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Langevin simulation of quantum chromodynamics (QCD) on a lattice is carried out fully taking
into account the effect of the quark vacuum polarization. It is shown that the Langevin method
works well for full QCD and that simulation on a large lattice is practically feasible. A careful study
is made of systematic errors arising from a finite Langevin time-step size. The magnitude of the error
is found to be significant for light quarks, but the well-controlled extrapolation allows a separation of
the values at the vanishing time-step size. As another important ingredient for the feasibility of
Langevin simulation the advantage of the matrix inversion algorithm of the preconditioned conjugate
residual method is described, as compared with various other algorithms. The results of a hadron-
mass-spectrum calculation on a 9°x 18 lattice at 8=5.5 with the Wilson quark action having two
flavors are presented. It is shown that the contribution of vacuum quark loops significantly modifies
the hadron masses in lattice units, but that the dominant part can be absorbed into a shift of the
gauge coupling constant at least for the ground-state hadrons. Some suggestion is also presented for
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the physical effect of vacuum quark loops for excited hadrons.

I. INTRODUCTION

One of the ultimate goals of numerical simulations of
lattice quantum chromodynamics' is an explicit calcula-
tion of strong-interaction physical observables from first
principles. A full incorporation of the quark-vacuum-
polarization effect, however, necessitates evaluation of the
quark determinant arising from the Gaussian integral over
the quark field, which is an extremely time-consuming
procedure. Because of this technical reason the hadron-
spectrum calculations made so far have employed the
quenched approximation® in which the dynamical quark
loop effect is ignored without proper justification.

Recent developments in fast computer technology and
significant progress made in the last few years in simula-
tion techniques, however, have made it possible to attempt
a full QCD simulation including the quark-vacuum-
polarization effect and to examine the validity of the
quenched approximation. The continuous progress being
made in this direction leads us to hope that a full-scale
calculation of hadron dynamics could become possible
within the next few years.

The inclusion of dynamical quarks has of course been a
major problem from the early periods of lattice QCD
simulations and the proposals for this purpose are quite
numerous.>~® Among them the methods®>® based on sto-
chastic quantization® of the system with the Langevin
equation have recently gained popularity for two good
reasons. In these methods the cost of including quark
loops is reduced to solving a linear equation of the form
Dx =¢& with D the lattice Dirac operator once or twice per
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update of the entire lattice. This is in contrast with the
variants of the Metropolis method such as the pseudofer-
mion algorithm!®* which requires evaluation of the nonlo-
cal quantity tr(D ~'8D /8U) for each link update. (In this
respect the Langevin procedure is similar to the micro-
canonical simulation.*) Another important advantage of
the Langevin simulation is that the property of systematic
errors is relatively well understood and the errors seem
controllable. In fact the only source of the systematic bias
in practical applications is the finiteness of the Langevin
time step in solving the stochastic evolution equation and
the magnitude of such biases can be examined theoretical-
ly with the aid of the Fokker-Planck equation. In the mi-
crocanonical method* it is in general a difficult problem to
control systematic biases that arise from the lack of
sufficient coverage of the energy surface in a short time in-
terval. In any case this method has to rely on the
(unproven) ergodicity assumption for its validity. In order
to remove this difficulty some authors’ devised a hybrid
approach, where the stochastic noise is applied to the mi-
crocanonical system to ensure the ergodicity. In practical
applications, however, the method is quite close to micro-
canonical simulation in its nature, and hence the issue of
ergodicity still remains.!! In the pseudofermion method?
the ratio of the quark determinant is approximated by the
leading term in the variation of the gauge variables. In
practical applications error also arises from the violation
of the detailed balance caused by the fact that the pseu-
dofermion variable is often not refreshed till all the gauge
link variables are updated. A finite acceptance of the hit-
ting may also be a source of systematic bias, especially
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when the system is close to critical.!?

The Langevin equation for the gauge system is exten-
sively discussed in Ref. 9 and has been applied for numer-
ical simulations.’> The extension to full QCD including
quarks uses an effective action'® given by

t 1
Seii( U, Y)=Sgange(U)+ Y D OD ) Y,
with Y the pseudofermion variable.>® The derivation of
the Langevin equation is then straightforward.

The numerical implementation of the Langevin equa-
tion requires a discretization of the fictitious time.!* Al-
ternatively one may try to set up, from the start, a
discrete-time stochastic process which simulates full QCD
with the effective action given above. In either approach,
the Langevin equation with a finite time step A7 leads to a
limiting distribution of the form

pr=exp[ —Ser+ATS | +(AT)2Sy+ -+ ],

that differs from the desired form exp(—S.q) by the term
O (A7). It may seem advantageous at first glance to re-
move the O (A7) term by some higher-order discretization
of the Langevin equation. For the pure gauge system one
can in fact do so by a second-order formalism,'>>® or by
a redefinition of the gauge variables.® In the presence of
quarks one can still remove the term O (A7) for a certain
discretization of the quark sector.” We note, however,
that the second-order discretization is not quite advanta-
geous for light quarks. An analysis of the Fokker-Planck
equation shows that the residual error in p, from
exp(—Ser) is of order Ar/A% or (A7/A?)? with A the ei-
genvalue of the Dirac operator ysD. At small quark
masses, the minimum eigenvalue decreases and the ratio
A7/A* may exceed unity. In such a case the long-
distance modes that satisfy A7/A>2 1 may be seriously
distorted and the second-order formalism obviously does
not improve the situation. (For the gauge sector the
finite-time step suppresses ultraviolet modes. This seems
to be practically harmless, because the ultraviolet modes
shorter than the lattice spacing are irrelevant quantities on
the lattice. This is why the second-order formalism works
well for the pure gauge sector.’) Under these cir-
cumstances the best way to control the systematic error is
to make simulations with the first-order formalism at
several values of A7 and carry out extrapolations in At
using the behavior of physical quantities F =Fy+A7F,
expected at sufficiently small A7.

Another issue concerning the systematic error is the
dependence of their magnitude on the discretization
schemes of the quark part of the Langevin equation.
There is a continuous set of possibilities, and one extreme
is naive discretization® in which a simple white noise is
added to Y at each time step. In the other extreme® the Y
variable is made proportional to the white noise and hence
eliminated from the equations. All these schemes have er-
rors of order A7/A? in the first-order formalism, and it is
not a priori clear which scheme has less problems with
systematic errors. After some trial runs we found that the
latter method® has smaller systematic errors for small
quark masses and used it for our production runs.

A very important ingredient for the feasibility of the
simulation is an efficient algorithm for solving the linear
equation Dx =§&, on which the bulk of computer time is
spent. A standard solver for such equations is the
conjugate-gradient (CG) algorithm.'® However, this algo-
rithm is not fast enough for full QCD simulations, espe-
cially for light quarks, because the speed of convergence
of the CG method is controlled by the minimum eigenval-
ues of D. A general strategy to alleviate this problem is
the preconditioning of the equation which promotes the
minimum eigenvalues. One such method is the Fourier
acceleration technique.® Our method is based on an in-
complete LU decomposition!” making use of the y-matrix
structure of the Wilson quark action.!® For the solver we
adopted the conjugate residual algorithm,! a variant of
the CG method. Further improvement was achieved by a
trick similar to successive-over-relaxation- (SOR) type ac-
celeration. Altogether an improvement factor of about 15
was attained in computer time over the standard CG
method.

In addition to the technical problems discussed above
there also appear some physical problems which are not
encountered in the quenched simulation. The problem of
the finite-size effect arising from fake quark loop contribu-
tions becomes much more severe in the presence of the
dynamical quarks. This is not only due to the fact that
quark loops render the gauge configurations more ordered
and the lattice size effectively shrinks toward a light-quark
mass, but also by the fact®® characteristic of the Wilson
quark action that the fake loop contribution continuously
increases for any value of the coupling constant when the
hopping parameter approaches the critical value. There-
fore, for a given lattice size, a careful choice of the cou-
pling parameter is necessary to avoid the fake loop effect
even at the largest hopping parameter to be used in the
simulation.

Another interesting physical problem is that excited
states of hadrons are generally not stable in the presence
of dynamical quarks and hence their propagators should
be qualitatively modified by the continuum contributions.
The extraction of hadron masses would not be a trivial
problem in this situation. Unfortunately the efficiency of
our algorithm is not quite enough to explore this interest-
ing region and the quantitative study of the effects of de-
cay will be left for future investigations.

In this paper we present a full account of our attempt
at Langevin simulation of full QCD with the Wilson fer-
mion, expounding on our earlier report already published
elsewhere.?! The technical problem which arose in our at-
tempt and various checks which have been carried out to
ensure the reliability of the result are discussed in detail.
We study the hadron spectrum®>?* for two quark flavors
with the same hopping parameter. The gauge group is
SU(3). We made a simulation with various sizes of lattice
from 4> 8 to 93 18. For production runs we employed
a 93x18 lattice and chose the gauge coupling
B=6/g>=5.5. Our lattice size 93X 18 is probably not
large enough to extract quantitative predictions for the
hadron mass spectrum, especially for baryons. Neverthe-
less semiquantitative trends of the quark-vacuum-
polarization effect are already apparent in our calculation.
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The numerical calculation was carried out on HITAC
S810/10 vector computer at KEK with the central
memory of 128 MB and the peak speed of 315Mflops.

