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Langevin simulation of quantum chromodynamics (QCD) on a lattice is carried out fully taking
into account the effect of the quark vacuum polarization. It is shown that the Langevin method
works well for full QCD and that simulation on a large lattice is practically feasible. A careful study

is made of systematic errors arising from a finite Langevin time-step size. The magnitude of the error
is found to be significant for light quarks, but the well-controlled extrapolation allows a separation of
the values at the vanishing time-step size. As another important ingredient for the feasibility of
Langevin simulation the advantage of the matrix inversion algorithm of the preconditioned conjugate
residual method is described, as compared with various other algorithms. The results of a hadron-
mass-spectrum calculation on a 9'X lg lattice at /3=5. 5 with the Wilson quark action having two

flavors are presented. It is shown that the contribution of vacuum quark loops significantly modifies

the hadron masses in lattice units, but that the dominant part can be absorbed into a shift of the

gauge coupling constant at least for the ground-state hadrons. Some suggestion is also presented for
the physical effect of vacuum quark loops for excited hadrons.

I. INTRODUCTION

One of the ultimate goals of numerical simulations of
lattice quantum chromodynamics is an explicit calcula-
tion of strong-interaction physical observables from first
principles. A full incorporation of the quark-vacuum-
polarization effect, however, necessitates evaluation of the
quark determinant arising from the Gaussian integral over
the quark field, which is an extremely time-consuming
procedure. Because of this technical reason the hadron-
spectrum calculations made so far have employed the
quenched approximation in which the dynamical quark
loop effect is ignored without proper justification.

Recent developments in fast computer technology and
significant progress made in the last few years in sirnula-
tion techniques, however, have made it possible to attempt
a full QCD simulation including the quark-vacuum-
polarization effect and to examine the validity of the
quenched approximation. The continuous progress being
made in this direction leads us to hope that a full-scale
calculation of hadron dynamics could become possible
within the next few years.

The inclusion of dynamical quarks has of course been a
major problem from the early periods of lattice QCD
simulations and the proposals for this purpose are quite
numerous. Among them the methods ' based on sto-
chastic quantization of the system with the Langevin
equation have recently gained popularity for two good
reasons. In these methods the cost of including quark
loops is reduced to solving a linear equation of the form
Dx =g with D the lattice Dirac operator once or twice per

update of the entire lattice. This is in contrast with the
variants of the Metropolis method such as the pseudofer-
mion algorithm' ' which requires evaluation of the nonlo-
cal quantity tr(D '6D/5U) for each link update. (In this
respect the Langevin procedure is similar to the micro-
canonical simulation. ) Another important advantage of
the Langevin simulation is that the property of systematic
errors is relatively well understood and the errors seem
controllable. In fact the only source of the systematic bias
in practical applications is the finiteness of the Langevin
time step in solving the stochastic evolution equation and
the magnitude of such biases can be examined theoretical-
ly with the aid of the Fokker-Planck equation. In the mi-
crocanonical method it is in general a difficult problem to
control systematic biases that arise from the lack of
sufficient coverage of the energy surface in a short time in-
terval. In any case this method has to rely on the
(unproven) ergodicity assumption for its validity. In order
to remove this difficulty some authors devised a hybrid
approach, where the stochastic noise is applied to the mi-
crocanonical system to ensure the ergodicity. In practical
applications, however, the method is quite close to micro-
canonical simulation in its nature, and hence the issue of
ergodicity still remains. " In the pseudofermion method'
the ratio of the quark determinant is approximated by the
leading term in the variation of the gauge variables. In
practical applications error also arises from the violation
of the detailed balance caused by the fact that the pseu-
dofermion variable is often not refreshed till all the gauge
link variables are updated. A finite acceptance of the hit-
ting may also be a source of systematic bias, especially
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when the system is close to critical. '

The Langevin equation for the gauge system is exten-
sively discussed in Ref. 9 and has been applied for numer-
ical simulations. ' The extension to full QCD including
quarks uses an effective action' given by

S,tr( U, Y) =Sg,. „g,( U)+ Y t Y,
D (U)D(U)

with Y the pseudofermion variable. ' The derivation of
the Langevin equation is then straightforward.

The numerical implementation of the Langevin equa-
tion requires a discretization of the fictitious time. ' Al-
ternatively one may try to set up, from the start, a
discrete-time stochastic process which simulates full QCD
with the effective action given above. In either approach,
the Langevin equation with a finite time step A~ leads to a
limiting distribution of the form

p„=exp[ —S,tr+ArS)+(b. r) S.+ ],
that diff'ers from the desired form exp( —S,tr) by the term
0(b,r). It may seem advantageous at first glance to re-
move the 0 (b,r) term by some higher-order discretization
of the Langevin equation. For the pure gauge system one
can in fact do so by a second-order formalism, ' ' ' or by
a redefinition of the gauge variables. In the presence of
quarks one can still remove the term O(br) for a certain
discretization of the quark sector. We note, however,
that the second-order discretization is not quite advanta-
geous for light quarks. An analysis of the Fokker-Planck
equation shows that the residual error in p from
exp( —S,tr) is of order b, r/A. or (Ar/A)with A, . the ei-
genvalue of the Dirac operator y &D. At small quark
masses, the minimum eigenvalue decreases and the ratio
A~/X may exceed unity. In such a case the long-
distance modes that satisfy Ar/k ~ 1 may be seriously
distorted and the second-order formalism obviously does
not improve the situation. (For the gauge sector the
finite-time step suppresses ultraviolet modes. This seems
to be practically harmless, because the ultraviolet modes
shorter than the lattice spacing are irrelevant quantities on
the lattice. This is why the second-order formalism works
well for the pure gauge sector. ) Under these cir-
cumstances the best way to control the systematic error is
to make simulations with the first-order formalism at
several values of A~ and carry out extrapolations in A~
using the behavior of physical quantities F =I"o+A~F~
expected at sufficiently small A~.

Another issue concerning the systematic error is the
dependence of their magnitude on the discretization
schemes of the quark part of the Langevin equation.
There is a continuous set of possibilities, and one extreme
is naive discretization in which a simple white noise is
added to Y at each time step. In the other extreme the Y
variable is made proportional to the white noise and hence
eliminated from the equations. All these schemes have er-
rors of order A7. /k in the first-order formalism, and it is
not a priori clear which scheme has less problems with
systematic errors. After some trial runs we found that the
latter method has smaller systematic errors for small
quark masses and used it for our production runs.

A very important ingredient for the feasibility of the
simulation is an efficient algorithm for solving the linear
equation Dx =g, on which the bulk of computer time is
spent. A standard solver for such equations is the
conjugate-gradient (CG) algorithm. ' However, this algo-
rithm is not fast enough for full QCD simulations, espe-
cially for light quarks, because the speed of convergence
of the CG method is controlled by the minimum eigenval-
ues of D. A general strategy to alleviate this problem is
the preconditioning of the equation which promotes the
minimum eigenvalues. One such method is the Fourier
acceleration technique. Our method is based on an in-
complete LU decomposition' making use of the y-matrix
structure of the Wilson quark action. ' For the solver we
adopted the conjugate residual algorithm, ' a variant of
the CG method. Further improvement was achieved by a
trick similar to successive-over-relaxation- (SOR) type ac-
celeration. Altogether an improvement factor of about 15
was attained in computer time over the standard CG
method.

In addition to the technical problems discussed above
there also appear some physical problems which are not
encountered in the quenched simulation. The problem of
the finite-size effect arising from fake quark loop contribu-
tions becomes much more severe in the presence of the
dynamical quarks. This is not only due to the fact that
quark loops render the gauge configurations more ordered
and the lattice size effectively shrinks toward a light-quark
mass, but also by the fact characteristic of the Wilson
quark action that the fake loop contribution continuously
increases for any value of the coupling constant when the
hopping parameter approaches the critical value. There-
fore, for a given lattice size, a careful choice of the cou-
pling parameter is necessary to avoid the fake loop effect
even at the largest hopping parameter to be used in the
simulation.

Another interesting physical problem is that excited
states of hadrons are generally not stable in the presence
of dynamical quarks and hence their propagators should
be qualitatively modified by the continuum contributions.
The extraction of hadron masses would not be a trivial
problem in this situation. Unfortunately the efficiency of
our algorithm is not quite enough to explore this interest-
ing region and the quantitative study of the effects of de-
cay will be left for future investigations.

In this paper we present a full account of our attempt
at Langevin simulation of full QCD with the Wilson fer-
mion, expounding on our earlier report already published
elsewhere. ' The technical problem which arose in our at-
tempt and various checks which have been carried out to
ensure the reliability of the result are discussed in detail.
We study the hadron spectrum ' for two quark Aavors
with the same hopping parameter. The gauge group is
SU(3). We made a simulation with various sizes of lattice
from 4 0&8 to 9 &(18. For production runs we employed
a 9 )& 18 lattice and chose the gauge coupling
/3=6/g =5.5. Our lattice size 9 &&18 is probably not
large enough to extract quantitative predictions for the
hadron mass spectrum, especially for baryons. Neverthe-
less semiquantitative trends of the quark-vacuum-
polarization effect are already apparent in our calculation.
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The numerical calculation was carried out on HITAC
S810/10 vector computer at KEK with the central
memory of 128MB and the peak speed of 315Mflops.

In Sec. II we present the formulation of Langevin simu-
lation and discuss the systematic errors characteristic of
the formalisms. The method for solving the linear equa-
tion Dx =g is given in this section with some additional
discussions deferred to the Appendix. Our simulation is
described in Sec. III. We discuss in detail the checks
which we have made to ensure the reliability of the simu-
lation. The result is presented in Sec. IV and its physical
implication is discussed in Sec. V. Section VI is devoted
to conclusions.

II. FORMALISM AND METHOD OF COMPUTATION

A. Langevin equation and systematic errors

Ss,„s,(U)= ——g tr(U~+ U~) .
6

(2)

The fermion determinant is generated by the Gaussian in-
tegral over the pseudofermion variable Y which is well
defined if the operator M is positive Hermitian. This is
ensured if one doubles the number of flavors and writes

The eff'ective QCD action is given by

S,ff(U, Y)=Ss,„s,(U)+ g Y„M '(U)„„Y„

where U is the gauge link variable, M(U) some lattice
Dirac operator, and the complex scalar field Y„denotes
the pseudofermion variable on site n. In our present
analysis we take the single-plaquette action for the gauge
field

~(n j S +g —1/2 (n)6
5U(r„)

Y(r„+)) = [1—b,rB( U(r„) )]Y(r„)
)/2C( U( ))g)n)

(9)

where the indices referring to the site n or link l are
suppressed, and q

"' and g
"' are the Gaussian noise of

width 2. The functions B and C in Eq. (9) represent the
freedom in discretizing the Langevin equation, and they
are subject to the condition

BM+MB —2CC =0 (10)

to ensure the correct distribution for the quark sector at
b,~~0.

The simplest choice of B and C is

(A) B =M ', C= 1,
which corresponds to the naive discretization ' of the
Langevin equation (6). Another extreme choice is

(B) B=br ', C=hr ' M' ' (12)

proposed in Ref. 6. In this case Y does not evolve and is
written directly in terms of the white noise. As a result
the Langevin equations reduce to a single equation for the
gauge variable with a bilinear noise term. We call the
schemes (A) and (B) pseudofermionic and bilinear noise
schemes, respectively.

The distribution of field variables generated by the
Langevin equation satisfies the Fokker-Planck equation.
Using a generic notation P)' for field variables with n the
time step and i the site and other indices, the distribution
function p'")(P) for the Langevin equation of the form

with

M=D D (3) y(n+1) y)n)+g(n)

satisfies

D= 1 —K g [(1—y„)U&+(I+y„)U& ], (4) (n +1)(y) (n)(y)

the Wilson quark action satisfying detD =detD. The
Langevin equation is given by

) d . 5
iU)(r) U—)(r)= i S—,ff(U(r), Y(r))dr 5U)(r

+g)(r),

'
a a ((~ ~ )p'"') (13)

1 =- 1 I l
' ' ' I(

where the angular brackets denote the average over the
noise. Since the right-hand side is a power series in A~,
the limiting (n ~ oo ) distribution p„should behave with
respect to A~ as

Y„(r)= —M '(U(r))„„Y„(r)+g„(r),
d7-

p =exp( —S,ff
—ArS) — ) . (14)

U(r„+, ) = U(r„)e"~'"; (8)

where r denotes the fictitious time and 5/5U)(r) is the
derivative over SU(3). The white noise rt)(r)=q)t' is
SU(3)-algebra valued with t', a =1—8 the generators of
SU(3) (trt't =5' ) and g'„=(P') has Dirac index a= 1 —4
as well as color index i =1—3. They are normalized as

(rt)(r)q) (r') ) =25'"5)) 5(r r'), —

(P'(r)g'„'. (r )') =25 t'5J5„„,5(r ') . —

Equations (5) and (6) may be discretized in steps of Ar as

In the pseudofermion scheme the 0 (hr) deviation S) is
local and the part depending on Y is given by

S, = ——,
' Y M (U) Y+2 trM '(U) . (15)

Hence the magnitude of the O(b, r) term ' relative to
S,g is A~/k with k the eigenvalue of the Hermitized
Dirac operator @AD. One can remove the S] term using a
second-order Runge-Kutta formalism. An analysis of
the Fokker-Planck equation (13) shows that the residual
error is of order (b.r/A, ) relative to S,ff.

With the bilinear noise scheme it can easily be shown
that the residual error is also O(h~/k ). The removal of
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the O(b, r) term is not straightforward. Particularly trou-
blesome is the so-called nonintegrable term, which arises
from the nontrivial contraction of the bilinear noise terms
in {13) and cannot be integrated by a local function of
fields. As was shown in Ref. 25 the removal of this term
requires a modification of the gauge white noise in (8) of
the form

10

( a ) WILSON LOOP p =5.0
4 x 8

fx1

I rl'Er i
[

1 i i i

t

i i I i

[
I r i r

[
I i r I

t

r f I I

with

g) + a~Ht("q(b {16)

H(l" = „'(rD —'V(D(2$2D 'Vr Dgr +(a~b),
where the white noise gr and gq are independent and
V& =6/6U&. One can easily check that the square of the
second term on the right-hand side of (16), after averaging
over gr, gq, and &I, is of order (b, r/A. ) V, where the lattice
volume V arises from the sum over l'. For V reasonably
large, unless one takes an unfeasibly small A~, this term
substantially widens the total width of the noise term (16)
and hence effectively reduces the gauge coupling P in an
uncontrollable manner. We have checked these points by
trial runs on 4 )&8 lattice with br=0. 01 at P=5.0. We
found that the width of (16) is increased in some cases in

excess of 50% and the Wilson loops decreased by
15—40%. The second-order formalism therefore does not
work in practice.

