) is broken worse than
SU(3), and charm transitions are suppressed over others
by factors 10 —10 consistent with other analyses.

Equation

number

(3.1)
(3.2)
(3.9)
(3.10)
(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3 ~ 16)
(3.17)
(3.18)

LHS (mb)

123.68+0.95
130.11+1.21
40.78+0.26

38.2+ 1.5
124.85+0.9

6.98+0.27
53.87+1.33

11.6+0
80.1+0.9

16.55+0.33
53.87+ l.33
281.7+5.65

RHS (mb}

109.7+ 1.64
109.7+ 1.64
38.2+ 1.5

42.64+0.18
109.3+1.64

4.6+ 1.8
31.2+2.8

7.16+0.21
22.78+0.48

4.6+ 1.8
10.63+ 1.97
502.6+ 1.4

LHS
RHS

1.13
1.2
1.07
0.89
1.14
1.52
1.73
1.62
3.52
3.6
5. 1

0.56

In SU(3) itself there are sum rules involving diff'ractive
transitions (no quantum numbers are exchanged) and
charge-exchange transitions. In order to study the rela-
tive strengths of such transitions, we recast some of the
sum rules in the following ratios:

TABLE IV. Test of SU(3) sum rules in terms of
(2E~/o. T)d o./dp at E, —5.5 GeV and PI,b —15.0 GeV/c.

3cr (~ p ~~ x ) + —,', o (K +p ~K +x ) —2o ( ~+p ~n+x).
0 =1,

2o(K p~K x)
cr(K p~K x) —o.(K+p~K+x) =1,
', o(K p ~K x )—.2cr (7—r+p ~rr x )

(3.11')

(3.15')

and

—,
'o. (K p~K x)+ ,'cr(rr p~rr x)—=1,
o (K p ~|lx ) —,', cr(K+p—~Kx )

7o(~+p~~+x—)+. ,'o(~ p~~—x)
=1

14o(~+p ~~ x ) —. ', o (~ p ~ rr x )—

(3.16')

(3.18')

These ratios have also been tested in Table V. A study
of the magnitudes of the ratios Eqs. (3.11') and (3. 16')
demonstrates explicitly the expected dominance of the
difFractive processes. The apparent deviation of this ex-
pectation in Eqs. (3. 15') and (3. 18'), however, calls for
some extra dynamics of the underlying theory.

B. Symmetry breaking in the model

The typical ratios defined in Eqs. (3.3') —(3.8'), (3.2'),
(3.12'), (3.13'), (3.17') as well as (3.11'), (3.15'), (3. 16'),
and (3. 18') deviate away from unity; the pattern of devia-
tion follows Table V. In the present model such features
can be incorporated if we assume that the orbital
functions (D, , ',F, +, ',D,' , ',F,', ,d, , ,f, ,—) —for the-—
diagonal quark transitions or vacuum exchange
(u ~u,d~1,s~s), charge exchange (u~d ), hyper-
charge/strangeness exchange ( u ~s, d ~s ), and the
charm-quark transition (u, d, s~c) are not identical, but

Equation number

(3.3)'
(3.4)'
(3.5)'
(3.6)'
(3.7)'
(3.8)'

Experimental values

7.75X10 4

3.3 ~ 10-4
2.9~10 '
1.0~ 10
3.5 X 10-'
4.3 X 10-'

(3.2)'
(3 ~ 12)'
(3. 13)'
(3 ~ 17)'
(3.11)'
(3.15)'
(3.16)'
(3.18)'

0.68
0.66
0.57
0.10
2.02
0.05
3.75
0.46

TABLE V. Ratios of some typical sum rules (theoretical
value of the ratios= 1).



36 ANALYSIS OF A QUARK MODEL WITH CHARM AND COLOR. . . 93

Furthermore, the sets (Ap, Bp, Cp), (Ag, Bg, Cg), and
(Ar, B&,C&) should also satisfy the following relation-
ships at P],b —15.0 GeV/c and E, —5.5 GeV:

Ap =2. 17,
Ag

Ag =2.56,

Bp Cp= 1.62, =0.24,
Bg Cg

Bg =0.24,
By

(3.20)

(3.21)

while Cy does not contribute to the processes under con-
sideration.