In Sec. IT we present the formulation of Langevin simu-
lation and discuss the systematic errors characteristic of
the formalisms. The method for solving the linear equa-
tion Dx =§ is given in this section with some additional
discussions deferred to the Appendix. Our simulation is
described in Sec. III. We discuss in detail the checks
which we have made to ensure the reliability of the simu-
lation. The result is presented in Sec. IV and its physical
implication is discussed in Sec. V. Section VI is devoted
to conclusions.

II. FORMALISM AND METHOD OF COMPUTATION

A. Langevin equation and systematic errors

The effective QCD action is given by

Seﬂ“(U, Y)ISgauge(U)+ 2 YJM_I(U)nn'Yn' ’ (1)

where U is the gauge link variable, M (U) some lattice
Dirac operator, and the complex scalar field Y, denotes
the pseudofermion variable on site n. In our present
analysis we take the single-plaquette action for the gauge
field

Sgauge

=L 3w+ @
p

The fermion determinant is generated by the Gaussian in-
tegral over the pseudofermion variable Y which is well
defined if the operator M is positive Hermitian. This is
ensured if one doubles the number of flavors and writes

M=D'D (3)
with
D=1-K 3 [(1—y)U +(1+7,)U/1, @)

the Wilson quark action satisfying detD=detD. The
Langevin equation is given by

ad B
iU(7) i —U(1) SUI( )Sefr(U(T),Y('r))
+mn(1) , (5)
d

Y, (r)= =M " NU@T)) Yo 1) +E,(T) (6)

dr
where 7 denotes the fictitious time and §/8U,(r) is the
derivative over SU(3). The white noise 7;(7)=nft? is
SU@3)- algebra valued with t% a =1-8 the generators of
SUQB) (trr%*=8%) and &, = é"“ ) has Dirac index a=1-4
as well as color index i =1-3. They are normalized as

(nf(rimh(r')) =28%818(1—7') ,

(7
(E%i(r)EP i)y =289B8Us . 8(T—1') .
Equations (5) and (6) may be discretized in steps of AT as
Ulr,  )=Ulr,)e " (8)

(n) _ _I-_S__
dU(ry)

)=[1—A7B(U(r, )]Y(7y)
FAFV2C(U(r, DEM

Seﬁ"—l—ATAl/z (n) ,

Y (1,41

where the indices referring to the site n or link / are
suppressed, and 7'"’ and £ are the Gaussian noise of
width 2. The functions B and C in Eq. (9) represent the
freedom in discretizing the Langevin equation, and they
are subject to the condition

BM+MB'—2cct=0 (10)

to ensure the correct distribution for the quark sector at
A7—0.
The simplest choice of B and C is

(A) B=M"! C=1, (11)

which corresponds to the naive discretization®® of the

Langevin equation (6). Another extreme choice is
(B) B=Ar"!, C=Ar"'""M""?, (12)

proposed in Ref. 6. In this case Y does not evolve and is
written directly in terms of the white noise. As a result
the Langevin equations reduce to a single equation for the
gauge variable with a bilinear noise term. We call the
schemes (A) and (B) pseudofermionic and bilinear noise
schemes, respectively.

The distribution of field variables generated by the
Langevin equation satisfies the Fokker-Planck equation.
Using a generic notation ¢ for field variables with n the
time step and / the site and other indices, the distribution
function p'"(¢) for the Langevin equation of the form

¢(n +1) n)+A
satisfies

p(n +1)(¢)___p(n)(¢)
1
2 2 ﬁaflu'aiI((A"l”'

I=11i -0

ADP™),  (13)

where the angular brackets denote the average over the
noise. Since the right-hand side is a power series in AT,
the limiting (n — oo ) distribution p, should behave with
respect to A7 as

Poo=6Xp(—Seg—ATS;]— -+ ). (14)

In the pseudofermion scheme the O (A7) deviation S, is
local and the part depending on Y is given by

Si=—1Y'M YUY +2tM (V) . (15)

Hence the magnitude of the O (A7) term?"?* relative to

Ser is A7/A? with A the eigenvalue of the Hermitized
Dirac operator ysD. One can remove the S| term using a
second-order Runge-Kutta formalism.> An analysis of
the Fokker-Planck equation (13) shows that the residual
error is of order (A7/A?)? relative to Seg.

With the bilinear noise scheme it can easily be shown
that the residual error is also O (A7/A?). The removal of
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the O (A7) term is not straightforward. Particularly trou-
blesome is the so-called nonintegrable term, which arises
from the nontrivial contraction of the bilinear noise terms
in (13) and cannot be integrated by a local function of
fields. As was shown in Ref. 25 the removal of this term
requires a modification of the gauge white noise in (8) of
the form

ni—nf+ATH P (16)
with
Hip = 161D ~'VIDEEID ~'VEDE +(a=2b) ,  (17)

where the white noise &, and &, are independent and
V;=8/8U;. One can easily check that the square of the
second term on the right-hand side of (16), after averaging
over &1, &, and 17, is of order (AT/A2)*V, where the lattice
volume V arises from the sum over /’. For V reasonably
large, unless one takes an unfeasibly small Ar, this term
substantially widens the total width of the noise term (16)
and hence effectively reduces the gauge coupling B in an
uncontrollable manner. We have checked these points by
trial runs on 4°x 8 lattice with Ar=0.01 at 8=5.0. We
found that the width of (16) is increased in some cases in
excess of 50% and the Wilson loops decreased by
15-40 %. The second-order formalism therefore does not
work in practice.

The integrable local terms of O(A7) in the bilinear
noise scheme can be removed by a second-order Runge-
Kutta algorithm, which was originally devised for the
pure gauge sector,” without introducing the problem dis-
cussed. Since the integrable terms give rise to a significant
systematic deviation even in the pure gauge sector and
hence also at a small value of K (see below), it is
worthwhile to remove at least these terms. The partial
second-order formalism for Ny dynamical quark flavors is
given by

(n+1/2) _ yrin), %o
gintla=_pygne o |

Xo=—iAT[ VS guugel U™) = N,VEIND(U™)E 1+ ATy
(18)
Uin+h—gimgPXo+rXy)

X )= —iAT[ VS gauge( U T172) - N, VEIND(U " +172)g, ]

’

+AT1/277 ,

where the independent white noises £, &, and n=n%*
are normalized as

(g.60y=(&0) =2, (19)

(nn’) =28 1—%@ , (20)
and

B=31+AB:, y=1+Ary,, %3

where 31 +7,=c,/6 with ¢, =N the quadratic Casimir ei-
genvalue for SU(N). (In our calculations we used
Bi=v,=c¢,/12.) The systematic error of this scheme is
still of order A7 due to the nonintegrable terms.

1
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FIG. 1. Comparison of various Langevin schemes. Test runs
are made at $=5.0 on a 4°x8 lattice with N,=2. About
3% 10°~10x 10° sweeps are made at each parameter set. (a) Wil-
son loop of the size 1X1 and 2X2 as a function of K. Solid
points denote the bilinear noise scheme in a partial second-order
formalism with A7=10"2 (circle) and Ar=10"? (square). Open
points are for the second-order pseudofermion noise scheme with
Ar=10"2 (circle)y A7=5Xx10"% (triangle), and Ar= 1073
(square). The periodic boundary condition is imposed. The
thick curve represents the Wilson loop expected for A7=0. (b)
Polyakov line averaged over the three spatial directions. The
meaning of the symbols are the same as in (a) except for crosses
which denote runs with pseudofermion scheme (A7=10"2) with
the antiperiodic boundary condition. Curves are drawn to indi-
cate the contribution by genuine finite-size effects.
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The numerical implementation of the above formalism
is straightforward, including vectorization of the code.
The exponentiation of a 33 traceless Hermitian matrix
X —e™ was done with the analytic expressions for the ei-
genvalues and eigenvectors provided by the Cardano for-
mula.

It is not a priori clear which fermionic scheme results
in a smaller error for a given A7. We then have made test
runs with various schemes on a 4°x 8 lattice changing the
values of Ar and K (8=5.0). Figure 1(a) compares the
Wilson loop obtained from the second-order pseudofer-
mion scheme and the bilinear noise scheme in the partial
second-order formalism. The solid curves represent the
expected value with A7=0. The deviation due to finite
AT is apparent. It is more serious with the pseudofermion
scheme than with the bilinear noise scheme; the Wilson
loop with the former bends down for large values of K.
On the other hand, the Wilson loop at least continues to
increase with the bilinear noise scheme, though the devia-
tion at our largest K is sizable with A7=0.01. From
several additional runs on 8’16 lattice we found that
these trends are independent of the lattice size. In Fig.
1(b) we have shown the real part of the Polyakov line
(Q#) = 1tr(JJU,,) averaged over its transverse directions.
It is apparent that the systematic bias in the pseudofer-
mion scheme increases the value of the Polyakov line
beyond the genuine finite-size effect represented by the
solid curve. (We confirmed that the latter disappears on a
83% 16 lattice.) This fake loop contribution leads to a
significant difference in hadron propagators between
different boundary conditions.