The integrable local terms of O(br) in the bilinear
noise scheme can be removed by a second-order Runge-
Kutta algorithm, which was originally devised for the
pure gauge sector, without introducing the problem dis-
cussed. Since the integrable terms give rise to a significant
systematic deviation even in the pure gauge sector and
hence also at a small value of K (see below), it is
worthwhile to remove at least these terms. The partial
second-order formalism for Nf dynamical quark flavors is

given by

U(n + 1//2) yI (n) 'Xo

&o = r~r[VSg, „—s, ( U'"') Nf Vgr lnD( —U "')gr]+ br'/ g,
(18)

U(n +1) ~r(n) '(I o+&+I )

e

&g&[Vg {Urrr+1/2)) N Vgti~( U(n +12/)g ]

10—
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015» i i

t
i i i i

t
r r

(bi
&

Re (Q)(&Qy+Qz)
1
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t
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]
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t
I i i I
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b
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where the independent white noises gr, jq, and g=q't'
are normalized as

(20)

and

{21)

where Pr+yl ——cz/6 with cz N the quadratic Casimir e——i-
genvalue for SU(N). (In our calculations we used

P, =y, = c2 /12. ) The systematic error of this scheme is
still of order A~ due to the nonintegrable terms.

FIG. 1. Comparison of various Langevin schemes. Test runs

are made at P=5.0 on a 4'X8 1attice with Xf=2. About
3&(10'—10)& 10' sweeps are made at each parameter set. (a) Wil-

son loop of the size 1&(1 and 2&&2 as a function of K. Solid

points denote the bilinear noise scheme in a partial second-order
formalism with A~= 10 (circle) and h~= 10 (square). Qpen
points are for the second-order pseudofermion noise scheme with

Ar = 10 (circle), A~= 5 &( 10 (triangle), and A~= 10
(square). The periodic boundary condition is imposed. The
thick curve represents the Wilson loop expected for 6~=0. (b)

Polyakov line averaged over the three spatial directions. The
meaning of the symbols are the same as in (a) except for crosses
which denote runs with pseudofermion scheme (A~= 10 ) with

the antiperiodic boundary condition. Curves are drawn to indi-

cate the contribution by genuine finite-size effects.
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The numerical implementation of the above formalism
is straightforward, including vectorization of the code.
The exponentiation of a 3&3 traceless Herrnitian matrix
L~e' was done with the analytic expressions for the ei-
genvalues and eigenvectors provided by the Cardano for-
mula.

It is not a priori clear which fermionic scheme results
in a smaller error for a given A~. We then have made test
runs with various schemes on a 4 & 8 lattice changing the
values of hr and K (f3=5.0). Figure 1(a) compares the
Wilson loop obtained from the second-order pseudofer-
mion scheme and the bilinear noise scheme in the partial
second-order forrnalisrn. The solid curves represent the
expected value with 6~=0. The deviation due to finite
A~ is apparent. It is more serious with the pseudofermion
scheme than with the bilinear noise scheme; the Wilson
loop with the former bends down for large values of K.
On the other hand, the Wilson loop at least continues to
increase with the bilinear noise scheme, though the devia-
tion at our largest K is sizable with 6~=0.01. From
several additional runs on 8')&16 lattice we found that
these trends are independent of the lattice size. In Fig.
1(b) we have shown the real part of the Polyakov line
(II„)= —,

' tr(ii U„„) averaged over its transverse directions.
It is apparent that the systematic bias in the pseudofer-
mion scheme increases the value of the Polyakov line
beyond the genuine finite-size effect represented by the
solid curve. (We confirmed that the latter disappears on a
8 &&16 lattice. ) This fake loop contribution leads to a
significant difference in hadron propagators between
different boundary conditions.

If one adopts the first order, instead of the partial
second order, in the bilinear noise formalism there ap-
pears a significant systematic deviation even at small
values of K, as is expected from the analysis for the pure
gauge system. Based on the considerations given above
we take the partial second-order bilinear noise scheme for
our production runs.

B. Incomplete LU conjugate residual (ILUCR) method

The most time-consuming procedure in our simulation
is the solution of Dx =g, which has to be carried out
twice per gauge update. A standard procedure is to use
iterative methods such as the conjugate gradient (CG),
Gauss-Seidel, or successive-over-relaxation (SOR)
methods. The last two algorithms, however, fail to con-
verge when the hopping parameter is nearly critical.
Therefore the CG method has been regarded as suitable.
We used the ILUCR method in our simulation, which is
a variant of CG improved by a preconditioning. The de-
tailed description of the algorithm is given in Ref. 18,
and here we only sketch the outline. The same algorithm
is also used when we calculate quark propagators on a
given gauge configuration. A comparison of various algo-
rithms applied to our problem is discussed in the Appen-
dix.

Let us consider an equation of the form

We first make an incomplete block LU decomposition,

D=LU —R, (23)

L;, =D;, (i )j),
U;~=D,) (i &j), (24)

provides a desired incomplete LU decomposition. For an
adjacent (i,j) pair with i &j, the relation

(L U);, = g L;i, UI,, +L;; U;, =D,)
/' =—1

holds since three different sites (i,j,k) cannot be mutually
adjacent at the same time. In a similar manner we have,
for adjacent pair (i,j ) with i &j,

(LU);, =D;, .

For diagonal blocks

(L U);; = g L,i Ug; +I=I,
jc =1

where the sum over k vanishes due to the projection
operator (1+@„)in the Wilson fermion. The error A;~ has
nonvanishing elements of O(E ) for next-nearest-neighbor
pairs (i,j )

Using this decomposition as a preconditioner we solve

(L U) 'Dx = (L U) (25)

instead of (22). The matrix (LU) 'D is close to diagonal
and a rapid convergence of iterative solvers is ensured.

For the solver we adopted the conjugate residual (CR)
algorithm, ' a variant of the CG method. In this algo-
rithm the norm of the residual vector ~~Dx —

g~~ is mini-
mized over the affine space x,.+ (p, , ,p, . ~, . . . , p, , q )
with p, , an appropriately chosen trial direction vector in
the vth iteration. The algorithm consists of iterative steps
starting with

r=Dx, p=r,
and repeating

a =(r,Dp) l(Dp, Dp),

x =x+op,
r =r —Dp, update p,

(26)

till convergence is achieved, where a is so determined as
to minimize the norm of the new residual ~~~r

—aDp~~. In
principle the new p can be chosen to be fully orthogonal
to all the previous p's with respect to D D so that the al-
gorithm gives the exact solution in finite steps, but here
we choose p to be orthogonal to only the last k() 0)
direction vectors to save computer memory, viz. ,

where L (U) is a lower (upper) triangular matrix in the
lexicographic ordering of the site index i and R represents
the error of the decomposition. For the Wilson fermion
D;; =I (unit matrix with respect to Dirac and color in-
dices) and D;~ (i&j ) is nonvanishing only if i and j are ad-
jacent. We now show that the triangular separation of D
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pv=rv+Ptpv —i+ ' ' ' +Pkpv (28)

with

PJ ———(Dr, , ,Dp„j ) l(Dp, &,Dp, z )

(j =1,2, . . . , k) . (29)

The convergence of this algorithm is ensured if the Her-
mitian part of D is positive difinite.

As can easily be seen in (29), the CR algorithm needs
only one multiplication Dr, rather than two in the CG
method for D D. Therefore, if the number of iterations
necessary for the required accuracy is the same for both
methods, the CR method may give the computer time
gain by a factor of 2.

We found that the convergence rate can be increased
further by an SOR-type acceleration. This is a trick of re-
placing the hopping parameter K in the LU decomposi-
tion with cK with c chosen appropriately. (Since the
preconditioner is in principle arbitrary, the hopping pa-
rameter in the LU decomposition need not be equal to K.)

This acceleration can be considered as approximating cD
by L, U. The residual R =LU —cD now has nonzero di-
agonal entries

R;; = —(c —1)I

of various methods (see also Fig. 27 in the Appendix).
This is an example with a point source g;=5;o on a
9 &&18 lattice for a quenched gauge configuration with
P=5. 5 and K =0.18. (The number of elements in x is
157461.) The critical hopping parameter is K, =0.1844
and m a =0.47 at K =0.18. The advantage of the
preconditioning is apparent. The preconditioned conju-
gate residual (ILUCR) converges about 15 times faster
than the standard CG or CR methods. The convergence
of the latter is slow in the beginning and becomes faster at
several hundred iterations when the correct direction vec-
tor is found by the solver (see Fig. 27 in the Appendix).
In Fig. 2 one can also see a merit of the SOR-type ac-
celeration; an extra 30% improvement was achieved with
c =1.2. We found that this acceleration is particularly
e%cient for the "bad" gauge configurations for which one
needs a large number of iterations for convergence. We
used the value c = 1.2 for our production runs.

C. Hadron propagators

To obtain hadron propagators, we first find the quark
propagator G,„on a given gauge configuration by solving

as well as Dnm Gmn' —~nn' (30)

10 E F (CG)

Rj=c K (1—y„)(1+y,)U;„U, +

for next-nearest-neighbor sites i and j =i +p —i. When
the gauge field U as well as the solution vector x are near-
ly aligned, the effect of those two errors tend to cancel
with each other so that (LU) 'D is closer to a constant
multiple of I.

We present in Fig. 2 a comparison of the convergence

with the ILUCR method imposing the periodic or an-
tiperiodic boundary condition. The quark propagators
thus obtained are combined in a way appropriate for
correlations of hadron operators 0 =uy&d, 0 =uyd,
Os ——ud, O~ =uyy5d, O~ ——('uCy, d)u, and Og
=('uCyu)u. Here the summation over the color and
Dirac indices, and also the color antisymmetrization for
baryons with the factor 1/3! are understood implicitly.
The average over the ensemble of gauge configurations
then gives the hadron propagators

10

G(CR)

H (SOR)
GH(n, n') = f [dU][dqdq]OH(n)OH(n')ez

C)
10 dU OH n 0H n' qdetD U e

10 CR)
(31)

10
0 50

I ) I I I I I I I I I

100 150 200
[TDURATIONS

FIG. 2. Convergence of the iteration procedure with various
matrix inversion algorithms. Comparison is made of the behav-
ior of the deviation from the true solution as a function of the
number of iterations. The gauge configuration is taken from a
quenched simulation on 9 && 18 lattice with P=5.5 (K, =0.1844)
and the hopping parameter is chosen to be K =0.18. The right-
hand side g is a point source and the starting value xo is set
equal to g. The symbols denote A D: ILUCR (A: c =—1.0; 8:
c =1.1; C: c =1.2; D: c =1.3). E and F: CG [E: least-square
(LS) type; F: least-norm (LN) type]. G: CR. II and I: SOR
[H: co=0.7; I: co=1.0 (Gauss-Seidel)]. For more explanations
see the Appendix. The behavior of convergence with more itera-
tions is shown in Fig. 27.

with OH (H =7r,p, S, A, N, b ) the hadron operator defined
above. The Green's functions for the scalar- and axial-
vector-meson propagators vanish in the nonrelativistic
limit, for they pick up the interference between the large
and small Dirac components. (A nonlocal operator is
necessary to obtain a Green's function nonvanishing in
this limit. ) All other Green s functions have a nonvanish-
ing nonrelativistic limit. To extract masses we project out
the zero-momentum states by the summation over the
spatial sites:

GH(t)= g GH((n, t), (0,0)} . (32)

For baryons we use the positive-energy components pro-
jected out by (1+F0)/2.

In the presence of dynamical quarks excited states of
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hadrons are generally not stable and the hadron propaga-
tor should behave as

GH(t)= g e "+ f dmcrH(m)e
mo

m; &mO

+(contributions from t~N, —t) . (33)

In the region of the hopping parameter that we could ex-
plore in our simulation, however, we always find

mz &2m and mq ~m~+m . We therefore have ignored
the continuum contribution when extracting hadron
masses.

The chiral order parameters (fg) and (fyqP) were
calculated from the expectation values of tr6, „and
tr(G„„yz). One can of course use the explicit evaluation of
G„„made for hadron propagators. An alternative is to
use the relation

1

V„,,

—g g„D '„„g„=2trD (34)

valid for large V and recall that D 'g is calculated at
each Langevin update. We confirmed that the results of
the two calculations agree very well.

The latter method can also be used for hadron propaga-
tors except for the wrong relative sign ("Bose" statistics)
of contractions. The fluctuations, however, are large in
actual simulations.

ron propagators. We see in Fig. 3 that about 1500 itera-
tions are sufficient for equilibration when started with our
initial configuration and discarded the initial 2000 itera-
tions. As a further check, averages of physical quantities
over the interval 6~=10 were calculated to detect a sys-
tematic drift with long periods and we did not find any
such drift. For successive runs with 6~=0.02 and 0.005
similar analyses led us to discard the first one-third of
sweeps. We have analyzed then 30—20 configurations per
parameter set as summarized in Table I.

We also made 5000—6000 Langevin sweeps with
b,r=0 01 usin. g the pure gauge action at /3=5. 5 and at
some other required /1's (see Sec. V) to compare the result
of full QCD with the quenched case (see Table I). Some
physical quantities calculated on these gauge
configurations are compared with those on the gauge
configurations generated by the standard Monte Carlo
procedure to confirm the absence of systematic biases in
the Langevin results.

Simulations are also made at /1=4. 0 and 5.0 on a
smaller lattice 6 & 12 to study the behavior of the critical
hopping parameter K, (P) for Nf =2 and 4.

Throughout our work the whole calculations are made
with the 64-bit precision, including storage of the gauge
configurations, to avoid round-off errors. With the pur-
pose to extend our calculation to a larger lattice we have

10

(0 j WILSON LOOP K — 016 h7 — 001

III. SIMULATION
10 0

1x1

A. Choice of parameters
-l

10 2x2

We employed a lattice of size 9 )&18 with the periodic
boundary condition for both gauge and quark variables.
We have also made some runs with the antiperiodic
boundary condition in the spatial directions imposed for
the quark variables to check the finite-size eff'ect. We
study the case of two flavors N~ ——2 with the same hop-
ping parameter K [see Eq. (3)]. The bulk of our calcula-
tion is made at /3=6/g =5.5. This value is above the
near transition of the pure gauge system. We generated
gauge configurations at five values of the hopping parame-
ters: K =0. 14, 0.15, 0.155, 0.16, and 0.162. (At the larg-
est hopping parameter K =0. 162, m „a-0.43, and
m~/m = 1.5.)