C. Possible dynamics of symmetry breaking

The underlying theory is thus to satisfy the phenome-
nological condition (3.19). One plausible way to do this is
to assume that the functions A~, B~,Cq of Eq. (2.84) are
Regge behaved. In the triple-Regge limit (s »M »1)
inclusive cross sections behave as' —(s/M) '" ', where
a(t) is the linear Regge trajectory for the exchange pro-
cess under consideration. It is then possible to under-
stand qualitatively the relative suppression of charm-
production cross sections over others due to the conjec-
tured negative intercept of the charmed trajectory.
Though strictly valid for x near 1, such a feature provides
a reasonable rationale in the range of x even beyond x = 1.
Furthermore, the relation (3.20) shows that the leading
functions (Ap, Bp) of the diffractive transitions satisfy the
inequalities

Ap & Ag and Bp)Bg (3.22)

Within Regge behavior, relation (3.22) can be understood
to be the consequence of the displacement between the
Pomeron trajectory and the charge exchange p trajectory
[ap(0) = 1, ct (0)=0.58]. Similarly, the inequality

(3.23)

of Eq (3.21) is .consistent with the displacement between
the p and the K* trajectory with o. +(0)=0.3. The phe-
nomenological conditions

Cp & Cg, Bg &By (3.24)

correspond to the following four sets, respectively:

(+) (+) (+) (+) (+) (+)
(Ds, a «s, a r s, a r s, a «ds, a rfs, a )p

(+) (+) (+) (+) (+) (+)
(Ds, a «Fs, a «D s, a «F s, a «ds, a «fs, a )g

(+) (+) (+) (+) (+) (+)(+s,a rFs, a «D s, a r+ s, a rds, a rfs, a ) Y

and

(+) (+) (+) (+) (+) (+)
(Ds, a «Fs, a «D s, a «+s, a «ds, a rfs, a )C

This will yield four separate sets of functions ( A p, Bp, Cp ),

(Ag BgCg), (ArBrCr), and (AcBcCc) in Eq.
(2.84) instead of the single set (A,B,C ).

The overall pattern of Table V can then be understood
if these functions satisfy the condition

( Ap, Bp, Cp), ( Ag, Bg, Cg), ( Ay, B),Cr) »( Ac, Bc,Cc )

(3.19)

cr(K @~K x) &cr(K p~~ox)

within the present model.
Thus the overall qualitative feature of the symmetry

breaking indicates that the underlying theory should have
suitable mechanisms to generate linear Regge trajectories.
It is then possible that the residue functions, which con-
trol the dynamics of the theory of the present model have
expected Regge behavior consistent with Eqs. (3.19),
(3.22), and (3.23). Besides such features, these functions
should also satisfy certain approximate dynamical rela-
tions such as (3.20) and (3.21).

To calculate a Regge trajectory or such relationships is
beyond the scope of the present work. However, educated
guesses as to how the dynamics may work to generate
such trajectories are not impossible, viz. , Regge trajec-
tories with a(0) & —, are identified with quark exchange,
while the Pomeron with a(0) = 1 is identified with gluon
exchange. It will be worthwhile to incorporate such
features quantitatively in the model in future.

Let us also comment on the possibility of interpreting
the above results in terms of quark models specifically
pursued by other authors. In the Po model of Le
Yaouanc et al. ,

' the reason that charm-changing ampli-
tudes are smaller is due to much lower probability of cre-
ating a cc pair out of vacuum than the noncharmed ones.
Hence most of the symmetry breaking [Eq. (3.19) of the
text] can be understood in the model through such
differences in the pair-creation amplitudes, while the
remaining discrepancy can be attributed to the differences
in wave functions containing a charm quark.

D. EA'ects of gluons

Let us now discuss how Eq. (2.89) affects our results.
As it is expressed in terms of three effective parameters
(A~cos P+ Agsin P), (Buncos P+Bgsin P), and (Cqcos P
+Cousin P), all the sum rules Eqs. (3.1)—(3.18) remain
unaltered by this modification even though the individual
cross sections change in structure.

From Eq. (2.89) however one infers that such
modification is, in general, flavor dependent as the ratio of
the cross sections Eq. (2.89) and Eq. (2.84) (defined as

cr~+g and o ~, respectively) is expressible as

=cos P+R (u, v, tv)sin'P (3.25)

with

Q Ag + UBg +wCg
Rs(u, v, cv) =

Q Aq +UBq +wCq
(3.26)

for any process with definite flavor factors (u, v, tv) defined
in Eq. (2.84). Further work on this aspect of the model is
in progress.

of Eqs. (3.20) and (3.21), on the other hand, ensure the
experimental observations of the type

o(K —p~K —x) &cr(~ p~— ~ x)

and
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IV. CONCLUSIONS

In this paper we have addressed ourselves to a study of
the inclusive reactions 3 +B~C +X within a
constituent-quark model proposed by Mitra and pursued
by us recently. Besides charm and color degrees of
freedom, an attempt is being made to incorporate gluon
effect as well in the nucleon wave function. Our analysis
indicates that symmetries alone are not adequate, rather
the underlying theory should contain suitable mechanisms
to generate Regge-type behavior in the inclusive reactions.
It also suggests a flavor-dependent effect due to gluons.
Further studies at high-momentum transfer will hopefully

establish whether or not such gluonic effect is indeed of
perturbative origin.
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