If one adopts the first order, instead of the partial
second order, in the bilinear noise formalism there ap-
pears a significant systematic deviation even at small
values of K, as is expected from the analysis for the pure
gauge system.’ Based on the considerations given above
we take the partial second-order bilinear noise scheme for
our production runs.

B. Incomplete LU conjugate residual (ILUCR) method

The most time-consuming procedure in our simulation
is the solution of Dx=§, which has to be carried out
twice per gauge update. A standard procedure is to use
iterative methods such as the conjugate gradient (CG),
Gauss-Seidel, or  successive-over-relaxation  (SOR)
methods. The last two algorithms, however, fail to con-
verge when the hopping parameter is nearly critical.
Therefore the CG method has been regarded as suitable.
We used the ILUCR method in our simulation, which is
a variant of CG improved by a preconditioning. The de-
tailed description of the algorithm is given in Ref. 18,
and here we only sketch the outline. The same algorithm
is also used when we calculate quark propagators on a
given gauge configuration. A comparison of various algo-
rithms applied to our problem is discussed in the Appen-
dix.

Let us consider an equation of the form

Dx=¢ . (22)

We first make an incomplete block LU decomposition,
D=LU-R , (23)

where L (U) is a lower (upper) triangular matrix in the
lexicographic ordering of the site index i and R represents
the error of the decomposition. For the Wilson fermion
D;;=1I (unit matrix with respect to Dirac and color in-
dices) and D;; (i) is nonvanishing only if i and j are ad-
jacent. We now show that the triangular separation of D

L;=Dy; (i>)),
Uj=D;

(24)

i<y,
provides a desired incomplete LU decomposition. For an
adjacent (i,j) pair with i < j, the relation

i—1

(LU)j= 3 LUy+L;U;=Dy

k=1
holds since three different sites (i,j,k) cannot be mutually
adjacent at the same time. In a similar manner we have,
for adjacent pair (i,j) with i > j,

For diagonal blocks
i—1

(LU),',': 2 Ll'kUki+I:I 5
k=1

where the sum over k vanishes due to the projection
operator (1ty,) in the Wilson fermion. The error R has
nonvanishing elements of O (K?) for next-nearest-neighbor

pairs (i, ).
Using this decomposition as a preconditioner we solve
(LU 'Dx=(LU)"'¢ 25)

instead of (22). The matrix (LU)™'D is close to diagonal
and a rapid convergence of iterative solvers is ensured.

For the solver we adopted the conjugate residual (CR)
algorithm,'® a variant of the CG method. In this algo-
rithm the norm of the residual vector ||Dx —¢&|| is mini-
mized over the affine space x,+{p,,pv_1,...,Dv_ k)
with p, an appropriately chosen trial direction vector in
the vth iteration. The algorithm consists of iterative steps
starting with

r=Dx, p=r, (26)
and repeating

a=(r,Dp)/(Dp,Dp) ,

x=x+ap , (27)

r=r—Dp, update p ,

till convergence is achieved, where a is so determined as
to minimize the norm of the new residual ||r —aDp||. In
principle the new p can be chosen to be fully orthogonal
to all the previous p’s with respect to DD so that the al-
gorithm gives the exact solution in finite steps, but here
we choose p to be orthogonal to only the last k(>0)
direction vectors to save computer memory, viz.,
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pv=ry+Bipv_1+ - +Brpv—s (28)
with
Bj=—(Dr,,Dp,_;)/(Dp,_;,Dp,_;)
G=12,...,k). (29

The convergence of this algorithm is ensured if the Her-
mitian part of D is positive difinite.?®

As can easily be seen in (29), the CR algorithm needs
only one multiplication Dr, rather than two in the CG
method for D'D. Therefore, if the number of iterations
necessary for the required accuracy is the same for both
methods, the CR method may give the computer time
gain by a factor of 2.

We found that the convergence rate can be increased
further by an SOR-type acceleration. This is a trick of re-
placing the hopping parameter K in the LU decomposi-
tion with ¢K with ¢ chosen appropriately. (Since the
preconditioner is in principle arbitrary, the hopping pa-
rameter in the LU decomposition need not be equal to K.)
This acceleration can be considered as approximating c¢D
by LU. The residual R =LU —cD now has nonzero di-
agonal entries

Rj=—(c—DI

as well as
Rj=c*KX1—y,)(14+y,)U, U}

i+f,v

for next-nearest-neighbor sites / and j =i +f1—9%. When
the gauge field U as well as the solution vector x are near-
ly aligned, the effect of those two errors tend to cancel
with each other so that (LU)™!D is closer to a constant
multiple of 1.

We present in Fig. 2 a comparison of the convergence

3 :\\\ E

3 i B 1

107 N (LUCR) =
: N\p

ol LN N L ] I

00 150 200
[TERATIONS

FIG. 2. Convergence of the iteration procedure with various
matrix inversion algorithms. Comparison is made of the behav-
ior of the deviation from the true solution as a function of the
number of iterations. The gauge configuration is taken from a
quenched simulation on 9°x 18 lattice with 8=5.5 (K, =0.1844)
and the hopping parameter is chosen to be K =0.18. The right-
hand side £ is a point source and the starting value x, is set
equal to §. The symbols denote 4-D: ILUCR (4: ¢ =1.0; B:
c=1.1;C: ¢=12;D: c=1.3). Eand F: CG [E: least-square
(LS) type; F: least-norm (LN) type]. G: CR. H and I: SOR
[H: ©=0.7; I: o=1.0 (Gauss-Seidel)]. For more explanations
see the Appendix. The behavior of convergence with more itera-
tions is shown in Fig. 27.

of various methods (see also Fig. 27 in the Appendix).
This is an example with a point source &§;=86;0 on a
93 18 lattice for a quenched gauge configuration with
B=5.5 and K =0.18. (The number of elements in x is
157461.) The critical hopping parameter is K.=0.1844
and m,a~0.47 at K =0.18. The advantage of the
preconditioning is apparent. The preconditioned conju-
gate residual (ILUCR) converges about 15 times faster
than the standard CG or CR methods. The convergence
of the latter is slow in the beginning and becomes faster at
several hundred iterations when the correct direction vec-
tor is found by the solver (see Fig. 27 in the Appendix).
In Fig. 2 one can also see a merit of the SOR-type ac-
celeration; an extra 30% improvement was achieved with
¢ =1.2. We found that this acceleration is particularly
efficient for the “bad” gauge configurations for which one
needs a large number of iterations for convergence. We
used the value ¢ = 1.2 for our production runs.

C. Hadron propagators

To obtain hadron propagators, we first find the quark
propagator G,, on a given gauge configuration by solving

Dnm Gmn':6nn' (30)

with the ILUCR method imposing the periodic or an-
tiperiodic boundary condition. The quark propagators
thus obtained are combined in a way appropriate for
correlations of hadron operators O,=uysd, O,=uyd,
Os=ud, O, =iyysd, Oy=(uCysd)u, and O,
=('"uCyu)u. Here the summation over the color and
Dirac indices, and also the color antisymmetrization for
baryons with the factor 1/3! are understood implicitly.
The average over the ensemble of gauge configurations
then gives the hadron propagators

Gy(n,n')= % f [dU][dqdcj]OH(n)O;;(n’)e —Sgauge 7D (U)g

1 i}
=— [ [dUN0,(n)0f;(n")},detD (U)e ~*uuue
G31)

with Oy (H =m,p,S, A,N,A) the hadron operator defined
above. The Green’s functions for the scalar- and axial-
vector-meson propagators vanish in the nonrelativistic
limit, for they pick up the interference between the large
and small Dirac components. (A nonlocal operator is
necessary to obtain a Green’s function nonvanishing in
this limit.) All other Green’s functions have a nonvanish-
ing nonrelativistic limit. To extract masses we project out
the zero-momentum states by the summation over the
spatial sites:

Gy(t)= 3 Gy((n,1),(0,0)) . (32)
n
For baryons we use the positive-energy components pro-

jected out by (1+7y¢)/2.
In the presence of dynamical quarks excited states of
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hadrons are generally not stable and the hadron propaga-
tor should behave as

Gu= 3 e "'+ [“dmoyimee ™
mo

m; <mg

+ (contributions from t—N, —1) . (33)

In the region of the hopping parameter that we could ex-
plore in our simulation, however, we always find
m, <2m, and ma <my +m,. We therefore have ignored
the continuum contribution when extracting hadron
masses.

The chiral order parameters (i) and {Jysp) were
calculated from the expectation values of trG,, and
tr(G,,vs). One can of course use the explicit evaluation of
G,,» made for hadron propagators. An alternative is to
use the relation

S S ED gy=2uD ! (34

nn'

valid for large V and recall that D ~!'£ is calculated at
each Langevin update. We confirmed that the results of
the two calculations agree very well.