The Langevin time step is chosen to be 6&=0.01, 0.02,
and 0.005. The starting configurations were generated by
making matrix Gaussian random numbers q=q't' of ap-
propriate width and exponentiating them to obtain the
gauge link variables U =e'~. We made 5000 iterations at
each K with b,r=0.01 (r=0—50), followed by 1500 and
6000 iterations with b,r=0.02 and 0.005 (r=50 —80), re-
spectively, starting from the last configurations of the
b,r=0.01 runs. [For K =0. 16, we made an additional
1000 sweeps with Dr=0. 01 (r=50 —60) for checks of
thermalization and round-off errors. ] The Wilson loop
W(L XL) and the Polyakov line (0„) (p, = 1 —4) are cal-
culated at every 6~=0.5 and 6~=0.05, respectively, and
the hadronic quantities at every 6~=1. The thermaliza-
tion is checked by inspecting both Wilson loops and had-
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FIG. 3. Therrnalization of the Wilson loop (a) and the pion
propagator (b) at K =0.160 with 6&=0.01. (~ is the Langevin
time. ) In our simulation average is taken from ~=20 for physi-
cal quantities.
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TABLE I. Number of gauge configurations analyzed in our Langevin simulation at P=5.5. The
numbers in parentheses are the range of 7 where configurations are collected. In the last column, p (ap)
stands for the periodic (antiperiodic) boundary condition imposed on the quark field in the spatial direc-
tions. The runs with 67.=0.02, 0.005, and those with the antiperiodic boundary condition are started
from the configurations at ~= 50 of the Dr=0. 01 (p) runs.

67.=0.01
(a) Full QCD

67.=0.02 6~=0.005 BC

K =0.14
K =0.15
K =0.155
K =0.16
K =0.16
K =0.162

30 (7 =20—50)
30 (7 =20—50)
30 (7.=20-50)
40 (7.=20-60)
20 (~=60-80)
30 (7 =20-50)

20 (7.=60-80)
20 (7 =60-80)

20 (7 =60-80)
20 (7 =60-80)

20 (&=60-80) 20 (7 =60-80)

P
P
P
P

ap
P

5.5 5.62
(b) Quenched (QCD)

5.65 5.73 5.75 5.79

40
(7 =20-60)

30
(7 =20-50)

30
(7.=20-50)

20
(~= 10—30)

30
(7.=20-50)

30
(7-= 20—50)

examined the accuracy when the 32-bit precision is used
for the storage. (Floating point vector operations always
use the 64-bit arithmetic in HITAC S810/10.) We found
that it is crucial to make reunitarization of the gauge link
matrices in the course of Langevin sweeps; if the reunitar-
ization is made, say, at every 25 sweeps, no systematic de-
viation is seen for physical quantities. For example, in the
32- and 64-bit test runs at )33=5.5, K =0. 16 with
6~=0.01, both runs starting from the same configuration
at r = 50, f3= 5. 5, K =0.16, and extended over 1000
sweeps, the change of Wilson loop averages and hadron
masses are smaller than the statistical error by a factor of
10-50.

B. Pseudorandom-number generation

The Langevin simulation uses a fixed number N~ of
random numbers at each time step, e.g. , NR ——80 times
the lattice volume for the partial second-order bilinear
noise scheme. Hence this method might be quite sensitive
to the (quasi)periods of the random-number sequence gen-
erated by a recursive algorithm. For our simulation we
used the multiplicative congruence method based on

x„+,—5 "x„(mod2 '). In order to avoid the influence of
a relatively short quasiperiod 2' (generally 2( '~ 1 for
modulus 2 ) characteristic of this algorithm, we generated
several random numbers in addition to those needed per
sweep and discarded them. We have checked the relia-
bility of this procedure by comparing Wilson loops in the
pure gauge sector with those from the standard Monte
Carlo simulations. We also made runs with the pseu-
dorandom numbers generated by the M sequence based
on the primitive polynomial x +x +1 whose period
is 2 —1. We found good agreement among the three
runs when the above procedure was used for the multipli-
cative congruence method, whereas the result of runs
without it did not agree at all.

In order to convert the uniform random numbers to the
Gaussian noise, we used the Box-Muller method since it
is bias-free and can be easily vectorized.

C. Convergence of ILUCR

TABLE II. Numbers of ILUCR iterations (N~R) necessary to
satisfy the requirement ~~Dx —g~ & 1.0, and numbers of gauge
sweeps (NG) per one CPU hour on HITAC S810/10. CPU time
necessary for the evaluation of observables is not included.

NCR NG (sweeps/h)

pure gauge 810

0.14
0.15
0.155
0.16
0.162

6
8

10
20
55

150
127
105
65
27

We adopted the version ILUCR (k =1) with c =1.2.
The convergence is monitored by the norm of the residual
vector ~~r~~

= ~~Dx —g~~. In Figs. 4(a) and 4(b) we show an
example of the convergence of ILUCR in our gauge
sweeps at P=5. 5 and IC =0.16 in the br=0. 01 run. The
convergence is quite smooth, and any desired accuracy
can be attained by continuing the iteration till an ap-
propriate residual norm is realized.

In the production runs we made the iteration until

~~Dx —
g~~ & 1.0 which corresponds to l%%uo accuracy in

each element of the vector x. We have confirmed that a
more severe stopping condition on the residual norm does
not modify hadron propagators beyond statistics. We
show in Table II an approximate number of iterations
NcR necessary to satisfy the condition

~ ~

Dx —g'
~ ~

& 1.
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FIG. 5. Inverse minimum eigenvalues of the Dirac operator
y5D as a function of the hopping parameter K on ten gauge
configurations in the interval ~=40—50 of the 5~=0.01 sweeps.

0
s I. . . , I. . . a

20 40 60
I TE RATION

80 100

FIG. 4. Convergence of ILUCR in the gauge sweep
(K =0.16, 6~=0.01) as a function of ILUCR iterations. (a) Re-
sidual norm vector squared IIDx —gii', (b) behavior of several
elements of the solution vector.

since Aw/A, ;„controls the dominant part of the sys-
tematic error at large distance.

To estimate A. ;„we used a simpler power method and
occasionally the Lanczos method. In Fig. 5 we show

' as a function of K with 6~=0.01. We see that
b~/k;„~ 1 already at % =0.155, and hence expect some
distortion of gauge configurations due to the finite
beyond this value of K. Indeed this is clearly seen in Fig.
6, which exhibits k,„' as a function of A~ at K =0. 15
and E =0. 16. For K =0.15, 1/k;„does not change ap-
preciably when we decrease A~. On the other hand, for
K =0.16, 1/k;„ increases rapidly toward a smaller value
of A~. This means that infrared modes, which have small
eigenvalues A, (A~, become gradually Hedged with de-
creasing A~. We will observe in Sec. IV A that large-size
Wilson loop suffers strongly from this suppression of the
infrared modes.

NCR -mq, a =0. 8 —1.0, (35)

IThe numbers of iterations necessary for the two inver-
sions in (18) are approximately the same. ] If one defines
the quark mass by m~ =(I/2a)(K ' —K, '), the number
of iterations NCR increases as

E. Finite-size eft'ect

Finite-size effects are divided into two classes. The first
one concerns the gauge configurations and arises from

80

60—

40—

20—

0
0

for small m~ (K~0.155 or m~ 50. 17a '=250 MeV for
the value a '=1.6 GeV found in our analysis). This m~
dependence agrees with the estimate given in Ref. 30. For
a larger m~ the index becomes smaller (a-0.3).

Naturally we set a more severe condition IIDx bII—
5 10 when ILUCR is used to find the quark propaga-
tor with a point source b. This corresponds to 0.1% ac-
curacy even for the small elements of x at sites far from
the location of the point source.

On our 9 X18 lattice a single ILUCR iteration with
the ILU preconditioning vectorized by a hyperplane
method " takes 1.23 sec on HITAC S810/10. This may
be compared with 0.66 sec for the standard CCx and 0.39
sec for CR.

K =0.16

K = 0.15

0.005 0.01 0.015 002 0.025 0.03

D. Eigenvalue analysis

It is important to know the magnitude of the minimum
eigenvalue k,„of the Hermitized Dirac operator y5D,

FICx. 6. Inverse minimum eigenvalues of the Dirac operator
yqD at K =0.15 and K =0.16 as a function of the Langevin
time step A~.
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fake dynamical quark loops wrapping around the lattice
in spatial directions. A large contribution of such loops
implies that the gauge field fluctuations more resemble
those at finite temperature rather than those at zero tem-
perature required for spectroscopic studies. This problem
seems more severe with the Wilson fermion and hence
has to be checked carefully.

In our work two kinds of checks have been made. We
examined whether the distribution of the Polyakov line in
the spatial direction 0, ~, accumulates around the origin
on the complex plane. As seen in Figs. 7(a) and 7(c) no
signature is observed for the deviation which signals the
effect of fake loop contributions. A more precise and
quantitative check is to measure physical quantities on the
gauge configurations generated with the antiperiodic

boundary condition for quarks in the spatial directions.
The contribution of spatial fake loops changes sign [e.g. ,
positive values of 0 are now favored as compared to nega-
tive for the periodic boundary condition as is easily seen
from the hopping-parameter expansion, which gives an
effective action for 0 of the form

L,detD =exp( —yK 'Q+ )

with L, the spatial lattice size and y a positive constant
for the periodic boundary condition; see Fig. 1(b) in this
connection]. Hence the fake loop effect appears most
clearly as the difference in physical quantities between the
two boundary conditions. Since the gauge sweep is a
time-consuming procedure, we generated the
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FICx. 7. Distribution of Polyakov lines in the spatial direction averaged over its transverse directions during the course of gauge
sweeps (P=5.5, i5.r=0 01, 9'X18 lattice). (a) .K=0. 16 with the periodic boundary condition for quarks (20&r&60). (b) K=0.16
with the antiperiodic boundary condition (60 & ~ & 80). (c) K =0.162 with the periodic boundary condition (20 & ~ & 50).



834 M. FUKUGITA, Y. OYANAGI, AND A. UKAWA 36

GH(t)= g GH((n, t), (0,0))cos(n„.p;„)

Xcos(n~.p;„)cos(n, p;„) (36)

instead of (32). The result will be given in Sec. IV when
hadron propagators are presented.

configurations with the antiperiodic boundary condition
only at K =0.16 with 6~=0.01. As shown in Table III
the averages from the periodic and antiperiodic runs are
consistent within statistical errors. We also plotted A, ~,
for the antiperiodic run in Fig. 7(b).

The second kind of finite-size effect arises from the pos-
sibility that the spatial extent of the lattice is not large
enough compared to the size of hadrons. Our analyses
will show that the lattice spacing is a =0.12—0. 16 frn in
our simulation, and our spatial size of L,a /2
=4.5a =0.54—0.68 fm might not be large enough to con-
tain hadrons inside the lattice. Such a finite-size effect can
be checked by calculating the hadron propagators and
masses with different spatial boundary conditions for
quark propagators on a given gauge configuration. The
difference arises from the process in which the trajectory
of one of the quarks forming hadrons (but not two) wraps
around the lattice in the spatial direction. A care should
be made, however, with baryon propagators which receive
nonzero-momentum contributions when the procedure
(32) is applied to the case of antiperiodic boundary condi-
tion. For this case we pick out the state with the
minimum momentum p;„=~/L, by the weighted sum
given by

co(r) =-6(r+ r')Sir')/Sir') (37)

normalized as e(0)= 1 with 6(r) =f (r) —f(r). Some ex-
arnples of co for the Wilson loop and hadron propagator
are depicted in Fig. 8. The correlation rapidly falls off
with the Langevin time. Clearly the number of our data
samples (20—30) are not sufficient to give a reliable esti-
mate of the relaxation time. If we operationally define
two successive data samples to be uncorrelated when the
autocorrelation becomes smaller than 0.1, we estimate
that the relaxation time ~„ is of the order of t „—1 —5.
This means that gauge configurations over the consecutive
100—500 sweeps are correlated for 6~=0.01.

The relaxation time, of course, depends on the coupling
parameters and the length scale of measured physical
quantities. The change observed in our parameter range,
however, was rather mild, perhaps by a factor of 2. In
view of the smallness of our data samples, we used ~„=4
throughout, rather than estimating r„ for each (/3, K, Ar).
The error quoted in this paper is given by &o /N with o.

the standard deviation for the entire sample and N = t /~„
with ~ the interval used for the average and ~, =4.

F. Error analysis

Consecutive gauge configurations generated in the
Langevin sweeps are more strongly correlated than those
in the conventional Monte Carlo procedure. In order to
estimate statistical errors, it is important to know the
correlation of physical quantities over the successive gauge
configurations, and to estimate how many data samples
can be regarded as statistically independent. For this pur-
pose we have calculated the Langevin time autocorrelation
co( r ) of measured quantity f ( r ),

W(1 x1)

W(2x2)

8 (3x3)

W(4x4)

Periodic

0.548 32
+0.000 51

0.137 74
+0.000 71

0.022 96
+0.000 40

0.003 14
+0.000 27

Antiperiodic

0.548 13
+0.000 87

0.137 94
+0.00110

0.023 20
+0.000 72

0.002 98
+0.000 35

mz

my

0.631
+0.023

0.767
+0.022

1.256
+0.108

1 ~ 348
+0.104

0.9158
+0.0030

0.622
+0.036

0.747
+0.045

1.467
+0.170

1.471
+0.165

0.9124
+0.0033

TABLE III. Physical quantities obtained for the gauge sweep
at K =0.16 with 6~=0.01 with the periodic and antiperiodic
boundary conditions imposed on quarks in the spatial directions.
The same boundary conditions are also used to solve hadron
propagators.

IV. RESULT

A. Wilson loop

We show the Wilson loop in Figs. 9(a) —9(d) as a func-
tion of A~. The average of the space- and timelike Wilson
loop is taken here. The A~ dependence is rather modest
for W(1&&1) even at K =0. 16 [Fig. 9(a)]. The extrapola-
tion to 5~=0 modifies the value at 6~=0.01 only by 2%
at K =0.16. On the other hand, for W(4X4) the
dependence is quite significant and the modification
reaches almost a factor 2 [Fig. 9(d)]. This reAects the fact
mentioned in Sec. III C that the infrared modes are
strongly affected at large values of K for a finite A~. For-
tunately the dependence with respect to A~ is almost
linear over the range 6~=0.005 —0.02 and the extrapola-
tion procedure well applies to find the value at 6~=0.
Figure 10 shows the Wilson loop extrapolated to 6~=0
as a function of K (see Ref. 34). The numerical values are
presented more extensively in Table IV. Errors shown
are statistical only.

B. Hadron propagators and masses

Examples of hadron propagators are shown in Fig. 11
at K =0. 16. (Selected numerical data are tabulated in
Table V.) As has been known in simulations for
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FIG. 12. Hadron masses as a function of A~ with lines of ex-

t =5—13 are used for mesons and t =6—9 for baryons.

FIG. 13. Hadron masses (squared) for full QCD as a function

of 1/K for various values of A~, as compared with those for
quenched QCD. (a) (m a); (h) m~a; (c) m~a; (d) mrna. Errors
shown are statistical only.
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TABLE IV. Average value of the Wilson loop W(L XL) at P=5.5. The value for dr=0 is obtained by a linear extrapolation in

For the Wilson loop up to 4X4, the spacelike and timelike loops are averaged before the extrapolation.