The latter method can also be used for hadron propaga-
tors except for the wrong relative sign (“‘Bose” statistics)
of contractions. The fluctuations, however, are large in
actual simulations. )

III. SIMULATION

A. Choice of parameters

We employed a lattice of size 93X 18 with the periodic
boundary condition for both gauge and quark variables.
We have also made some runs with the antiperiodic
boundary condition in the spatial directions imposed for
the quark variables to check the finite-size effect. We
study the case of two flavors N;=2 with the same hop-
ping parameter K [see Eq. (3)]. The bulk of our calcula-
tion is made at B=6/g*=5.5. This value is above the
near transition?’ of the pure gauge system. We generated
gauge configurations at five values of the hopping parame-
ters: K =0.14, 0.15, 0.155, 0.16, and 0.162. (At the larg-
est hopping parameter K =0.162, m,a~0.43, and
my/m.~1.5)

The Langevin time step is chosen to be Ar=0.01, 0.02,
and 0.005. The starting configurations were generated by
making matrix Gaussian random numbers n=7“ of ap-
propriate width and exponentiating them to obtain the
gauge link variables U =e'". We made 5000 iterations at
each K with A7=0.01 (r=0-50), followed by 1500 and
6000 iterations with A7=0.02 and 0.005 (r=50—80), re-
spectively, starting from the last configurations of the
A7=0.01 runs. [For K =0.16, we made an additional
1000 sweeps with A7=0.01 (r=50—60) for checks of
thermalization and round-off errors.] The Wilson loop
W (L X L) and the Polyakov line (Q,) (u=1—4) are cal-
culated at every 87=0.5 and 87=0.05, respectively, and
the hadronic quantities at every 67=1. The thermaliza-
tion is checked by inspecting both Wilson loops and had-

ron propagators. We see in Fig. 3 that about 1500 itera-
tions are sufficient for equilibration when started with our
initial configuration and discarded the initial 2000 itera-
tions. As a further check, averages of physical quantities
over the interval §7=10 were calculated to detect a sys-
tematic drift with long periods and we did not find any
such drift. For successive runs with A7=0.02 and 0.005
similar analyses led us to discard the first one-third of
sweeps. We have analyzed then 30-20 configurations per
parameter set as summarized in Table I.

We also made 5000-6000 Langevin sweeps with
A7=0.01 using the pure gauge action at 3=5.5 and at
some other required f3’s (see Sec. V) to compare the result
of full QCD with the quenched case (see Table I). Some
physical  quantities calculated on these gauge
configurations are compared with those on the gauge
configurations generated by the standard Monte Carlo
procedure to confirm the absence of systematic biases in
the Langevin results.

Simulations are also made at $=4.0 and 5.0 on a
smaller lattice 6> 12 to study the behavior of the critical
hopping parameter K.(f3) for Ny=2 and 4.

Throughout our work the whole calculations are made
with the 64-bit precision, including storage of the gauge
configurations, to avoid round-off errors. With the pur-
pose to extend our calculation to a larger lattice we have
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FIG. 3. Thermalization of the Wilson loop (a) and the pion
propagator (b) at K =0.160 with A7=0.01. (7 is the Langevin
time.) In our simulation average is taken from =20 for physi-
cal quantities.
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Number of gauge configurations analyzed in our Langevin simulation at 8=5.5. The

numbers in parentheses are the range of 7 where configurations are collected. In the last column, p (ap)
stands for the periodic (antiperiodic) boundary condition imposed on the quark field in the spatial direc-
tions. The runs with A7=0.02, 0.005, and those with the antiperiodic boundary condition are started
from the configurations at 7=>50 of the A7=0.01 (p) runs.

(a) Full QCD
A7=0.01 AT=0.02 A7=0.005 BC
K =0.14 30 (r=20-50) 20 (r=60-80) 20 (r=60-80) P
K =0.15 30 (r=20-50) 20 (r=60-80) 20 (r=60-80) p
K =0.155 30 (r=20-50) P
K =0.16 40 (7=20-60) 20 (r=60-80) 20 (7=60-80) p
K =0.16 20 (7=60-80) ap
K =0.162 30 (r=20-50) P
(b) Quenched (QCD)
B 5.5 5.62 5.65 5.73 5.75 5.79
40 30 30 20 30 30
(1=20-60) (r=20-50) (1=20-50) (r=10-30) (r=20-50) (7=20-50)

examined the accuracy when the 32-bit precision is used
for the storage. (Floating point vector operations always
use the 64-bit arithmetic in HITAC S810/10.) We found
that it is crucial to make reunitarization of the gauge link
matrices in the course of Langevin sweeps; if the reunitar-
ization is made, say, at every 25 sweeps, no systematic de-
viation is seen for physical quantities. For example, in the
32- and 64-bit test runs at B=5.5, K=0.16 with
A7=0.01, both runs starting from the same configuration
at 7=50, =5.5, K =0.16, and extended over 1000
sweeps, the change of Wilson loop averages and hadron
masses are smaller than the statistical error by a factor of
10-50.

B. Pseudorandom-number generation

The Langevin simulation uses a fixed number Ni of
random numbers at each time step, e.g., Ng =80 times
the lattice volume for the partial second-order bilinear
noise scheme. Hence this method might be quite sensitive
to the (quasi)periods of the random-number sequence gen-
erated by a recursive algorithm. For our simulation we
used the multiplicative congruence method based on
X, +1=5""x,(mod2*). In order to avoid the influence of
a relatively short quasiperiod 2'* (generally 2[" =372] for
modulus 2™) characteristic of this algorithm, we generated
several random numbers in addition to those needed per
sweep and discarded them. We have checked the relia-
bility of this procedure by comparing Wilson loops in the
pure gauge sector with those from the standard Monte
Carlo simulations. We also made runs with the pseu-
dorandom numbers generated by the M sequence®® based
on the primitive polynomial x 74+ x%7*41 whose period
is 2%07_1. We found good agreement among the three
runs when the above procedure was used for the multipli-
cative congruence method, whereas the result of runs
without it did not agree at all.

In order to convert the uniform random numbers to the
Gaussian noise, we used the Box-Muller method?®’ since it
is bias-free and can be easily vectorized.

C. Convergence of ILUCR

We adopted the version ILUCR (k =1) with ¢ =1.2.
The convergence is monitored by the norm of the residual
vector ||r||=||Dx —&||. In Figs. 4(a) and 4(b) we show an
example of the convergence of ILUCR in our gauge
sweeps at B=5.5 and K =0.16 in the A7=0.01 run. The
convergence is quite smooth, and any desired accuracy
can be attained by continuing the iteration till an ap-
propriate residual norm is realized.

In the production runs we made the iteration until
||[Dx —&|| <1.0 which corresponds to 1% accuracy in
each element of the vector x. We have confirmed that a
more severe stopping condition on the residual norm does
not modify hadron propagators beyond statistics. We
show in Table II an approximate number of iterations
Ncr necessary to satisfy the condition |Dx —&|<1.

TABLE II. Numbers of ILUCR iterations (Ncgr ) necessary to
satisfy the requirement ||[Dx —&|| < 1.0, and numbers of gauge
sweeps (Ng) per one CPU hour on HITAC S810/10. CPU time
necessary for the evaluation of observables is not included.

K Ncr N (sweeps/h)
pure gauge 810
0.14 6 150
0.15 8 127
0.155 10 105
0.16 20 65
0.162 55 27
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FIG. 4. Convergence of ILUCR in the gauge sweep

(K =0.16, A7=0.01) as a function of ILUCR iterations. (a) Re-
sidual norm vector squared |[Dx —£&||?, (b) behavior of several
elements of the solution vector.

[The numbers of iterations necessary for the two inver-
sions in (18) are approximately the same.] If one defines
the quark mass by my, =(1/2a)(K~'—K,~1), the number
of iterations Ncr increases as

NCR~mq_a, a=0.8—1.0, (35)

for small m, (K 20.155 or m, S0.17a ~'~250 MeV for
the value @ ~'~1.6 GeV found in our analysis). This m
dependence agrees with the estimate given in Ref. 30. For
a larger m, the index becomes smaller (@ ~0.3).

Naturally we set a more severe condition |[Dx —b]|
$1073 when ILUCR is used to find the quark propaga-
tor with a point source b. This corresponds to 0.1% ac-
curacy even for the small elements of x at sites far from
the location of the point source.

On our 93X 18 lattice a single ILUCR iteration with
the ILU preconditioning vectorized by a hyperplane
method?"'® takes 1.23 sec on HITAC S810/10. This may
be compared with 0.66 sec for the standard CG and 0.39
sec for CR.

D. Eigenvalue analysis

It is important to know the magnitude of the minimum
eigenvalue A, of the Hermitized Dirac operator ysD,
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sof 1/ Amin .

E B=55 AT =001 . ]
40— ¥ ]
300 e
20 -

10 ' -

x

M N
0.15 016 017
K

ol . P -
013 014

FIG. 5. Inverse minimum eigenvalues of the Dirac operator
vsD as a function of the hopping parameter K on ten gauge
configurations in the interval 7=40— 50 of the A7=0.01 sweeps.

since A7/Amin> controls the dominant part of the sys-
tematic error at large distance.

To estimate Ay, we used a simpler power method and
occasionally the Lanczos method.’> In Fig. 5 we show
Amin~! as a function of K with Ar=0.01. We see that
A7/Amin 2 1 already at K =0.155, and hence expect some
distortion of gauge configurations due to the finite AT
beyond this value of K. Indeed this is clearly seen in Fig.
6, which exhibits Ay, ! as a function of Ar at K =0.15
and K =0.16. For K =0.15, 1/Ani, does not change ap-
preciably when we decrease A7. On the other hand, for
K =0.16, 1/An;, increases rapidly toward a smaller value
of Ar. This means that infrared modes, which have small
eigenvalues A2 < A7, become gradually fledged with de-
creasing A7. We will observe in Sec. IV A that large-size
Wilson loop suffers strongly from this suppression of the
infrared modes.