K =0.14

W(1 x 1)

w(1 x2)

w(1 x3)

W(1 x4)

W(1x5)

W(1x6)

W(2x2)

W(2x3)

W(2x4)

W(2x5)

w(2 x6)

W(3x3)

W(3x4)

W(3x5)

W(4x4)

As=0. 02

0.500 72
+0.000 86

0.263 49
+0.000 71

0.140 32
+0.000 63

0.074 88
+0.000 51

0.081 50
+0.000 80

0.026 36
+0.000 43

0.008 49
+0.000 46

0.005 32
+0.000 54

0.001 33
+0.000 40

0.000 38
+0.000 52

Spacelike
0.01

0.513 58
+0.000 74

0.279 79
+0.000 71

0.154 58
+0.000 67

0.085 60
+0.000 61

0.093 89
+0.000 88

0.033 43
+0.000 49

0.012 09
+0.000 33

0.008 39
+0.000 55

0.002 32
+0.000 32

0.00043
+0.000 40

0.005

0.517 27
+0.000 72

0.284 92
+0.000 70

0.158 97
+0.000 77

0.088 87
+0.000 67

0.098 35
+0.000 95

0.036 04
+0.000 52

0.013 36
+0.000 41

0.009 12
+0.000 55

0.002 24
+0.000 35

0.000 73
+0.000 48

6~=0.02

0.500 67
+0.000 83

0.263 46
+0.000 75

0.140 22
+0.000 70

0.074 62
+0.000 58

0.039 92
+0.000 75

0.021 50
+0.000 73

0.081 55
+0.000 80

0.026 44
+0.000 50

0.008 52
+0.000 50

0.002 55
+0.000 71

0.001 04
+0.000 62

0.005 41
+0.000 57

0.000 86
+0.000 41

0.000 38
+0.000 57

0.000 08
+0.000 54

Timelike
0.01

0.513 41
+0.000 62

0.279 72
+0.000 57

0.154 43
+0.000 56

0.085 50
+0.000 53

0.047 52
+0.000 67

0.026 60
+0.000 65

0.093 85
+0.000 69

0.033 23
+0.000 40

0.012 09
+0.000 36

0.004 25
+0.000 46

0.001 47
+0.000 44

0.008 09
+0.000 40

0.002 04
+0.000 29

0.000 43
+0.000 44

0.000 69
+0.000 42

0.005

0.517 45
+0.000 67

0.284 71
+0.000 64

0.158 66
+0.000 74

0.088 53
+0.000 66

0.049 36
+0.000 86

0.027 59
+0.000 65

0.097 81
+0.001 00

0.035 54
+0.000 59

0.013 02
+0.000 42

0.004 63
+0.000 63

0.001 42
+0.000 74

0.008 68
+0.000 60

0.002 38
+0.000 45

0.000 65
+0.000 51

0.000 64
+0.000 49

0.523 67
+0.000 80

0.292 97
+0.001 02

0.166 24
+0.001 01

0.094 38
+0.000 82

0.013 36
+0.000 24

0.007 53
+0.000 20

0.104 48
+0.000 94

0.039 37
+0.000 63

0.015 05
+0.000 43

0.001 38
+0.000 19

0.000 43
+0.000 19

0.010 44
+0.000 50

0.002 94
+0.000 35

0.000 17
+0.000 15

0.000 86
+0.000 40

W(1 x 1)

W(1x2)

W(1 x 3)

W(1x4)

W(1 x 5)

W(1x6)

W(2x2)

W(2x3)

W(2x4)

W(2x S)

W(2x6)

W(3x3)

0.513 60
+0.000 90

0.279 77
+0.000 82

0.154 50
+0.000 83

0.085 42
+0.000 75

0.094 35
+0.001 05

0.033 54
+0.000 56

0.011 92
+0.000 48

0.007 93
+0.000 56

0.525 67
+0.000 79

0.295 78
+0.000 73

0.168 88
+0.000 72

0.096 62
+0.000 63

0.108 02
+0.000 98

0.041 80
+0.000 50

0.016 28
+0.000 39

0.011 62
+0.000 46

0.533 13
+0.000 92

0.305 54
+0.000 88

0.178 19
+0.000 82

0.104 47
+0.000 75

0.11673
+0.001 23

0.047 82
+0.000 66

0.019 92
+0.000 50

0.014 59
+0.000 68

K =0.15

0.513 87
+0.000 86

0.280 12
+0.000 77

0.155 02
+0.000 75

0.085 83
+0.000 70

0.047 76
+0.000 88

0.026 54
+0.000 78

0.094 97
+0.000 85

0.034 19
+0.000 50

0.012 72
+0.000 39

0.004 78
+0.000 64

0.002 00
+0.000 68

0.008 84
+0.000 55

0.525 78
+0.000 70

0.295 81
+0.000 62

0.168 92
+0.000 63

0.096 61
+0.000 56

0.055 17
+0.000 62

0.031 48
+0.000 61

0.108 01
+0.000 80

0.042 00
+0.000 50

0.016 57
+0.000 41

0.006 67
+0.000 49

0.002 92
+0.000 38

0.012 28
+0.000 54

0.532 93
+0.000 85

0.305 14
+0.000 86

0.177 66
+0.000 87

0.103 72
+0.000 76

0.060 32
+0.001 00

0.035 29
+0.000 93

0.11633
+0.001 24

0.047 07
+0.000 67

0.019 33
+0.000 47

0.007 73
+0.000 53

0.003 15
+0.000 65

0.014 27
+0.000 66

0.538 93
+0.000 96

0.31305
+0.001 25

0.184 78
+0.001 13

0.10942
+0.000 91

0.015 92
+0.000 27

0.009 36
+0.00025

0.122 79
+0.001 21

0.051 14
+0.000 81

0.021 47
+0.000 50

0.002 17
+0.000 17

0.000 92
+0.000 18

0.01606
+0.000 S9
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TABLE IV. (Continued).

W(3 x4)

W(3x5)

W(4x4)

6~=0.02

0.001 76
+0.000 37

0.000 30
+0.000 60

Spacelike
0.01

0.003 34
+0.000 33

0.000 58
+0.000 46

0.005

0.004 95
+0.000 39

0.001 33
+0.000 67

K =O. 1S

6~=0.02

0.002 62
+0.000 40

0.000 94
+0.000 58

0.000 66
+0.000 50

Timelike
a.o1

0.003 74
+0.000 28

0.001 16
+0.000 39

0.001 12
+0.000 36

0.005

0.004 42
+0.000 47

0.000 95
+0.000 51

0.001 11
+0.000 49

0.005 18
+0.000 38

0.000 27
+0.000 15

0.001 37
+0.000 47

W(1x1)

W(1x2)

W(1x3)

W(1 x4)

W(1x 5)

W(1 x6)

W(2x2)

W(2x3)

W(2x4)

W(2xs)

W(2x6)

W(3x3)

w(3x4)

W(3x5)

W(3x6)

W(4x4)

W(4x 5)

W(4x6)

0.530 78
+0.000 72

0.302 77
+0.000 71

0.175 74
+0.000 72

0.102 45
+0.000 68

0.115 37
+0.000 87

0.047 07
+0.000 43

0.019 50
+0.000 41

o.o146a
+0.000 52

0.004 61
+0.000 40

0.001 33
+0.000 48

0.548 25
+0.000 54

0.326 46
+0.000 55

0.198 31
+0.000 57

0.121 00
+0.000 53

0.137 58
+o.oao 76

0.062 45
+0.000 44

0.029 10
+0.000 35

0.022 91
+0.000 48

0.009 00
+0.000 27

0.003 16
+0.000 40

0.555 45
+0.000 79

0.336 64
+0.000 79

0.208 04
+0.000 83

0.129 23
+0.000 75

0.147 86
+0.001 20

0.070 16
+0.000 71

0.034 22
+0.000 58

0.027 45
+0.000 85

0.011 35
+0.000 38

0.004 04
+0.000 45

K =0.16

0.530 85
+0.000 61

0.302 81
+0.000 61

0.175 82
+0.000 71

0.102 40
+0.000 75

0.059 72
+0.001 11

0.034 57
+0.001 02

0.11494
+0.000 79

0.046 81
+0.000 53

0.019 30
+0.000 42

0.007 88
+0.000 41

0.003 32
+0.000 40

0.014 52
+0.000 67

0.004 79
+0.000 41

0.001 12
+0.000 51

0.000 54
+0.000 53

0.001 11
+0.000 49
—0.000 16
+0.000 43

0.000 11
+0.000 52

0.548 40
+0.000 57

0.326 78
+0.000 57

0.198 55
+0.000 61

0.121 16
+0.000 54

0.073 80
+0.000 74

0.044 91
+0.000 70

0.137 91
+0.000 85

0.062 87
+0.000 48

0.029 21
+0.000 36

0.013 64
+0.000 52

0.006 25
+0.000 4S

0.023 01
+0.000 53

0.008 92
+0.000 33

0.003 44
+0.000 39

0.001 24
+0.000 44

0.003 12
+0.000 34

0.001 11
+0.000 37

0.000 28
+0.000 38

0.5S5 54
+0.000 79

0.336 59
+0.000 79

0.207 97
+0.000 86

0.129 13
+0.000 77

0.080 27
+0.001 07

0.049 81
+0,000 97

0.147 89
+0.001 13

0.070 18
+0.000 77

0.033 96
+0.000 60

0.016 85
+0.000 72

0.008 51
+0.000 59

0.027 96
+0.000 88

0.011 59
+0.000 54

0.005 09
+0.000 63

0.002 35
+0.000 51

o.o04o8
+0.000 55

0.001 64
+0.000 50

0.000 85
+0.oao 64

0.564 s4
+0,000 77

0.348 91
+0.001 03

0.219 73
+0.001 03

0.138 77
+0.000 91

0,021 85
+0.000 31

0.013 75
+0.000 28

0.15949
+0.001 09

0.078 16
+0.000 86

0.038 94
+0.000 62

0.004 91
+0.000 19

0.002 46
+0.000 16

0.031 69
+0.000 71

0.013 48
+0.000 47

0.001 53
+0.000 17

0.000 66
+0.000 15

0.005 03
+0.000 41

0.000 57
+0.000 14

0.000 20
+0.000 17

W(1x1)

W(1x2)

W(1x3)

W(1x4)

W(1xs)

0.554 69
+0.000 64

0.335 79
+0.000 65

0.207 51
+0.000 71

0.128 69
+0.000 69

K =0.162

0.554 77
+0.000 61

0.335 83
+0.000 62

0.207 42
+0.000 64

0.128 77
+0.000 6S

0.080 21
+0.001 00
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TABLE IV. (Continued ).

W(2X2)

W(2X4)

W(2 && 5)

W(2~6)

W(3x3)

W(3x4)

W(3~5)

W(3 X 6)

W(4&& 4)

W(4X5)

W(4X6)

hz=0. 02
Spacelike

0.01

0.147 65
+0.000 90

0.070 42
+0.000 52

0.034 43
+0.000 44

0.028 02
+0.000 61

0.011 89
+0.000 33

0.004 48
+0.000 51

0.005

K =0.162

6~=0.02
Timelike

0.01

0.049 74
+0.000 96

0.147 60
+0.000 90

0,070 35
+0.000 57

0.034 18
+0.000 48

0.016 60
+0.000 53

0.008 17
+0.000 52

0.028 20
+0.000 62

0.011 81
+0.000 40

0.004 92
+0.000 47

0.001 96
+0.000 41

0.004 39
+0.000 53

0.001 79
+0.000 46

0.000 89
+0.000 52

0.005

also the critical hopping parameter to a smaller value.
The amount of decrease of masses is larger for a smaller
quark mass. Therefore, while the quenched data lie near-
ly on a straight line with respect to 1/K, the masses in
full QCD bend downward toward the critical hopping pa-
rameter.

We fitted the hadron mass data for K ~0. 15 with the
form

a ' = 1.64+0. 16 GeV

=(0.12 fm) ' (Nf =2) (39)

by the inclusion of vacuum quark loops. If we assume
scaling, these lattice constants are translated into the
QCD scale parameter on the lattice

Al =4.0+0.2 MeV (Nf =0)

(m a) =2
C

(38)

and

Al. =2.8+0.3 MeV (Nf =2), (40)

1 1
m;a = 3; — +B;, i =p, N, A

K K,

and the spectroscopic parameters in (38) are tabulated in
Table VII (errors shown are statistical except for those for
the mass ratios for which errors due to the fitting pro-
cedures are also taken into account). Here we fixed the
physical mass scale using m ~""'=770 MeV and
m'" ' =140 MeV. The lattice constant a shrinks from

where we used

aAL —— 8~
33—2'

Q exp

With the aid of

4.

33—2'

(51 —19Nf /3)/(11 —2Nf /3)

(41)

to

a ' =0.98+0.04 GeV

=(0.20 fm) ' (Nf =0)

AMoM/AL ——83.5 (Nf ——0) (Refs. 35—37)

=97 (Nf ——2) (Ref. 37),

we obtain

(42)
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TABLE V. Selected data of hadron propagators for full QCD at ii=5.5.