E. Finite-size effect

Finite-size effects are divided into two classes. The first
one concerns the gauge configurations and arises from
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[
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FIG. 6. Inverse minimum eigenvalues of the Dirac operator
ysD at K =0.15 and K =0.16 as a function of the Langevin
time step Ar.
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fake dynamical quark loops wrapping around the lattice
in spatial directions. A large contribution of such loops
implies that the gauge field fluctuations more resemble
those at finite temperature rather than those at zero tem-
perature required for spectroscopic studies. This problem
seems more severe with the Wilson fermion® and hence
has to be checked carefully.

In our work two kinds of checks have been made. We
examined whether the distribution of the Polyakov line in
the spatial direction (2, ,, accumulates around the origin
on the complex plane. As seen in Figs. 7(a) and 7(c) no
signature is observed for the deviation which signals the
effect of fake loop contributions. A more precise and
quantitative check is to measure physical quantities on the
gauge configurations generated with the antiperiodic
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boundary condition for quarks in the spatial directions.*?

The contribution of spatial fake loops changes sign [e.g.,
positive values of  are now favored as compared to nega-
tive for the periodic boundary condition as is easily seen
from the hopping-parameter expansion, which gives an
effective action for Q of the form

detD =exp!( —yKL"Q—l— s
with L, the spatial lattice size and y a positive constant

for the periodic boundary condition; see Fig. 1(b) in this
connection]. Hence the fake loop effect appears most

clearly as the difference in physical quantities between the
two boundary conditions.
procedure,

Since the gauge sweep is a

time-consuming we generated the
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FIG. 7. Distribution of Polyakov lines in the spatial direction averaged over its transverse directions during the course of gauge
sweeps (B=5.5, A7=0.01, 9°< 18 lattice). (a) K =0.16 with the periodic boundary condition for quarks (20 <7<60). (b) K =0.16
with the antiperiodic boundary condition (60 < 7 < 80). (c) K =0.162 with the periodic boundary condition (20 < 7 < 50).
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configurations with the antiperiodic boundary condition
only at K =0.16 with A7r=0.01. As shown in Table III
the averages from the periodic and antiperiodic runs are
consistent within statistical errors. We also plotted Q, .
for the antiperiodic run in Fig. 7(b).

The second kind of finite-size effect arises from the pos-
sibility that the spatial extent of the lattice is not large
enough compared to the size of hadrons. Our analyses
will show that the lattice spacing is a =0.12-0.16 fm in
our simulation, and our spatial size of La/2
=4.5a =0.54-0.68 fm might not be large enough to con-
tain hadrons inside the lattice. Such a finite-size effect can
be checked by calculating the hadron propagators and
masses with different spatial boundary conditions for
quark propagators on a given gauge configuration. The
difference arises from the process in which the trajectory
of one of the quarks forming hadrons (but not two) wraps
around the lattice in the spatial direction. A care should
be made, however, with baryon propagators which receive
nonzero-momentum contributions when the procedure
(32) is applied to the case of antiperiodic boundary condi-
tion. For this case we pick out the state with the
minimum momentum p... =w/L; by the weighted sum
given by

Gu(t)= Y Gy ((n,1),(0,0))cos(n, pmin)

X €OS(Hy P min )COS(M 2 * P min ) (36)

instead of (32). The result will be given in Sec. IV when
hadron propagators are presented.

TABLE III. Physical quantities obtained for the gauge sweep
at K =0.16 with A7=0.01 with the periodic and antiperiodic
boundary conditions imposed on quarks in the spatial directions.
The same boundary conditions are also used to solve hadron
propagators.

Periodic Antiperiodic
Wi(lx1) 0.548 32 0.548 13
+0.00051 +0.000 87
W(2x2) 0.13774 0.13794
+0.000 71 +0.001 10
W(3%3) 0.02296 0.02320
+0.000 40 +0.000 72
W(4%4) 0.003 14 0.002 98
+0.00027 +0.000 35
m, 0.631 0.622
+0.023 +0.036
m, 0.767 0.747
+0.022 +0.045
my 1.256 1.467
+0.108 +0.170
ma 1.348 1.471
+0.104 +0.165
() 0.9158 0.9124
+0.0030 +0.0033

F. Error analysis

Consecutive gauge configurations generated in the
Langevin sweeps are more strongly correlated than those
in the conventional Monte Carlo procedure. In order to
estimate statistical errors, it is important to know the
correlation of physical quantities over the successive gauge
configurations, and to estimate how many data samples
can be regarded as statistically independent. For this pur-
pose we have calculated the Langevin time autocorrelation
(1) of measured quantity f(7),

o(7)=8(r+7)8(7)/8(7')? , (37)

normalized as w(0)=1 with 8(7)=f(7)— f(7). Some ex-
amples of o for the Wilson loop and hadron propagator
are depicted in Fig. 8. The correlation rapidly falls off
with the Langevin time. Clearly the number of our data
samples (20-30) are not sufficient to give a reliable esti-
mate of the relaxation time. If we operationally define
two successive data samples to be uncorrelated when the
autocorrelation becomes smaller than 0.1, we estimate
that the relaxation time 7, is of the order of 7, ~1-5.
This means that gauge configurations over the consecutive
100-500 sweeps are correlated for A7=0.01.

The relaxation time, of course, depends on the coupling
parameters and the length scale of measured physical
quantities. The change observed in our parameter range,
however, was rather mild, perhaps by a factor of 2. In
view of the smallness of our data samples, we used 7, =4
throughout, rather than estimating 7, for each (3,K,Ar).
The error quoted in this paper is given by V.o /N with o
the standard deviation for the entire sample and N =7/7,
with 7 the interval used for the average and 7, =4.

IV. RESULT

A. Wilson loop

We show the Wilson loop in Figs. 9(a)-9(d) as a func-
tion of A7. The average of the space- and timelike Wilson
loop is taken here. The A7 dependence is rather modest
for W(1x1) even at K =0.16 [Fig. 9(a)]. The extrapola-
tion to A7=0 modifies the value at Ar=0.01 only by 2%
at K =0.16. On the other hand, for W(4x4) the At
dependence is quite significant and the modification
reaches almost a factor 2 [Fig. 9(d)]. This reflects the fact
mentioned in Sec. IIIC that the infrared modes are
strongly affected at large values of K for a finite A7. For-
tunately the dependence with respect to Ar is almost
linear over the range A7=0.005-0.02 and the extrapola-
tion procedure well applies to find the value at A7=0.
Figure 10 shows the Wilson loop extrapolated to Ar=
as a function of K (see Ref. 34). The numerical values are
presented more extensively in Table IV. Errors shown
are statistical only.

B. Hadron propagators and masses

Examples of hadron propagators are shown in Fig. 11
at K =0.16. (Selected numerical data are tabulated in
Table V.) As has been known in simulations for
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(a), (b) Wilson loop for K =0.14

and K =0.16; (c), (d) pion propagator for K =0.14 and K =0.16; (e), (f) nucleon propagator for K =0.14 and K =0.16.

quenched QCD hadron masses, the hadron propagator
with the Wilson action shows a concave curve for a small
t and then starts to follow the exponential falloff. We
have fitted the propagator data by a single hyperbolic
cosine for mesons over the temporal separation t =5—13
and by a single exponential for baryons over t =6—09.
We did not dare to fit the data by a more elaborate func-
tion such as two exponentials, because we feel that our
temporal lattice size is not sufficient to separate excited
hadron masses reliably. Therefore our mass data might
contain some contamination from the excited states. Our
procedure, however, should be enough for our purpose of
finding the effects of quark vacuum polarization. We ap-
plied the same procedure of extracting masses in a con-
sistent manner to both full QCD and the quenched data.
The quality of the fit was generally excellent, and was
equally good for full QCD and the quenched case.

Let us first discuss the spectrum of =, p, NV, and A for

which the Green’s functions have a nonrelativistic limit.
We tabulated their masses in Table VI, where errors
shown are purely statistical. (The errors arising from the
fitting range in ¢ and A7 is within the statistical ones
shown except for those for the Ar extrapolation at
K =0.16 for which the A7=0 value is reduced by about
one standard deviation.) These data are also exhibited in
Figs. 12(a)-12(d) as a function of Ar. The linear depen-
dence with respect to At is clearly visible, and it validates
a linear extrapolation to A7=0. In Fig. 13 we plotted (a)
m,?, (b) m,, (c) my, and (d) my as a function of 1/K at
fixed values of A7, together with the data given by the ex-
trapolation to A7=0. In the same figure we also present-
ed values obtained in the quenched approximation at
B=35.5 for comparison. The masses for p, N, and A at
A7=0 are recapitulated in Fig. 14. The contribution of
vacuum quark loops is quite clear. It pushes down the
hadron mass for lighter quark masses and hence shifts
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of hadron propagators

(K =0.16,

A7=0.01). (a) 7 and p; (b) scalar (S) and axial vector (A4); (c)
nucleon (N) and A. The scalar and nucleon propagators are
scaled by a factor shown. Curves show the fit used in the text.
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FIG. 13. Hadron masses (squared) for full QCD as a function

FIG. 12. Hadron masses as a function of A7 with lines of ex- of 1/K for various values of A7, as compared with those for

trapolation. (a) m; (b) p; (c) N; (d) A. Propagator data for quenched QCD. (a) (m,a)? (b) m,a; (c) mya; (d) maa. Errors
t =5-13 are used for mesons and ¢ =6-9 for baryons. shown are statistical only.
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TABLE IV. Average value of the Wilson loop W(L X L) at B=5.5. The value for A7=0 is obtained by a linear extrapolation in

A7. For the Wilson loop up to 4 X4, the spacelike and timelike loops are averaged before the extrapolation.