K =0.14

t=2

t=3

t=4

t =5

t=6

t=7

t=9

4~=0.02

1.556' 10
+0.003 &( 10

1.129
+0.014

1.630 X 10
+0.045 && 10

2.613 )& 10
+0.112&( 10

4.442 X 10
+0.307 X 10-

7.723 X 10
+0.671 x 10

1.360~10 '
+0.131 &&

10-4
2.396&&10 '

+ 0.239g10-'
4.355 X 10

+0.435 &&
10-'

1.490 X 10-
+0.150X 10-'

0.01

1.553 X 10
+0.003 && 10

1.138
+0.014

1.681 )& 10
+0.039 && 10- '

2.839 &&
10-'

+0.105 &( 10
5.175 X 10--'

+0.251 )& 10
9.615 X 10

+0.534 &( 10
1.813X 10-4

+0.107 &&
10-4

3.399 X 10-'
+0.201X 10-

6.647 x 10
+0.400 ~ 10-'

2.417 X 10-'
+0.148 && 10

0.005

1.551X 10
+0.004 X 10

1.145
+0.013

1.704 X 10- '

+0.041 && 10—'

2.910X10 '
+0.122 ~ 10-'

5.393 ~ 10-'
+0.315X10 '

1.027 X 10-
+0.079)& 10

1.980 X 10
+0.181 & 10

3.808 X 10-
+0.395 X 10

7.544' 10
+0.828 X 10-'

2.802 &( 10
+0.321)& 10

A~= 0.02

1.354' 10
+0.005 X 10

8.372 X 10
+0.115&& 10

1.152 &( 10
+0.034' 10- '

1.778 ~ 10-'
+0.082 X 10

2.932 X 10--'
+0.226 & 10

4.955 X 10-4
+0.495 & 10

8.487 X 10-'
+0.956 X 10-'

1.454X10 '
+0.170 && 10

2.567 X 10
+0.299 && 10—'

8.559 &&
10-'

+0.992 ~ 10-'

P
0.01

1.349 ~ 10
+0.005 && 10

8.402 X 10- '

+0.094)& 10
1.178 X 10

+0.027 X 10
1.908 X 10

+0.072 )& 10
3.369 X 10

+0.174 X 10
6.067 X 10

+0.358 X 10-4
1.111~ 10-'

+0.070&&10 4

2.021 X 10
+0.127)& 10

3.851 x 10
+0.253 g 10

1.366& 10
+0.094 ~ 10-'

0.005

1.347 X 10
+0.005 && 10

8.439x10 '

+0.105 ~ 10- '

1.186)& 10
+0.034 &( 10

1.942 X 10-
+0.096 X 10-'

3.471 &&
10--'

+0.233 ~ 10- -'

6.413 X 10
+0.567 X 10-4

1.204 X 10
+0.126 & 10

2.249 &&
10-'

+0.268 &&
10-'

4.320 && 10
+0.533 &&

10-'
1.566& 10

+0.200 ~ 10-'

0.9682
+0.0023

0.9668
+0.0023

0.9653
+0.0021

t=0

t=2

t=4

t =5

t=6

t=7

t=8

t=9

t =10

t =12

t =13

t =14

As=0. 02

1.581
+0.011

2.617X 10
+0.047 ~ 10-'

8.885 X 10
+0.457 ~ 10-4

3.494 && 10—'
+0.291 ~ 10—'

1.600 X 10
+0.224 && 10

8.495 ~ 10-'
+ 1.925 &( 10

4.916K 10
+1.396X 10—'

2.717X 10
+0.783 ~ 10—"

1 ~ 510~ 10—"
+0.450)& 10

8.210& 10
+2.746)& 10

2.955 X 10—'4

+8.646 ~ 10—'4

—0.509 && 10
+6.946)& 10
—0.862& 10
+ 1.333 ~ 10
—5.927 X 10
+3.713 )& 10
—2.623 ~ 10
+0.920X10 '

cV

0.01

1.572
+0.011

2.620 ~ 10-'
+0.038)& 10

8.755 ~ 10-4
+0.349 &&

10-4
3.619~ 10-'

+0.267 X 10
1.807 ~ 10-'

+0.199)& 10
1.011 X 10

+0.159 &&
10-'

5.702)& 10
+ 1.081 X 10

3.229)& 10
+0.682 )& 10

1.860X10- '

+0.423 )& 10
1.114X10-"

+0.253 & 10
0.402 ~ 10-"

+1.031 && 10—"
—2.126 && 10 '2

+1.033)& 10
—3.994 X 10-"
+1.722 X 10-"
—1.101 X 10
+0.402 &&

10-'
—3.971 X 10-'
+1.054 X 10

0.005

1.567
+0.010

2.634 ~ 10
+0.056 &( 10

8.849 X 10
+0.509 X 10-4

3.703 X 10
+0.370~ 10 '

1.835 &&10-'
+0.254 ~ 10-'

9.762 ~ 10
+1.837 && 10

5.709 &&
10-'

+1.332 g 10
3.443 & 10

+0.948 X 10
1.991 X 10

+0.534 && 10—"
1.150K 10

+0.351 X 10—"
—1.840 X 10-"
+2.568 X 10—'-'

—3.347 X 10
+2.350~ 10-"
—7.282 &( 10
+5.169 &&

10-"
—1.507 X 10-'
+0.843 X 10-'
—4.568 X 10
+1.849 X 10-'

As=0. 02

3.744
+0.026

6.599 &&
10-'

+0.110&10
2.190& 10

+0.109X 10
8.416 &&

10--'
+0.689 &&

10-'
3.762 X 10

+0.519X 10-'
1.952 & 10

+0.444 X 10-'
1.112 )& 10

+0.321 &&
10-'

6.072 X 10
+ 1.786 &( 10

3.341 X 10
+1.020 &&

10-"
1.808 X 10-"

+0.617 X 10
0.830 && 10- '-'

+1.410' 10—"
—0.426 X 10-"
+8.350 ~ 10-"
—0.986~ 10-"
+1.732 && 10
—7.654 && 10
+4.881 ~ 10
—3.364 X 10
+1.233 X 10-'

0.01

3.722
+0.027

6.604 &&
10-'

+0.092 && 10
2. 152& 10

+0.083 )& 10
8.649 X 10

+0.615 &&
10-'

4.197X 10
+0.453 X 10

2.301 ~ 10-'
+0.360X10 '

1.272 & 10
+0.243 X 10-'

7.053 &&
10-"

+1.508 x 10-"
3.978 X 10

+0.916& 10
2.313X 10

+0.533 X 10-"
1.276 X 10

+ 1.519~ 10
—2.242 &( 10
+ 1.261 &( 10
—4.232 X 10
+2.103 & 10
—1.331 X 10-'
+0.517X 10-'
—5.120X 10
+1.389~10 "

0.005

3.710
+0.024

6.631 )& 10
+0.136)& 10

2.170)& 10
+0.122)& 10

8.822)& 10
+0.873 )& 10

4.255 X 10
+0.599 ~ 10—'

2.205 X 10-'
+0.427 X 10- '

1.260 x 10-'
+0.303 X 10-"

7.437 X 10-"
+2.129& 10

4.197X 10- '

+1.180' 10-"
2.396g 10

+0.740 X 10-"
—2.048 &&

10-"
+3.811 X 10
—3.966 && 10
+2.623 &( 10
—8.494 X 10-"
+5.966~ 10-"
—1.726 &( 10
+0.986 X 10-'
—5.657 X 10-'
+2.361 ~ 10
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TABLE V. (Continued).

K =0.14

t =16

t =17

5 r
——0.02

—9.597 X 10-'
+2.476 X 10- '

—3.916X 10
+0.706 X 10
—1.996X 10—-'

+0.189X 10 - -'

X
0.01

—1.243 X 10-'
+0.274 X 10
—4.654 X 10-'
+0.703 X 10
—2. 184X 10
+0.176X 10

0.005

—1.331 X 10
+ 0.350 X 10
—4.812 X 10
+0.694 X 10 -'
—2. 192 X 10
+0.208 X 10-'

5~=-0.02

—1.304 X 10-'
+0.344 X 10-'
—5.763 X 10 5

+1.065 X 10
—3.221 X 10
+0.315X 10-'

0.01

—1.674X10 '
+0.388X10 '
—6.821X10 '
+1.058X10 '
—3.538 X 10
+0.287 X 10--'

0.005

—1.776 X 10-'
+0.489 X 10-'
—6.999 X 10-'
+1.036 X 10- '
—3.534 X 10-'
+0.344X 10-'

t=0

t=6

t=7

t=8

5~=0.02

1.620 X 10
+0.005 X 10

1.535
+0.020

2.892 X 10- '

+0.064 X 10
6.352 X 10-'

+0.214 X 10-'
1.530 X 10 -'

+0075X10 '
3.827X10 '

+0.250X10 -'

9.588 X 10—'
+0.789 X 10

2.447 X 10—4

+0.229 X 10
6693X10 '

+0.651X10 '
3.265 X 10

+0.320 X 10-'

1.615 X 10
+0.004 X 10

1.565
+0.013

3.019X10 '

+0.051 X 10
6.896 X 10

+0.182 X 10
1.740 X 10-'

+0.063 X 10
4.665 X 10—-'

+0.212 X 10—'
1.290 X 10- -'

+0.070X10 '
3.687X10 4

+0.242X10 '
1.138X 10—4

+0.088 X 10
6.060X10 '

+0.493X10 '

K =0.15

1.606 X 10
+0.004 X 10

1.585
+0.016

3.153X 10-'
+0.067 X 10—'

7.615 X 10
+0.224 X 10

2.079X10 '
+0.084 X 10

6.002 X 10-
+0.282 X 10- -'

1.762X10 '
+0.091 X 10--'

5.332 X 10-4
+0.331 X 10

1.793 X 10-4
+0.137X 10

1.027 X 10
+0.089 x 10-'

Aw= 0.02

1.354 X 10
+0.007 X 10

1.033
+0.013

1.768 X 10- '

+0.037 X 10- '

3.595 X 10-'
+0.131X 10

8.123 X 10
+0.443 X 10-'

1.921 X 10
+0.137X 10—-'

4.543 X 10—'
+0.419 X 10

1.096 X 10
+0.118X 10- '

2.837 X 10-'
+0.325 X 10

1.330X 10-'
+0.155 X10- '

P
0.01

1.344 X 10
+0.006 X 10

1.044
+0.009

1.816X 10
+0.031 X 10

3.801 X 10
+0.110X 10

8.894 X 10—'
+0.379 X 10—'

2.246 X 10
+0.119X 10-'

5.872 X 10—4

~0.370X10 4

1.591 X 10—'
+0.118X10 '

4.634 X 10-'
+0.403X10 '

2.365 X 10
+0.217 X 10

0.005

1.331 X 10
+0.006 X 10

1.051
+0.009

1.874 X 10
+0.040 X 10- '

4.139X 10 '
+0.115X 10

1.054 X 10
+0.044 X 10

2.867 X 10
+0.149X10 '

7.960X 10-4
+0.477X10 4

+2.292 X 10
+0.166 X 10

7.328 X 10-'
+0.629 X 10

4.035 X 10-'
+0.391 X 10

0.9540
+0.0028

0.9506
+0.0023

0.9466
+0.0023

As=0. 02 0.01 0.005 6~=0.02 0.01 0.005

t=p

t=2

t=4

t=8

t =10

1.527
+0.013

3.176 X
+0.081 X

1.355 X
+0.059 X

7.543 X
+0.700 X

5.352 X
+0.697 X

4.247 X
+0.709 X

3.438 X
+0.714X

3.192X
+0.856 X

3.218 X
+0.998 X

3.210X
+1.075 X

0.698 X
+4.022 X

10
10
10
10
10-'
10-'
10-'
10-'
10
10
10-'
10-'
lo-'
10-'
10-"
10-"
10-"
10—11

1p
—12

10—12

1.511
+0.011

3.209 X
+0.058 X

1.395 X
+0.045 X

7.888 X
0.468 X
5.934 X

+0.650 X
5.415 X

+0.868 X
5.687 X

+1.118X
6.590X

+1.558 X
8.105 X

+2.247 X
9.693 X

+3.060 X
7.010X

+8.908 X

10
10
10
10

10
10
10-'
10
10
10
10-'

10-'
1p —10

10-"
lp —11

10-"2
10—12

1.491
+0.011

3.159X
+0.063 X

1.449 X
+0.077 X

8.608 X
+0.521 X

7.180X
+0.755 X

7.410X
+0.978 X

8.515 X
+1.402 X

1.106X
+0.245 X

1 ~ 574 X
+0.439 X

2.320 X
+0.724 X

2.971 X
+1.933 X

10
10
10
10
10-'
10-'
10—6

10-'
10
10
10-'
10-'
10-'
lp —8

10-'
10-'
10-"
10—10

lp —11

lp —11

3.603
+0.032

7.858 X
+0.188 X

3.231 X
+0.137X

1.720 X
+0.163 X

1.164X
+0.155 X

8.846 X
+ 1.495 X

6.857 X
-+1.414 X

6.147 X
+1.642 X

6.053 X
+1.932 X

6.008 X
+2.124 X

3.681 X
+5.756 X

10
10
10-'
10
10-4
10-4
10-'
10-'
10
10
10-'
10-'
10—9

10-'
10—10

lp —10

10-"
10—-11

10—12

10—12

3.564
+0.026

7.915 X
+0.142 X

3.297 X
+0.101 X

1.760 X
+0.101 X

1.243 X
+0.135 X

1.072 X
+0.173 X

1.069 X
+0.213 X

1.178 X
+0.278 X

1.399X
+0.386 X

1.624 X
+0.517X

1.387 X
+ 1.267 X

10
10
10-'
10
10-4
10-4
10-'
10-'
10
10
10
10
10-'
10-'
10-'
10-'
lp —10

10—10

lp —11

lp —11

3.516
+0.026

7.770 X
+0.151 X

3.401 X
+0.176X

1.889 X
+0.112X

1.461 X
+0.151 X

1.411 X
+0.185 X

1.542 X
+0.255 X

1.935 X
+0.433 X

2.650 X
+0.742 X

3.770 X
+1.188 X

5.280 X
-+2.864 X

10
10
10
10
10-4
10-4
10-'
10-'
1P

—6

10
10
10
10-'
10-'
10-'
10-'
1p

—10

10—10

lp —11

lp —11
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TABLE V. (Continued).

K =0.15

t =12

t =13

t =14

t =15

t =16

t =17

6~=0.02

—1.850 X 10-"
+2.205 x 10
—2.420 X 10
+1.84S x 1O-"
—5.326 x 10-'
+2.948 x 10- '
—1.333 X 10-'
+0.473 x 10-'
—3.174X 10
+0.679x 10 '
—9.300X 10 '
+1.040 x 10-'
—3.378 x 10-'
+0.272 x 10

N
0.01

—3.321 X 10
+2.917x 10
—4.099 X 10
+2.3O7 x 1O-"
—7.536 x 10-'
+2.850 x 10-'
—1.563X10 '
+0.393X 10 '
—3.674 x 10—'
+0.593 x 10-'
—1.009 x 10-4
+0.118x 10
—3.593xlo '
+0.255x 10 '

0.005

—9.008 x 10
+7.629 X 10—"
—1.078 X 10—'
+0.501 x 10
—1.768 x 10-"
+0.468 x 10-'
—3.001 x 10-'
+0.818 X 10
—5.366x 10-'
+0.871 X 10
—1.271 X 10
+0.122 x 10
—4.173X 10—'
+0.243 x 10

K =0.16

6~=0.02

—2.054 x 10
+2.456 x 10-"
—2.283 X 10
+2.009 x 10
—5.745x 10 '
+3.712x 10
—1.567 X 10
+0.606 x 10-'
—4.008 X 10
+0.911x10 '
—1.303X 10 4

+0.154x 10 4

—5.341 X 10
+0.446 x 10

0.01

—3.526 x
-+3.634 X
—4.528 X
+2.474 x
—8.575 x
+3.195x
—1.802 x
+0.469 x
—4.712x
+0.785 x
—1.426 x
+0.178 x
—5.693 x
+0.420 X

1P
—11

1P
—11

1O-"
1P

—10

1O- '
1O-'
10
10
1P

—6

1O-'
1O-4
1O-4

10
1O-'

0.005

—7.149x
+9.059 x
—1.010X
+0.567 x
—1.879 x
-+0.489 x
—3.465 x
+0.996x
—6.737 x
+1 ~ 140x
—1.789 x
+0.183x
—6.625 x
+0.408 x

1O-"
1O-"
1O-'
1O-'
1O-'
1O-'
1O-'
10
1O-'
10-'
1O-4
1O-4

10
1O-'

t=2

t=5

t=7

t=8

5&=0.02

1.661 X 10
+0.008 X 10

2.187
+0.021

5.732X 10-'
+0.124X 10 '