K =0.14
Spacelike Timelike

A7=0.02 0.01 0.005 A7=0.02 0.01 0.005 0
W(lx1) 0.50072 0.51358 0.51727 0.500 67 0.51341 0.51745 0.523 67
+0.000 86 +0.000 74 +0.000 72 +0.000 83 +0.000 62 +0.000 67 +0.000 80
W(lx2) 0.263 49 0.27979 0.28492 0.263 46 0.27972 0.284 71 0.29297
+0.00071 +0.000 71 +0.000 70 +0.00075 +0.000 57 +0.000 64 +0.00102
W(1x3) 0.14032 0.15458 0.15897 0.14022 0.15443 0.158 66 0.166 24
£0.000 63 +0.000 67 +0.000 77 +0.000 70 +0.000 56 +0.000 74 +0.00101
W(lx4) 0.074 88 0.085 60 0.088 87 0.074 62 0.085 50 0.08853 0.094 38
+0.00051 +0.00061 +0.000 67 +0.000 58 +0.000 53 +0.000 66 +0.000 82
W(1x5) 0.03992 0.047 52 0.049 36 0.013 36
+0.00075 +0.000 67 +0.000 86 +0.000 24
W(1x6) 0.021 50 0.026 60 0.027 59 0.007 53
+0.00073 +0.000 65 +0.000 65 +0.000 20
W(2x2) 0.08150 0.093 89 0.098 35 0.081 55 0.093 85 0.097 81 0.104 48
+0.000 80 +0.000 88 +0.00095 +0.000 80 +0.000 69 +0.001 00 +0.000 94
Wi(2x3) 0.026 36 0.03343 0.036 04 0.026 44 0.03323 0.03554 0.039 37
+£0.000 43 +0.000 49 +0.000 52 +0.000 50 +0.000 40 +0.000 59 +:0.000 63
Wi(2x4) 0.008 49 0.01209 0.013 36 0.008 52 0.01209 0.01302 0.01505
+0.000 46 +0.000 33 +0.00041 +0.000 50 +0.000 36 +0.000 42 +0.00043
W(2x5) 0.002 55 0.004 25 0.004 63 0.001 38
+0.00071 +0.000 46 +0.000 63 +0.000 19
W(2x6) 0.001 04 0.001 47 0.001 42 0.00043
+0.000 62 +0.000 44 +0.000 74 +0.000 19
W(3x3) 0.005 32 0.008 39 0.009 12 0.005 41 0.008 09 0.008 68 0.01044
+£0.000 54 +0.000 55 +0.000 55 +0.000 57 +0.000 40 +0.000 60 +0.000 50
W(3x4) 0.001 33 0.002 32 0.002 24 0.000 86 0.002 04 0.002 38 0.002 94
+0.000 40 +0.000 32 +0.000 35 +0.00041 +£0.00029 +0.000 45 +0.000 35
W(3X5) 0.000 38 0.00043 0.000 65 0.000 17
+0.000 57 +0.000 44 +0.00051 +0.000 15
Wi4x4) 0.000 38 0.00043 0.00073 0.00008 0.000 69 0.000 64 0.000 86
+0.000 52 +0.000 40 +0.000 48 +0.000 54 +£0.000 42 +0.000 49 +0.000 40

K =0.15

W(lx1) 0.51360 0.52567 0.53313 0.51387 0.52578 0.53293 0.53893
+0.000 90 +0.000 79 +0.00092 +0.000 86 +0.000 70 +0.000 85 +0.000 96
W(l1x2) 0.27977 0.29578 0.305 54 0.280 12 0.295 81 0.305 14 0.31305
+0.000 82 +0.00073 +0.000 88 +0.00077 +0.000 62 +0.000 86 +0.001 25
W(1x3) 0.154 50 0.168 88 0.178 19 0.15502 0.16892 0.177 66 0.18478
£0.000 83 +0.000 72 +0.000 82 +0.000 75 +0.000 63 +0.000 87 +0.00113
W(l1x4) 0.08542 0.096 62 0.104 47 0.085 83 0.096 61 0.10372 0.109 42
+0.00075 +0.000 63 +0.000 75 +0.000 70 +0.000 56 +0.000 76 +0.00091
W(1X5) 0.047 76 0.05517 0.060 32 0.01592
+0.000 88 £0.000 62 +0.001 00 +0.00027
W(1x6) 0.026 54 0.03148 0.03529 0.009 36
+0.000 78 +0.000 61 +0.00093 +0.000 25
W(2x2) 0.094 35 0.108 02 0.11673 0.094 97 0.10801 0.116 33 0.12279
+0.001 05 +0.00098 +0.001 23 +0.000 85 +0.000 80 +0.001 24 +0.001 21
W(2x3) 0.033 54 0.041 80 0.047 82 0.034 19 0.042 00 0.047 07 0.051 14
£0.000 56 +0.000 50 +0.000 66 +0.000 50 +0.000 50 +0.000 67 +0.000 81
W(2x4) 0.01192 0.01628 0.01992 0.01272 0.01657 0.019 33 0.02147
+0.00048 +0.000 39 +0.000 50 +0.000 39 +0.000 41 +0.00047 +0.000 50
W(2X5) 0.004 78 0.006 67 0.00773 0.002 17
+0.000 64 +0.000 49 +0.000 53 +0.00017
W(2x6) 0.002 00 0.002 92 0.003 15 0.00092
+0.000 68 +0.000 38 +0.000 65 +0.000 18
W(3x3) 0.00793 0.011 62 0.014 59 0.008 84 0.01228 0.01427 0.016 06
+0.000 56 +0.000 46 +0.000 68 +0.000 55 +0.000 54 +0.000 66 +0.000 59
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TABLE 1V. (Continued).

K =0.15
Spacelike Timelike
A7=0.02 0.01 0.005 A7=0.02 0.01 0.005 0
W(3x4) 0.00176 0.003 34 0.004 95 0.002 62 0.003 74 0.004 42 0.00518
+0.000 37 +0.000 33 +0.000 39 +0.000 40 +0.000 28 +0.00047 +0.000 38
W(3x5) 0.000 94 0.001 16 0.00095 0.00027
+0.000 58 +0.000 39 +0.000 51 +0.000 15
Wi(4x4) 0.000 30 0.000 58 0.001 33 0.000 66 0.00112 0.001 11 0.001 37
+0.000 60 +0.000 46 +0.000 67 +0.000 SO +0.000 36 +0.000 49 +0.000 47
K =0.16
Wi(lx1) 0.53078 0.54825 0.55545 0.53085 0.548 40 0.55554 0.564 54
+0.000 72 +0.000 54 +0.000 79 +0.000 61 +0.000 57 +0.000 79 +0.000 77
Wi(l1x2) 0.302 77 0.326 46 0.336 64 0.302 81 0.32678 0.33659 0.34891
+0.00071 +0.000 55 +0.00079 +0.000 61 +0.000 57 +0.000 79 +0.00103
W(1x3) 0.17574 0.198 31 0.208 04 0.17582 0.198 55 0.20797 0.21973
+0.000 72 +0.000 57 +0.000 83 +0.000 71 +0.000 61 +0.000 86 +0.00103
W(lx4) 0.10245 0.12100 0.12923 0.102 40 0.12116 0.12913 0.13877
+0.000 68 +0.000 53 +0.000 75 +0.00075 +0.000 54 +0.000 77 +0.00091
W(1x5) 0.059 72 0.073 80 0.08027 0.02185
+0.001 11 +0.000 74 +0.00107 +0.000 31
W(1x6) 0.03457 0.04491 0.049 81 0.01375
+0.001 02 +0.000 70 +0.00097 +0.000 28
Wi(2x2) 0.115 37 0.13758 0.147 86 0.11494 0.13791 0.147 89 0.159 49
+0.000 87 +0.000 76 +0.001 20 +0.000 79 +0.000 85 +0.001 13 +0.00109
W(2x3) 0.047 07 0.062 45 0.070 16 0.046 81 0.062 87 0.070 18 0.078 16
+0.00043 +0.000 44 +0.00071 +0.000 53 +0.00048 +0.000 77 +0.000 86
Wi(2x4) 0.019 50 0.029 10 0.03422 0.019 30 0.029 21 0.03396 0.038 94
+0.00041 +0.000 35 +0.000 58 +0.000 42 +0.000 36 +0.000 60 +0.000 62
W(2x35) 0.007 88 0.013 64 0.016 85 0.00491
+0.00041 +0.000 52 +0.000 72 +0.000 19
W(2x6) 0.003 32 0.006 25 0.008 51 0.002 46
+0.00040 +0.00045 +0.000 59 +0.000 16
W(3x3) 0.014 60 0.02291 0.027 45 0.01452 0.02301 0.02796 0.031 69
+0.000 52 +0.000 48 +0.000 85 +0.000 67 +0.000 53 +0.000 88 +0.00071
W(3x4) 0.004 61 0.009 00 0.01135 0.004 79 0.008 92 0.01159 0.01348
+0.000 40 +0.000 27 +0.000 38 +0.000 41 +0.000 33 +0.000 54 +0.000 47
W(3x5) 0.001 12 0.003 44 0.00509 0.00153
+0.000 51 +0.000 39 +0.000 63 +0.000 17
W(3x6) 0.000 54 0.001 24 0.002 35 0.000 66
+0.000 53 +0.000 44 +0.000 51 +0.000 15
W(4x4) 0.00133 0.003 16 0.004 04 0.001 11 0.003 12 0.004 08 0.00503
+0.00048 +0.000 40 +0.000 45 +0.000 49 +0.000 34 +0.000 55 +0.00041
W(4x5) —0.000 16 0.001 11 0.001 64 0.000 57
+0.000 43 +0.000 37 +0.000 50 +0.000 14
W(4x6) 0.000 11 0.00028 0.000 85 0.00020
+0.000 52 +0.000 38 +0.000 64 +0.000 17
K =0.162
Wi(l1x1) 0.554 69 0.554 77
+0.000 64 +0.00061
W(1x2) 0.33579 0.33583
+0.000 65 +0.000 62
Wi(1x3) 0.207 51 0.207 42
+0.00071 +0.000 64
W(lx4) 0.128 69 0.128 77
+0.000 69 +0.000 65
W(1x5) 0.08021

+0.00100
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TABLE 1V. (Continued).

K =0.162
Spacelike Timelike
A7=0.02 0.01 0.005 A7=0.02 0.01 0.005 0
W(1x6) 0.049 74
+0.000 96
Wi(2x2) 0.147 65 0.147 60
+0.00090 +0.00090
Wi(2x3) 0.07042 0.070 35
+0.000 52 +0.000 57
W(2x4) 0.03443 0.034 18
+0.000 44 +0.000 48
W(2X5) 0.016 60
+0.000 53
W(2x6) 0.008 17
+0.000 52
W(3x3) 0.028 02 0.028 20
+0.000 61 +0.000 62
W(3x4) 0.011 89 0.011 81
+0.000 33 +0.000 40
W(3X5) 0.004 92
+0.000 47
W(3x6) 0.001 96
+0.00041
W(4x4) 0.004 48 0.004 39
+0.00051 +0.000 53
W(4x5) 0.00179
+0.000 46
W(4x6) 0.000 89
+0.000 52
also the critical hopping parameter to a smaller value. a 1'=1.64+0.16 GeV
The amount of decrease of masses is larger for a smaller
=(0.12 fm)~" (N;=2) (39)

quark mass. Therefore, while the quenched data lie near-
ly on a straight line with respect to 1/K, the masses in
full QCD bend downward toward the critical hopping pa-
rameter.

We fitted the hadron mass data for K 2 0.15 with the
form

11
K K.

(ma)i=A4,

>

11
K K.

mia=A; +B;, i=p,N,A

and the spectroscopic parameters in (38) are tabulated in
Table VII (errors shown are statistical except for those for
the mass ratios for which errors due to the fitting pro-
cedures are also taken into account). Here we fixed the
physical mass scale using m;®' =770 MeV and
m P! =140 MeV. The lattice constant a shrinks from

a'=0.98+0.04 GeV
=(0.20 fm)~' (N;=0)

to

by the inclusion of vacuum quark loops. If we assume
scaling, these lattice constants are translated into the
QCD scale parameter on the lattice

AL =4.0+0.2 MeV (N,=0)
and

AL =2.8+0.3 MeV (N,=2), (40)
where we used

2 (S1—19N/3)/(11—2N ;/3)?

8w
aAL=133_3n,P
472
T _p. 41
XeXP |\ =33 N, P @
With the aid of
Amom/Ar =83.5 (N;=0) (Refs. 35-37)
=97 (N;=2) (Ref. 37), 42)

we obtain
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TABLE V. Selected data of hadron propagators for full QCD at f=5.5.
K =0.14
™ P
AT=0.02 0.01 0.005 A7=0.02 0.01 0.005
t=0 1.556 < 10 1.553x 10 1.551x 10 1.354< 10 1.349< 10 1.347x 10
+0.003 % 10 +0.003 % 10 +0.004 % 10 +0.005 % 10 +0.005 X 10 +0.005 % 10
r=1 1.129 1.138 1.145 8.372x 107! 8.402x 10" 8.439x 10!
+0.014 +0.014 +0.013 +0.115x 107! +0.094x 10~ +0.105x 10!
t=2 1.630x 10! 1.681x 107! 1.704x 107! 1.152 10! 1.178x 107! 1.186 107!
+0.045x% 10! +0.039x 10! +0.041 % 107! +0.034x 10! +0.027x 10! +0.034x 10!
t=3 2.613x 1072 2.839 1072 2.910x 102 1.778 <102 1.908 < 102 1.942% 1072
+0.112x 1072 +0.105% 102 +0.122x 10?2 +0.082x 102 +0.072 X 1072 +0.096 < 1072
t=4 4.442x10° 5.175x 107} 5.393% 10°* 2.932x10°3 3.369x 10°? 3.471x10°°
+0.307x 1073 +0.251 1073 +0.315x 1073 +0.226 1073 +0.174x 1073 +0.233107?
t=>5 7.723% 104 9.615x 104 1.027x 1073 4.955x107* 6.067x107* 6.41310~*
+0.671x 10~* +0.534x10* +0.079x 1073 +0.495x 10~* +0.358 x 10~* +0.567x 10~*
t=6 1.360x 104 1.813x107* 1.980x10~* 8.487x107° 1.111x 104 1.204x10~*
+0.131x10~* +0.107 x 10~* +0.181x 10* +0.956 % 107° +0.070x 10~* +0.126x 10~*
t=7 2.396x 1073 3.399 1073 3.808x 1073 1.454% 1073 2.021x 1073 2.249% 1073
+ 0.239x10°° +0.201x 1073 +0.395% 1073 +0.170x 10~ +0.127x 10 +0.268x 103
t=8 4.355%10°° 6.647x10°° 7.54410° 2.567x10°° 3.851x10°° 4.320%x 10~°
+0.435x10-° +0.400x 10~° +0.828 x 10~° +0.299x 10~° +0.253x107° +0.533x10°°
t=9 1.490< 10~¢ 2.417x107° 2.802x10~° 8.559 107 1.36610~¢ 1.566x10~°
+0.150%x 10~° +0.148x10°° +0.321x107° +0.992x 107 +0.094x 10~ +0.200x 10~°
() 0.9682 0.9668 0.9653
+0.0023 +0.0023 +0.0021
N A
A7=0.02 0.01 0.005 A7=0.02 0.01 0.005
t=0 1.581 1.572 1.567 3.744 3.722 3.710
+0.011 +0.011 +0.010 +0.026 +0.027 +0.024
t=1 2.617x 1072 2.620x 1072 2,634 1072 6.599< 1072 6.604 < 1072 6.631 1072
+0.047 % 102 +0.038x 10?2 +0.056 < 102 +0.110x 10?2 +0.092x 102 +0.136x 10?2
r=2 8.885x 107 8.755x 10~* 8.849 10~* 2.190x 1073 2.152x 1073 2.170x107*
+0.457x 10~ +0.349 10* +0.509 % 10~* +0.109x 107? +0.083x 10?3 +0.122 1073
t=3 3.494 1073 3.619x 1073 3.703x 1073 8.416 103 8.649x 10° 8.822x10°°
+0.291x 10 +0.267x107° +0.370x 10° +0.689x 107 +0.615x 103 +0.873x10°°
t=4 1.600x 10~° 1.807x107° 1.835x10~¢ 3.762107° 4.197x10°° 4.255x10°°
+0.224x10°° +0.199x 10~¢ +0.254 % 10° +0.519x 10° +0.453 % 10~° +0.599x 10~°
t=>5 8.495x 10~ 1.011x10°7 9.762x 103 1.952 %107 2.301x 1077 2.205x 107
+1.925x 108 +0.159x 107 +1.837x10°% +0.444 % 1077 +0.360x 1077 +0.427x 1077
t=6 4.916x10~° 5.702x10~° 5.709 < 10~° 1.112x 1078 1.272x 1078 1.260x 103
+1.396x 10~° +1.081x10° +1.332x10° +0.321x 108 +0.243 % 10~% +0.303x 10~*®
t=7 2.717x10°1° 3.229x10°1° 3.443x 10710 6.072x 1010 7.053x 10~ 1° 7.437x 10710
+0.783x 10~ 1° +0.682x 1010 +0.948 x 1010 +1.786x 10710 +1.508x 10~ '° +2.129x 10~ 1°
t=38 1.510x 101 1.860x 10~ 1.991x 10~ 3.341x 107! 3.978x 10~ ! 4.197x 10"
+0.450% 10~ 1! +0.423x 10~ 1! +0.534x 101 +1.020x 10~ +0.916x 10~ +1.180x 10"
t=9 8.210x 10~ "3 1.114x 1012 1.150x 10~ 12 1.808 % 10~ !2 2.313%x 10712 2.396x 10712
+2.746 10~ 13 +0.253x 10712 +0.351x 10712 +0.617x 102 +0.533x 101 +0.740x 10~ 12
t=10 2.955x 101 0.402x 10~ 1? —1.840x 1013 0.830x 101 1.276 1013 —2.048x 1013
+8.646 10~ +1.031x 10~ 13 +2.568 101 +1.410x 10~ 1 +1.519x 10~ 13 +3.811x 10° 13
r=11 —0.509x 10~ 1 —2.126x 10" "2 —3.347x 10712 —0.426x 1013 —2.242x 10712 —3.966x 1012
+6.946 10~ 13 +1.033x 1012 +2.350x 10712 +8.350x 10 "3 +1.261x 1012 +2.623x 10712
=12 —0.862x 10" —3.994x 10" —7.282x 10~ —0.986x 10! —4.232x 10~ —8.494x 10~
+1.333x 10~ ! +1.722x 10~ +5.169x 10~ 1 +1.732x 10~ 1 +2.103x 10~ 1 +5.966 10~ !
t=13 —5.927x10°'° —1.101x10°° —1.507x10~° —7.654x 1010 —1.331x107° —1.726x107°
+3.713x 10~ 1° +0.402x 10~° +0.843 < 10~° +4.881x10°1° +0.517x10~° +0.986x 10~
t=14 —2.623x 108 —3.971x10°8 —4.568x 1078 —3.364x10°% —5.120x 1078 —5.657x 108
+0.920x 10~8 +1.054x 108 +1.849% 10% +1.233x 1078 +1.389x 108 +2.361x 108
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TABLE V. (Continued).