1.905 x 10
+0.070 x 10

7.332 x 10-'
+0.329 x 10-'

3.070X 10
+0.165 X 10-'

1.307 X 10-'
+0.077 X 10

5.712x 10-'
+0.390X 10 '

2.776 X 10—'
+0.222 x 10

1.992X 10 '
+0.175 x 10

0.01

1.642 x 10
+0.008 x 10

2.231
+0.024

6.156X 10
+0.153X 10—'

2.321X lo- '

+0.088 X 10- '

1.058 X 10—'

+0.050 x 10
5.308 x 10

+0.298 X 10-'
2.798 x 10

+0.177x 10 '
1.560 X 10—'

~0.109X 10
1.007 x 10-'

+0.081 X 10--
8.532X 10 '

+0.739x 10-'

0.005

1.631x 10
+0.014x 10

2.230
+0.025

6.160X 10
+0.188x 10

2.420X 10 '

+0.113x 10- '

1.216 X 10
+(}.064 x 10

7.049 X 10
+0.407 x 10

4.452 x 10-'
+O.29OX 1O-'

3.p84 x 10-'
+0.234 x 10

2.427 x 10
+0.215 x 10-

2.221 x 10
+0.217 X 10

6~=0.02

1.296 x 10
+O.0lo x 10

1.248
+0.013

2.619X 10
+0.057 X 10

7.143x 10-'
+0.294X 10 '

2.360X 10 '
+0.117X 10

8.791X 10 '
+0.535 x 10

3.363 X 10-'
+0.237 X 10-'

1.314x 10-'
+0.117X lo '

5.691 X 10
+0.661 x 10—'

3.786 x 10—4

+0.502 X 10—'

P
0.01

1.271 x 10
+0.008 X 10

1.244
+0.008

2.597 X 10
+0.041 X 10- '

7.502 X 10—'
+0.200 x 10

2.782 X 10
+0.099x 10-'

1.187X 10
+0.050X 10 '

5.352 X 10—-'

+0.265 X 10
2.555 X 10--'

+0.156x 10—'
1.432 x 10—-'

+0.114X 10--'

1.130X 10
+0.104x 10

0.005

1.260 X 10
+0.014x 10

1.233
+0,010

2.505 x 10—'

+0.040 x 10 —'

7.309x 10-'
+0.160X 10

2.841 X 10
+0.117x 10

1.335 x 10
+0.101x 10

7.114x 10-'
+0.762 X 10

4.169x 10
+0.576 x 10

2.849 x 10
+0.480 x 10-'

2.434 x 10-'
+0.454 x 10-'

0.9221
+0.0038

0.9158
+0.0030

0.9135
+0.0048

t=0

t=2

t =5

t=6

Ax=0. 02

1.388
+0.017

3.500x 10
+0.098 X 10

1.912X 10
+0.118x 10

1.553 X 10—4

+0.177x 10 '
1.914X 10-'

+0.292 x 10
3.306X 10 '

+0.567X 10 '
6.420X 10—'

+1.262 x 10-'

N
0.01

1.356
+0.014

3.412X10 '
+0.063 x 10-'

1.907 X 10—-'

+0.065 x 10
1.630X 10

+0.072 X 10—4

2.304x 1O '
+0.137x 10 '

4.555X 10 '
+0.394X 10 '

1.061 X 10—'
+0.125 X 10—'

0.005

1.344
+0.022

3.229 x 10
+0.089x 10

1.701 x 10-'
+0.116x 10

1.431X 10 4

+0.125 x 10
2.073 X 10—'

+0.257 x 10
5.120 X 10- '

+0.825 X 10-'
1.813x 10

+0.335 x 10

5~=0.02

3.264
+0.041

8.406 X 10
+0.232X 10 '

4.248X 10 '
+0.254x 10 '

3.058 x 10
+0.334x 10-'

3.260X 10 '-

+0.504X10 '
4.909 X 10

+0.832 X 10
8.560 x 10—'

+1.675 x 10- '

0.01

3.191
+0.032

8.148X lp-
+0.1Sox 1O-'

4.189x10 '
+0.145 X 10--'

3.061 x 10-4
+0.135x 10

3.571 X 10—'
+0.211 X 10

6.017X 10 '
+0.535X10 '

1.236 x 10
+0.156X 10 '

0.005

10
10
10
10
1O-4
1O-4

10
10 '
1O-'
10-'
1O-'
1O-'

3.164
+0.052

7.747 x
+0.219x

3.765 x
+0.258 x

2.733 x
+0.241 X

3.195x
+ 0.398x

6.417x
+1.125 X

1.985 x
+0.453 X
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TABLE V. (Continued).

K =0.16

b ~=0.02

1.308 X 10
+0.301X10 '

2.683X 10 '
+O.886X1O-'

5.270X10 '
+2.312X 10

6.972 X 10-"
+9.448 X 10
—2.090X10 '
+1.995X10 '
—1.611 X 10
+0.978 x 10-'
—1.174 X 10
+0.509 x 10—'
—1.192X10 '
+0.262 X 10
—1.572 X 10—-'

+0.260 X 10
—2.925 x 10—'
+0.368 X 10—4

—7.116X10 '
+0.366 X 10

N
0.01

2.745 X 10-'
+0.428 X 10

8.197X 10-'
+1.691 X 10

2.832 x 10
+0.914X 10

8.220 X 10
+6.331 X 10
—8 585X10
+9.021 X 10
—7.505 X 10
+1.953 X 10—'
—4.948 x 10—'
+0.720 x 10
—3.185 X 10
+0.334 X 10
—2.791 x 10-'
+0.216 X 10
—3.792 X 10-4
+0.300 X 10
—7.963 x 10-'
+0.401 X 10-'

0.05

7.506 x 10-'
+ 1.457 X 10

3.304X10 '
+0.703 X 10-'

1.325 X 10
+0.409X10 '

4.208 X 10-'
+3.374X 10
—1.388 x 10
+4.143 x 10
—1.419X 10—'
+0.635 x 10
—7.475 x 10—'
+1.831 X 10
—4.280 x 10-'
+O.73Ox 1O-'
—3.394x 10-'
+0.524 x 10—'
—4.001 X 10
+0.449 x 13-'
—8.541 X 10
+0.559 x 10-'

b r=0.02

1.585X10 '
+0.371 X 10-'

3.053 x 10-'
+1.105 X 10-'

5.690 X 10
+2.712x 10-'

0.895 X 10-'
+1.033 x 10-'
—1.424 X 10—'
+1.816X 10
—1.299 X 10-'
+0.898 X 10
—9.933X10 '
+4.535X10 '
—1.134X 10
+0.265X10 '
—1.777 X 10
+0.329X10 '
—3.904X10 4

+0.553X10 4

—1.113X 10
+0.063X10 '

0.01

2.854x10 '
0.491x 10 '
7.793 x 10-'

+1.800X 10
2.449 X 10

+0.731 X 10-"
7.632 x 10-'

+4.491 X 10
—5.551 x 10-'
+5.574X10 '
—5.647x10 '
+1.343 x 10-'
—4.191x 10-'
+0.566 X 10
—3.057 X 10
+0.361 X 10
—3.155 X 10-'
+0.277 x 10-'
—5.184X 10
+0.456X10 4

—1.266 X 10
+0.069 x 10-'

0.005

7.181 X 10
+ 1.801 x 10

2.782 X 10-'
+0.844 x 10

9.780 X 10-'
+4.327 X 10-'

2.761 X 10 -'
+2.316x 10
—1.396X10 '
+2.365X10 '
—1.009 X 10
+0.433 X 10-'
—5.481 x 10-'
+1.500 x 10-'
—3.856 x 10-'
+0.740 X 10
—3 ~ 804 X 10
+0.678 X 10
—5.435 X 10-4
+0.710x 10
—1.357 x 10-'
+0.098 X 10-'

he= 0.02 0.01

1.635 x 10
+0.011 X 10

2.431
+0.048

7.345 X 10- '

+0.328 X 10-'
3.151 X 10—'

+0.207 X 10
1.662 X 10- '

+0.141 x 10
9.958 x 10-'

+1.129 X 10
6.605 X 10

+1.013x 10-'
4.739x 10

+0.932 X 10
3.724 x 10—'

+0.836x 10-'
3.368 x 10-'

+0.780 X 10

K =0.162

0.005 6~=0.02
P

0.01

1.236 X 10
+0.012 X 10

1.275
+0.010

2.596 x 10—'

+0.050 X 10
+7.407 x 10
+0.265 X 10

2.753 x 10-'
+0.141 X 10-'

1.203 X 10-'
+0.083 x 10—'

5.916X 10
+0.503 x 10--'

3.285X10 -'

+0.411 x 10
2.091 X 10

+0.371 X 10-'
1.711x 10

+0.355 X 10--'

0.005

0.9023
+0.0045

6~=0.02
N
0.01

1.296
+0.020

3.204 X 10-'
+0.058 X 10

1.737 X 10-'
+0.059 X 10

0.005 As=0. 02 0.01

3.049
+0.046

7.622X 10 '
+0.143x 10

3.767 X 10-'
+0.116x 10

0.005
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TABLE V. (Continued).

K =0.162

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t =10

t =12

t =13

t =14

t =15

t =16

t =17

5~=0.02
1V

0.01

1.457 x 10-'
+0.094 x 10

2.167x 10—'
+0.245 X 10

4.638 x 10-'
+0.745x10 '

1.198x 10-'
+0.228 x 10

3.218x 10
+0.792 x 10-'

7.474 x 10-'
+4.948 x 10-'
—0.483 x 10—'
+5.218x 10-'
—4.576 x 10-'
+8.564 x 10—'
—1.102x 10
+1.328 x 10-'
—3.086x10 '
+2.075 x 10
—1.141x10 '
+0.312x 10-'
—5.882 x 10-'
+0.685 x 10-'
—4.384 x 10—'
+0.324 x 10-'
—5.121 x 10
+0.334x10 "
—1.003 x 10-'
+0.050 x 10-'

0.005 b &=0.02 0.01

2.634 x 10-4
+0.143 x 10—4

3.069 x 10—'
+0.287 X 10

5.329 x 10
+0.767 x 10

1.199x10 '
+0.212 x 10

3.016x 10
+0.598 x 10

6.971 x 10-'
+2.106x 10

0.708 x 10-'
+1.861 x 10—'
-1.613x 10—'
+2.147x 10—'
—5.168x 10
+3.918x 10-'
—1.760x 10—'
+0.847 x 10—'
—8.297 x 10—'
+2.058 x 10-'
—5.456 x 10-"
+0.655 x 10-'
—5.058 x 10-'
+0.387x 10
—7.131x 10-4
+0.539x 10—4

—1.621 x 10—'
+0.091 x 10

0.005

AMoM =340+ 15 MeV (Nf =0)
=270+25 MeV (Xf =2) . (43)

The definition of quark mass is somewhat ambiguous
with the Wilson action. We conventionally define it using
the relation suggested from the free field

In Table VII we see that m~/mz and m~/m~ became
closer to the experimental values: m, = (x-' —z, -') .

1

2a
(44)

m exPt/m exPt
1 22 m exPt /m exPt 1 3 1

This better agreement is caused by a steeper slope of the
Ar extrapolation curve for nucleon (slightly less steep for
b, ) as observed in Fig. 12. We cannot conclude, however,
whether this is a real physical effect or merely represents
either a size effect that the baryons are not contained in
the lattice or an artifact due to our extrapolation pro-
cedure combined with large statistical errors. In any case,
an analysis at a larger value of P should be made before
drawing conclusions on its physical significance.

The critical hopping parameter shifts from
K, =0.1844+0.0012 to K, =0.1611+0.0002 with the in-
clusion of vacuum quark loops. A finite A~ makes the
effective hopping parameter effectively smaller than its in-

put value. For example, our largest hopping parameter
E =0.162, which apparently exceeds E„corresponds to
the real hopping parameter around K =0. 16 due to the
finite Langevin time step 6&=0.01, as may be seen from
a comparison of values of m a and m&/m

We then obtain for full QCD

mqa =0.001 28+0.000 26

or

mq ——2. 1+0.4 MeV

using (39), and for quenched QCD

mqa =0.005 69+0.000 57

or

mq
——5.6+0.6 MeV .

(45a)

(45b)

mq /AL ——1.4+0.2 for Nf ——0,
mq/AL ——0.8+0.2 for Nf ——2 .

(46)

Let us now examine the question of whether the spatial

These mq's differ approximately by a factor of 2—3. If we
form the ratio to Al we obtain
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TABLE VI. Hadron mass for full QCD iA) and quenched QCD iB). A fit is made to the propagator
for the range t =5—13 (~,p), t =3—7 and 11—15 (S,A), and t =6—9 (N, A).

0.02

A. Full QCD
(a) m ,

0.01 0.005

0.14

0.15

0.155

0.16

0.162

1.736
+0.033

1.366
+0.028

0.856
+0.023

1.670
+0.020

1.261
+0.021

0.984
+0.023

0.631
+0.023

0.436
+0.057

1.650
+0.033

1.195
+0.022

0.458
+0.026

1.614
+0.037

1.142
+0.028

0.348
+0.030

0.14

0.15

0.155

0.16

0.162

1.764
+0.038

1.419
+0.032

0.959
+0.030

(b) mp
1.698

+0.022
1.313

+0.024
1.050

+0.031
0.767

+0.022
0.665

+0.042

1.678
+0.037

1.244
+0.025

0.602
+0.041

1.642
+0.041

1.190
+0,032

0.532
+0.040

0.14

0.15

0.155

0.16

0.162

2.612
+0.272

2.233
+0.205

1.561
+0.158

(c) mq

2.474
+0.147

2.019
+0.142

1.749
+0.126

1.250
+0.093

0.934
+0.098

2.393
+0.186

1.772
+0.092

1.046
+0.098

2.324
+0.244

1.628
+0.139

0.886
+0.133

0.14

0.15

0.155

0.16

0.162

2.571
-+0.219

2.235
+0.193

1.654
+0.149

(d) mg
2.454

+0.121
2.045

+0.114
1.759

+0.109
1.363

+0.069
1.110

+0.071

2.367
+0.150

1.836
+0.090

1.106
+0.101

2.308
+0.195

1.715
+0.135

0.966
+0.130

0.14

0.15

0.155

0.16

2.898
+0.154

2.327
+0.132

1.596
+0.143

(e) mq
2.849

+0.105
2. 124

+0.122
1.736

+0.126
1.256

+0.108

2.836
+0.130

1.978
+0.116

0.863
+0.117

2.811
+0.160

1.875
+0.146

0.692
+0.148
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TABLE VI. (Continued).

0.02
A. Full QCD

0.01 0.005

0.162
(e) mz

1.376
+0.263

0.14

0.15

0.155

0.16

0.162

2.907
+0, 158

2.352
+0.137

1.671
+0.154

(P mg
2.872

+0.114
2.164

+0.125
1.773

+0.137
1.348

+0.104
1.440

+0.169

2.856
+0.144

2.014
+0.117

0.994
+0.176

2.839
+0.172

1.918
+0.150

0.886
+0.186

m,
B. Quenched QCD

m~ ms mg mp

5.5

5.5

5.5

5.5

5.62

5.65

5.73

5.75

5.79

0.14

0.15

0.16

0.17

0.15

0.15

0.16

0.16

0.16

1.770
+0.016

1.496
+0.017

1.214
+0.017

0.910
+0.019

1.250
+0.015

1.199
+0.021

0.631
+0.029

0.576
+0.041

0.448
+0.036

1.797
+0.018

1.541
+0.019

1.293
+0.020

1.057
+0.022

1.303
+0.020

1.252
+0.023

0.760
+0.037

0.736
+0.038

0.602
+0.048

2.532
+0.153

2.342
+0.201

2.229
+0.319

2.178
+0.578

2.066
+0.141

1.929
+0.110

1.584
+0.389

1.172
+0.127

1.613
+0.601

2.529
+0.130

2.322
+0.159

2.156
+0.217

2.015
+0.330

2.089
+0.119

1.975
+0.097

1.385
+0.173

1.345
+0.110

1.264
+0.117

2.947
+0.089

2.561
+0.097

2. 176
+0.099

1.786
+0.107

2.168
+0.098

2.131
+0.097

1.133
+0.212

1.174
+0.208

0.935
+0.201

2.961
+0.098

2.588
+0.103

2.229
+0.107

1 ~ 897
+0.116

2.209
+0.105

2.171
+0.104

1.191
+0.186

1.253
+0.156

1.145
+0.217

extent of our lattice is large enough to contain hadrons.
In Fig. 15 we compare the ~ and N propagators obtained
with periodic and antiperiodic spatial boundary conditions
for the quark propagator at K =0. 15 and K =0.16 on the
configurations generated with the periodic boundary con-
dition at /3= 5. 5, b,r=0.01. (The behavior of p and 6
propagators are similar to that of n and X, respectively. )

The extracted mass is tabulated in Table VIII. For
mesons the difference is small and within statistical errors
(except for a somewhat larger deviation at K =0.16 and
5~=0.01 which, however, is not seen at 6~=0.005 with
an efFectively smaller lattice size). For baryons, however,
the difference is noticeable at %=0.16. This could be
counted as a possible finite-size effect arising from the in-
crease of baryon size for smaller quark masses, and also
from an effective shrinking of the lattice spacing with in-
creasing K and decreasing hr (recall that decreasing br,
means an effective increase of K). It is possible that the
difference might also come from the non vanishing

momentum of baryons for the antiperiodic boundary con-
dition [see Eq. (36)]. To ensure the absence of the finite-
size effect, we perhaps need a spatial extent of 12 or
larger for our parameters.

We now consider the scalar- and axial-vector-meson
masses. As seen in Fig. 11(b), statistical errors are large
for t =7—11, and reliable mass values could not be ob-
tained by the fit to t =5—13. We, therefore, attempted at
extracting scalar and axial-vector masses by the fit to the
propagator data for t =3—7 and 11—15. Fortunately, the
scalar and axial-vector propagators show a better ex-
ponential falloff from small t values as compared with the
case for ~ and p, and the increase of masses caused by
this change of time intervals is probably less than 20%.

The scalar- and axial-vector-meson masses are shown in
Fig. 16 as a function of A~, and then in Fig. 17 as a func-
tion of 1/K. The spectroscopic parameters, which are ob-
tained by applying the second equation of (38) are given in
Table VII, together with the quenched values. Statistical
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TABLE VII. Summary of spectroscopic parameters.

6~=0.02
F011 QCD

6~=0.01 Ax=0. 005 Quenched

Bs

Bg

2.718
+0.205

1.105
+0.106

0.661
+0.054

1.756
+0.467

1.122
+0.251

1.635
+0.495

1.230
+0.269

1.611
+0.621

1.126
+0.292

1.395
+0.585

1.277
+0.276

2.854
+0.139

1.312
+0.078

0.588
+0.029

2.091
+0.391

0.981
+0.145

1.963
+0.389

1.081
+0.142

1.916
+0.400

1.007
+0.132

1.674
+0.311

1.140
+0.099

2.924
+0.136

1 ~ 541
+0.116

0.491
+0.049

2.675
+0.395

0.672
+0.139

2.449
+0.506

0.818
+0.207

1 ~ 744
+0.322

0.921
+0.116

1.751
+0.326

0.981
+0.120

2.838
+0.161

1.579
+0.124

0.465
+0.045

2.838
+0.499

0.570
+0.164

2.476
+0.574

0.780
+0.206

1.782
+0.462

0.809
+0.147

1.797
+0.450

0,889
+0.144

1.795
+0.076

0.615
+0.037

0.779
+0.035

0.984
+0.183

1.345
+0.169

0.879
+0.197

1.497
+0.183

0.235
+0.640

2.047
+0.705

0.394
+0.420

1.832
+0.442

—1 —1

Ephor,
—K,

a ' (GeV)

m~/mp

mg/m~

ms/mp

mq /m~

0.1672
+0.0009

0.0054
+0.0009

1.15
+0.10

1.69
+0.40

1.10
+0.24

1.70
+0.46

1.93
+0.45

0.1636
+0.0004

0.0041
+0.0005

1.30
+0.06

1.67
+0.26

1.10
+0.16

1.71
+0.24

1.94
+0.19

0.1619
+0.0003

0.0028
+0.0006

1.56
+0.16

1.37
+0.31

1.22
+0.28

1.88
+0.30

2.00
+0.32

0.1611
+0.0002

0.0026
+0.0005

1.64
+0.16

1.23
+0.37

1.36
+0.37

1.74
+0.36

1.91
+0.36

0.1844
+0.0012

0.0114
+0.0011

0.98
+0.04

1.73
+0.23

1.1 1

+0.13
2.63

+0.91
2.35

+0.57

errors are about 3 to 5 times larger than those for m. and p
due to smaller amplitudes of the propagator. (For the
quenched case errors are even larger because of the small
value of P=5.5.) From this table we quote the scalar-
and axial-vector-meson masses to be m&/m =1.7+0.4,
mz/m&-1. 9 +0.4. These values appear to be quite
reasonable, if we recall the possible + 20% bias which we
mentioned above.

1 00

0.95—

090—

K =014
K = 0.15

016

C. Chiral order parameter

The 4~ dependence of the chiral order parameter
(Pg) =

—,', trGoo (where G =D ') is shown in Fig. 18 and
the value extrapolated to b,r=O is given in Fig. 19 (see
also Table V for numerical values) as a function of 1/K
together with the data for the quenched case.

085 1, a

0 0 01 002 003

FIO. 18. The chiral order parameter (t(1() as a function of
A~, together with lines for the A~ extrapolation.
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TABLE VIII. Selected data of the hadron mass for full QCD with the antiperiodic boundary condi-
tion imposed for solving quark propagators. This table should be compared with Table VII, where the
periodic boundary condition is imposed, to see the finite-size eA'ect. The periodic boundary condition is
used when gauge configurations are generated.

0.02
(aj m„,
0.01 0.005

0.14

0.15

0.16

1.735
+0.032

1.368
+0.028

0.854
+0.023

1.669
+0.021

1.256
+0.020

0.568
+0.026

1.648
+0.033

1.198
+0.021

0.452
+0.048

1.612
+ 0.036

1.141
+0.027

0.297
+0.044

0.14

0.15

0.16

1.763
+0.036

1.420
+0.031

0.964
+0.027

(b) mp

1.697
+0.023

1.306
+0.024

0.698
+0.029

1.675
+0.037

1.249
+0.022

0.614
+0.047

1.639
+0.041

1.192
+-0.030

0.464
+0.046

0.14

0.15

0.16

2.934
+0.156

2.370
+0.129

1.663
+0.120

(c) mp

2.898
+0.107

2.175
+0.122

1.387
+0.102

2.872
+0.139

2.046
+0.114

1 ~ 325
+0.193

2.854
~-0. 168

1.947
+0.144

1.156
+0.182

0.14

0.15

0.16

2.942
+0.167

2.393
+0.135

1.743
+0.135

I'd) mg

2.919
+0.116

2.208
+0.123

1.483
+0.106

2 ~ 890
+0.151

2.081
~0.114

1.428
+0.153

2.881
+0.182

1.986
+0.147

1.283
+0.171

1.00 I

]
I I I I

I

I I

095—

0 eow-

0.85

t!K(-

55
1/ K

i FULL QCD CAT =0)

o QUENCHED

I & i i c I i i I

7.5

FIG. 19. The chiral order parameter (PP) for full QCD
(hr=O) and quenched QCD as a function of I/K.

We have also measured the double quark loop average
G„(t=0)= ([tr(ysGoo)] ), which gives rise to the
difference of ~ and q propagators at t =O. As is seen in
Fig. 20 the value for full QCD does not diff'er much from
that for the quenched case, and the ratio
Gz (0)/G (0)—10 is quite small at K =0.16. There-
fore the eA'ect of vacuum quark loop is not likely to
enhance the ~—g mass difT'erence over that in the
quenched case. Recently it has been pointed out within
the quenched approximation that G~ (t) becomes com-
parable to G„(t) if K, —K 5 10 and if the gauge
configuration is topologically nontrivial. It is very impor-
tant to study whether this phenomenon is modified by the
vacuum quark loops. Full QCD simulation at such a
small quark mass, however, is beyond the capacity of the
current computing po~er.
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-4
)0 =- 1 /Kc

2 ( (i' t, i')
-3

i0 =—

'/Kc
1

)
l

v

~ FULL QCD ( DT = 0)
o QUENCHED

and quenched QCD (the mass data is given in Table IX).
These analyses are of a more qualitative character and we
did not carry out the b,r extrapolation. We present K, (P)
in Table X and in Fig. 22. The typical error due to the
finite Ar(=0. 01) is MC, =0.002. In Fig. 22 we have also
shown the curve for m a = 1 (dashed line).

10 L- V. PHYSICAL IMPLICATIONS

(0 =

-8
10

5 5 5 6 65 7 75

FIG. 20. Double quark loop propagator for the pseudoscalar
at t =0, as defined by G„(t=0)= ((try, D ') ). Solid and
open circles represent full (5&=0) and quenched QCD values,

respectively.

D. The line of critical hopping parameter on (P,K) plane

To study the general structure of lattice QCD with the
Wilson fermion it is necessary to know the position of the
critical hopping parameters K, (p) as a function of p and
Nf. We extended our spectroscopic analysis employing a
smaller lattice 6 X12 to find K, (p) for p=4. 0 and 5.0
(1Vf =2 and/or 4). The resulting pion mass is given in
Fig. 21(a) for P=5.0 and 21(b) for P=4.0 both for full

It is quite conceivable that a part of the vacuum-
polarization effect can be absorbed into a shift of the
gauge coupling constant p. To investigate this point we
estimate the magnitude of the shift of p by matching the
Wilson loop of full QCD at given values of K and b,r with
that for the pure gauge system at a shifted coupling
P+bP. (The value of Wilson loop for the pure gauge sys-
tem is taken from Ref. 39. We also generated new data
for p=5. 0—5.5 on 6 and 8 lattices using the standard
Monte Carlo algorithm. Our data smoothly continue to
those of Ref. 39 within the accuracy required for our pur-
pose. } The result is shown in Table XI and also in Fig.
23. The dependence of b,p on the loop size is modest; b,p
for various sizes agrees within 20%%uo even at K =0.16. A
trend is observed, however, that a larger Wilson loop
gives slightly a larger shift. We may estimate b,P at
K =K, by extrapolating the curve (Dr=0) of Fig 23 t.o
K„which gives

bP(K =K, )=0.34—0.36 . (47a)

4 I I 1

I

1 T

(a) (m~p)

Nf=0
2

4

P = 5.0

bP(K =K, )=0.35 —0.39, (47b)

For a consistency check one may alternatively measure
the distance in P between K, (P=5. 5, K, =0.1611) and
the critical line K =K, (/3) for quenched (iVf =0) QCD
(see Fig. 22). This gives also

0
4

4

0

45

4.5

1/K

t/K

5.5

I

6.5

I & I

[
I & I I

in good agreement.
Let us compare b,p for the 1X1 Wilson loop with that

predicted in an effective hopping-parameter expansion.
To order K ' this expansion predicts b p =0.061 for
K =0. 14, b/3=0. 089 for K =0. 15, and AP=0. 13 for
E =0.16. The value for E =0.14 almost agrees with our
measurement, but that for E =0.16 is a factor 2 smaller
than the estimation from the simulation.

At p=5. 0 (b,r=0.01) we found that the magnitude of
the shift bP at K =K, estimated from the Wilson loop
(bp=0. 42 —0.46) is appreciably different from that ob-
tained from the distance measurement in the (P, K) plane
(b/3=0. 32 —0.37) in the manner described above for
p=5. 5.

We think that this is a remnant of the behavior in the
strong-coupling limit where the shift hP shows a marked
increase with the size and the effect of vacuum quark
loops cannot be absorbed into the shift of p. In fact one
can readily see in the hopping-parameter expansion that,
at P=O,

FICx. 21. Pion mass squared as a function of 1/E. Simula-
tions are made with Dr=0. 01. (a) /3=5. 0 (Xf =0,2, 4) and (b)
p=4. 0 (Ãf =0.4).

with P the perimeter and 2 the area of the Wilson loop,
e.g. , AP=48ÃfK from W(1X1), bP=72(2'/3)' K
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0.15

0.17

0.18

0.19

0.20

1.860
+0.041

1.419
+0.045

1.190
+0.044

0.943
+0.037

0.649
+0.041

1.903
+0.045

1.520
+0.051

1.346
+0.054

1.192
+0.058

1.080
+0.117

0.17

0.18

0.185

(b) P=S.O, Ng =2 (6'X12)

1.323
+0.022

0.979
+0.031

0.758
+0.042

1.424
+0.026

1.151
+0.042

1.029
+0.042

(c) /3=5. 0, N~=4 (6'X 12)

TABLE IX. Hadron mass at P=5.0 and 4.0 with b,v=0.01.
Numbers of gauge configurations used in the analysis are
presented in B. The periodic boundary condition is used
throughout.

A. Hadron mass
(a) P=5.0, N~=O (8'x16)

TABLE X. Critical hopping parameter K, .

Ng =0

4.0

5.0

5.5

0.226
+0,001

0.210
+0.002

0.1844
+0.0012

0.193
+0.001

0.1637
+0.0004

0.1611
+0.0002

0.221
+0.001

0.185
+0.003

6' ~ 12 (6 i =0.01)

8')& 16 (5~=0.01)

6'X12 (a~=0.01)

9'X 18 (6-=0.01)

9'&& 18 (6~=0)

from W(1 X2), and bP=72 (N~/6)' K from W'(2X2),
etc.

It is a nontrivial question whether the shift estimated
from the Wilson loop could also account for the magni-
tude of decrease of hadron masses in full QCD. We then
calculated hadron propagators in the quenched approxi-
mation at /3'=p+bp(K, hr). We took Ap for the large
Wilson loop (3 X 3 —4 X 4), because hadron masses are
controlled by the large-distance behavior of propagators.
In Figs. 24(a) —24(d) and Table XII the masses for full
QCD are compared with those in the quenched approxi-
mation with the shifted P. The agreement between the
two cases is very good for every K and A~, and no appre-
ciable deviation can be seen within our statistics.
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FIG. 22. Critical hopping parameters K =K, (P) (br=0.01)
for NI ——0 (quenched), 2, and 4. Open circles are taken from
Ref. 41. Lines interpolate measured points to guide the eyes.
Dashed lines show the hopping parameter for which m a =1.
The cross for the 3~=0 point is added to demonstrate the typi-
cal error induced by finite time step A~.
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0.17
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0.17
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2 X 2

3X3

K =0.155

0.14
+0.01

0.16
+0.01

0.17
+0.01

0.16
+0.02

K =0.16

TABLE XI. Effective shift of the gauge coupling b,p from the

Wilson loop matching.
TABLE XII. Comparison of hadron masses at K =0.16 for

full QCD lP=5. 5, 6~=0.005l with those for quenched at shift-
ed p's. p=5. 79 and p=5. 73 correspond to those which match
the large (4X4—3X3) and the small (1X1) Wilson loops, re-
spectively. For a similar comparison at other values of K and
A~ consult Table VII.

p=5. 5

1.214
+0.017

1.293
+0.020

2.176
+0.099

2.229
+0.107

0.9350
+0.0031

Quenched
5.73

0.631
+0.029

0.760
+0.037

1.133
+0.212

1.191
+0.186

0.9165
+0.0034

5.79

0.448
+0.036

0.602
+0.048

0.935
+0.201

1.145
+0.217

0.9099
+0.0029

Full QCD
p=5. 5

0.458
+0.026

0.602
+0.041

0.863
+0.117

0.994
+0.176

0.9135
+0.0048

A similar comparison was also made for the chiral or-
der parameter (ltttr). Since this is a local quantity we
may expect a better agreement with 6p corresponding to
smaller Wilson loops. This in fact was found to be the
case (see Table XII).

From this analysis we conclude that a bulk of the
quark-vacuum-polarization eAect can be absorbed into a
shift of the gauge coupling constant. At a more precise
level, however, the shift seems to depend slightly on
length. In other words, the gauge field fluctuation of a
given length scale in full QCD is very similar to that of
the pure gauge system with a shifted efT'ective coupling
whose magnitude varies slightly with the length scale. A
good agreement of the full QCD and the quenched case at
any A~ also suggests that most of the eft'ect of finite A~
may also be absorbed eff'ectively into a shift of P.

Let us note here that, while the hadron masses extract-
ed from the full QCD and quenched QCD with a shifted

p agree, the value of propagators are different between the
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+0.02

0.0
0.1 3 0.14 0.1 5 0.1 6 0,17

FICs. 23. The eff'ective shift of p determined by matching the
Wilson loop data of size from 1X1 to 4X4. The values for
6~=0.01 and those extrapolated to 6~=0 are shown as a func-
tion of K. The lines drawn are guides to the eyes.
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two (the ratio to the value for full QCD is presented in

Fig. 25). The propagator of full QCD falls off more rap-
idly at a small distance and gradually becomes parallel to
the quenched one at large distances.

At this point we recall the interesting feature of the re-
cent quenched calculations ' that the results for masses
are not too far from the experimental values. In fact if ~
and p masses are used as input the nucleon and 6 masses
are higher than the experimental values by only 10—15 %.
Our finding on the effect of quark vacuum polarization
shows that this is not an accident; since the bulk of the
quark loop effect is absorbable into a shift of the coupling,
the hadron masses in quenched QCD should not be very
different from those of full QCD.

It is an interesting question to ask where one can see a
clear physical effect of the quark vacuum loops. One ob-
vious place will be the opening of the decay channels such
as pena and A~X~. To examine this phenomenon, we
have to explore the region where m „a 5 0.2. Such a
simulation will be extremely time consuming not only be-
cause of the slower rate of convergence of ILUCR [see
(35)] but also due to the possibility of critical slowing
down and the need for a larger lattice to avoid finite-size
effects.

Another possible place is the slight dependence of the
shift bP on the length scale. To examine this point fur-
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FICJ. 24. Hadron masses for full QCD with a given b,r (solid
circle), as compared with those for the quenched case with a
shifted p obtained from the large Wilson loops (3X3—4X4)
(open circle). (a) ~; (b) p, (c) N; (d) A.

FIG. 25. Ratio of (a) the ~ and (b) the p propagators for
quenched QCD with shifted p's to those for full QCD (K =0.16,
b,r= 0.005). p= 5.79 is the coupling constant obtained by
matching the large Wilson loop (3X3—4X4), and p=5. 73 the

1)& 1 Wilson loop.
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ther we have calculated the static quark-antiquark poten-
tial V(r) by fitting the timelike Wilson loop W(r Xt) to
the form 3 exp[ tV —(r)] over the time interval t =2—6 at
each spatial separation r in the range 1(r (4. The po-
tential V(r) thus determined reflects the variation of the
Wilson loop with respect to its size and hence is a quanti-
ty sensitive to the size dependence of the shift b/3. The
full QCD potential at K =0.16 and /3= 5. 5 with
6~=0.005 is presented in Fig. 26 together with the pure
gauge potential at /3=5. 79. We observe a good agreement
between the two in the inner part, whereas they start to
diff'er in the outer region; the potential for full QCD in-
creases more slowly than the pure gauge case. This trend
agrees with the naive expectation that in full QCD the
string between a quark-antiquark pair will split at a large
separation.

The agreement of masses between the full and
quenched QCD calculations found for the ground-state
hadrons shows that these hadrons are confined in the
inner region of the potential for which vacuum quark loop
effects can be absorbed into a shift of /3 (Ref. 43). On the
other hand, this suggests that the physical effect of the
quark vacuum polarization may be more visible with the
excited hadrons since their wave functions should spread
over larger distances (e.g. , in a charmonium model
(r )qs' /(r ) ~s' =1.8). We have noted that the rate
of decrease of the propagator in full and quenched QCD
diff'er at small temporal distances (Fig. 25), where one ex-
pects a substantial contribution from the excited states.
The difference might therefore be ascribed to the net phys-
ical effect of quark vacuum loops. Unfortunately our lat-

tice size is not large enough to examine quantitatively the
excited hadrons both in its spatial and temporal extents.

One of the pressing issues of full QCD simulation is to
examine whether the physical quantities obey the scaling
law predicted by the renormalization-group equation for
full QCD. A direct check will be provided if one carries
out another simulation at a larger /3. Unfortunately, this
seems to be beyond the computing power available to us
at present. We therefore provisionally made use of the
data at /3=5. 5 and P=5.0 to detect the effect of the vacu-
um quark loops in the following way. The
renormalization-group equation predicts that the two
length scales a ~ and ao at the two different /3's, /3~ and /3o,

should be connected by

d5/3—:/3] —Pp= da = —bplna ~ /ap+
da

(49)

5/3 = (/31 + ~/31 ) (/30+ ~/30 )

= —b plna] /ap+ (50)

where ho=33/4' is the /3-function coefficient for the
pure gauge system and a~ /ao the same as in (49). Hence
we expect

5/3' 33
5/3 29

(51)

with bo ——(33 2Nf ) /—4rr the coefficient of one-loop /3

function. Since we have seen that the physics of full QCD
at /3 is well approximated by that of quenched QCD at
/3+6/3, the effective difference of the P values should be
given by

1.5 I I

I

I I I I

i

I I I I

t

I 0 I I

J

I I f I

for Nf ——2. In our case 5P=5.5 —5.0=0.5 and we can es-
timate 5/3' from the effective shift at K =E, to be
5/3'= (5.5+0.37+0.02)—(5.0+0.34+0.02) -0.53 [see the
estimation for (47b)], i.e.,

5/3'/5/3
~

„,„„,„=1.0—1. 1 . (52)

K =016
h~ = 0005

This is suggestive of the reduction of the one-loop /3-

function coefficient by an amount anticipated in the pres-
ence of dynamical quarks.

VI. CONCLUSION

0.5—

0
0 1 2

i I I I I I I I I I I & I

3 4

FIG. 26. Static potential estimated from rectangular Wilson
loops. Solid circle stands for full QCD with P=5.5, K =0.16,
and 6~=0.005, and open circle for the pure gauge system with
P=5.79.

In this work we have carried out a Langevin simulation
of the full QCD hadron mass spectrum. We have shown
that the Langevin simulation is practically feasible and
works well for full QCD. At the same time we have
shown that an extrapolation procedure is necessary to re-
move the effect of finite time-step size for a quantitative
analysis. An important point, however, is that systematic
errors seem to be controllable to a desired accuracy.

We have seen that the inclusion of quark vacuum polar-
ization induces a significant shift in the hadron masses in
lattice units, but it is mostly absorbed into a shift of the
gauge coupling constant at least for the ground-state had-
rons above the decay threshold. Probably this is also true
for other static quantities of the ground-state hadrons, as
may be anticipated from the shape of the static potential,
which hardly differs in those parts relevant for such had-
rons from that in quenched approximation. A physical
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effect should be more clearly visible with excited hadrons,
and this is connected with the deviation of the potential
from the linear form at large distances.

Our lattice size is probably too small for a realistic esti-
mate of the spectroscopic quantities, as is indicated by an
evidence for a finite-size effect for the baryon mass. The
minimum momentum, if defined by 2a/(L, a), is 1 GeV,
considerably higher than the typical momentum carried
by quarks. In addition to resolving these problems it is
most desirable to carry out a simulation at a different
value of P to find the full QCD 13 function and check the
scaling. For these purposes a simulation with a larger lat-
tice is urgently needed.

For the simulation reported in this article, we used
about 1500 h of CPU time on HITAC S810/10 at KEK,
500 h for tests of the algorithms, and 1000 h for produc-
tion runs. As a typical example we quote that collecting
the full QCD data at K =0.16 with 6r =0.01 over
~=0—60 took about 120 h. Our code required 67MB of
central memory and runs at the speed of 100—150 MAops
on S810/10. With the Langevin simulation, the require-
ment of memory and CPU time grows with the lattice
volume. For a simulation with a realistic predictive
power, say on a 16 )&32 lattice, we therefore need a com-
puter with the speed of a few GAops or more. Computers
of such a capacity seem within reach within the next few
years and there is much hope that a first-principles calcu-
lation of the hadronic observables will become possible
shortly.

not be directly applied to (Al). The equation should be
modified as either

D Dx=D b (A2)

or

DD u=b (x =D u) . (A3)

where A is a positive-definite Hermitian matrix converges
as

(A5)

where x is the vth approximation and c the condition
number of A, i.e.,

c =A, ,„(2)/A, ;„(A) . (A6)

The convergence of the LS-type CG method is estimated
by

&2 ~+1 (A7)

We will refer to the CG method based on (A2) as the
least-square (LS) type, since it minimizes ~~b

—Dx~~. The
method based on (A3) is called the least-norm (LN)
type, since it minimizes ~~x D—b ~~.

The conjugate-gradient method for

(A4)
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with o the ratio of the largest and smallest singular values
of D. Similar relation holds for the convergence of the
L¹ype CG method with an appropriate replacement in
the norms.

We also tested the Gauss-Seidel and SOR methods,
which are sometimes used in the literature. ' ' These al-
gorithms can easily be vectorized by the hyperplane
method.

The convergence properties of various algorithms are
compared in Fig. 2 (Sec. IIB) and more extensively in
Fig. 27 for the same parameters as for Fig. 2: ILUCR

APPENDIX
to

0 500 1000 1500
fTERAT AEONS

2000 2500

Dx=b . (A 1)

Since the matrix D is not Hermitian, the CG method can-

In much of the literature, conjugate-gradient (CG)
methods are used to solve the Dirac equation on the lat-
tice

FIG. 27. Comparison of the behavior of the deviation from
the true solution as a function of the number of iterations for
various algorithms. The gauge configuration and the source vec-
tor are the same as in Fig. 2. The symbols denote: C (ILUCR
with c =1.2), E (LS type CG), F (LN type CG), 6 (CR), and H
(SOR with co=0.7).
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FIG. 28. The behavior of the residual norm squared as a
function of the number of iterations for the examples shown in

Fig. 27. The configuration and the symbols are the same as in

Fig. 27. The residual in SOR method is not calculated.

(k =1) with c =1,2, CG (LS type), CG (LN type), CR
(k =1), and SOR (ca=0. 7). The "true" solution D 'b is
obtained by the ILUCR method applying a more severe
criterion. We see an excellent convergence of ILUCR
with acceleration. Two CG methods behave almost simi-
larly. The CR method without the ILU preconditioning
has a long plateau up to around the 1800th iteration, and
then suddenly accelerates its convergence. On the other
hand, the Gauss-Seidel method diverges in this case.
Even if we apply a deceleration (ca=0. 7), the approach to
the solution is very slow. The CPU time for one iteration

is 1.23 sec for ILUCR, 0.66 sec for CG, and 0.39 sec for
CR on HITAC S810/10. We note that one CR iteration
costs 60% in time of one CG iteration, so that in this case
both algorithms work almost equally to achieve an accu-
racy ~~x

—A 'bi~ (10, say. In less critical cases the
number of iterations needed in the CR method is almost
the same or only 20% larger than that in the CG method.
We conclude that the CR method is generally more favor-
able than the CG method. This is the reason why we
used the ILUCR rather than the ILUCG method.

In the actual computation we cannot monitor the error
itself, since we do not know the true solution D 'b. The
criterion to terminate the iteration is the magnitude of the
residual norm. We, therefore, checked the relation be-
tween the behaviors of the residuals and errors with vari-
ous algorithms. In Fig. 28 we show the squared norm of
the residual ~~(b Dx(~ for—the CG and CR methods and
ii(LU) '(b —Dx)~~ for the ILUCR method.

The most notable feature in this analysis is the
difference between the LN-type and LS-type CG methods.
The norm of their residual differ in 2 orders of magnitude,
though the error ~ix D'b() is a—lmost the same with two
methods. The difference is due to the fact that the LS-
type algorithm searches the minimum of (~(b Dxi(i. W—e

presume the LN-type method is safer than the LS type;
one has to choose the convergence criterion more careful-
ly for the LS-type CG algorithm. Another noticeable
feature is that, while the residual for the LS type de-
creases smoothly, the residual for the LN has many small
plateaus. This is a usual feature characteristic of the CG
method for a positive symmetric matrix.
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