K =0.14
N A
AT=0.02 0.01 0.005 Ar=0.02 0.01 0.005
t=15 —9.597x 1077 —1.243x10°° —1.331x10°° —1.304x10°° —1.674x10°° —1.776x107°
+2.476 1077 +0.274x10~° +0.350x 10~° +0.344 % 10°° +0.388x 10°° +0.489x10°°
t=16 —3.916x107° —4.654% 1077 —4.812%x10°° —5.763x107° —6.821x 1073 —6.999%x10°
+0.706x 1073 +0.703x 107 +0.694x 10°° +1.065x 103 +1.058x 1077 +1.036 1077
t=17 —1.996x107? —2.184%x107° —2.192x10°° —~3.221x107° —3.538%x107° —3.534x10°°
+0.189x 10?3 +0.176 x 10~* +0.208 x 103 +0.315x 1073 +0.287x 1073 +0.344x 1073
K =0.15
T P
A7=0.02 0.01 0.005 Ar=0.02 0.01 0.005
t=0 1.620< 10 1.615% 10 1.606 < 10 1.354 % 10 1.344< 10 1.331x 10
+0.005% 10 +0.004 % 10 +0.004 x 10 +0.007 X 10 +0.006 X 10 +0.006 X 10
r=1 1.535 1.565 1.585 1.033 1.044 1.051
+0.020 +0.013 +0.016 +0.013 +0.009 +0.009
t=2 2.892% 107! 3.019x 107! 3.153x 107! 1.768x 107! 1.816 107! 1.874 < 107!
+0.064x 107} +0.051x 10! +0.067 % 10~! +0.037x 107! +0.031x 10! +0.040 10!
=3 6.352 1072 6.896x 1072 7.615x 1072 3.595x 1072 3.801x 1072 4,139 1072
+0.214x 1072 +0.182x 1072 +0.224x 1072 +0.131x 1072 +0.110x 1072 +0.115x 1072
t=4 1.530< 1072 1.740x 1072 2.079x 1072 8.123x 1073 8.894 103 1.054 1072
+0.075x 1072 +0.063 x 1072 +0.084 % 1072 +0.443 1073 +0.379x 1073 +0.044< 1072
t=5 3.827x 107} 4.665x10~* 6.002 1073 1.921x 1073 2.246% 1073 2.867x10°°
+0.250% 10~* +0.212x 1073 +0.282x 10~* +0.137x10* +0.119x 1073 +0.149x 1073
t=6 9.588x10~* 1.290x 1073 1.762x 1073 4.543%10~* 5.872x 10~* 7.960x 10~*
+0.789x 10~ * +0.070x 103 +0.091x 10~3 +0.419% 10~* +0.370x 10~ +0.477x 10~
t=7 2.447%107* 3.687x 104 5.332x 104 1.096 < 10~* 1.591x 10~* +2.292x 107
+0.229x 10* +0.242x 1074 +0.331x 10* +0.118x 10~* +0.118x 107 +0.166 < 10~*
t=38 6.693 1073 1.138x10~* 1.793% 10~ 2.837x10°° 4.634x 1073 7.328x10°°
+0.651x 1073 +0.088x 10~* +0.137x 107* +0.325x 1077 +0.403x 1077 +0.629% 1073
t=9 3.265x10°° 6.060 1073 1.027x 1074 1.330x 1073 2.365% 1073 4.035% 1073
+0.320x 1073 +0.493% 103 +0.089 % 10~* +0.155%107° +0.217x 1073 +0.391x107°
() 0.9540 0.9506 0.9466
+0.0028 +0.0023 +0.0023
N A
Ar=0.02 0.01 0.005 Ar=0.02 0.01 0.005
t=0 1.527 1.511 1.491 3.603 3.564 3.516
+0.013 +0.011 +0.011 +0.032 +0.026 +0.026
t=1 3.176 1072 3.209x 102 3.159 % 1072 7.858 1072 7.915x 1072 7.770x 10?2
+0.081x 1072 +0.058 % 10?2 +0.063x 1072 +0.188 1072 +0.142 1072 +0.151x 1072
t=2 1.355% 1073 1.395x 1073 1.449x 1073 3.231x 10 3.297x 1073 3.401x 103
+0.059x 10°? +0.045x10~* +0.077x 103 +0.137x 1073 +0.101x 1073 +0.176 X 10*
t=3 7.543x 1073 7.888x 1073 8.608 x 10° 1.720< 10~ 1.760x 10~* 1.889 10~ *
+0.700< 1073 +0.468 103 +0.521 %1073 +0.163x 1074 +0.101 X 10~ +0.112x10°*
t=4 5.352x107° 5.934x10°° 7.180x 10~ 1.164 <1073 1.243x 1073 1.46110°°
+0.697 < 10-° +0.650% 10° +0.755% 107° +0.155%10° +0.135% 1073 +0.151x10°°
t=5 4.247x1077 5.415% 1077 7.410< 1077 8.846x 107 1.072x10°° 1.411x107°
+0.709< 10~ +0.868 % 1077 +0.978x 10~ +1.495x 1077 +0.17310°° +0.185x107°
t=6 3.438x 1078 5.687x 1078 8.515x10°% 6.857x 1078 1.069 < 107 1.542 1077
+0.714x 10~% +1.118x 10~ +1.402x 108 +1.414% 1073 +0.213x 1077 +0.255x 1077
t=7 3.192%10°° 6.590x 10°° 1.106 1078 6.147x107° 1.178x 1078 1.935x 108
+0.856x 10~° +1.558%10° +0.245x 10 ¢ +1.642x107° +0.278x 1078 +0.433x10°¢
t=38 3.218x 10710 8.105x 1010 1.574%10~° 6.053 10710 1.399 10~° 2.650%<10°°
+0.998 % 1010 +2.247% 10710 +0.439x10° +1.932x10°1° +0.386x10° +0.742x 107°
t=9 3.210x 10~ 9.693x 10~ 2.320x 10710 6.008 10~ ! 1.624x10°1° 3.770x 1010
+1.075x 10" +3.060x 101! +0.724x 1010 +2.124x 101 +0.517x 10710 +1.188x 10710
t=10 0.698x 10 12 7.010x 10~ 12 2.971x10 1 3.681x 10~ 12 1.387x 10~ 5.280x 101!
+4.022 10712 +8.908 x 10712 +1.933x 10~ +5.756 1012 +1.267x 10! +2.864x 107!
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TABLE V. (Continued).
K =0.15
N A
Ar=0.02 0.01 0.005 Ar=0.02 0.01 0.005
=11 —1.850x 10" —3.321x10° 1 —9.008x 10~ —2.054x 10" —3.526x 10~ " —7.149x 10~
+2.205x 10~ 1! +2.917x 10 +7.629x 107" +2.456x 10~ 1! +3.634x 10! +9.059x 107!
t=12 —2.420%x 10710 —4.099x 1010 —1.078x10~° —2.283x10°1° —4.528x10°1° —1.010x107°
+1.845x 107 1° +2.307x 10710 +0.501x 10~° +2.009x 10~ 1° +2.474% 10~ 1° +0.567x 10~°
t=13 —5.326x107° —7.536x107° —1.768x10~% —5.745x10° —8.575x10°° —1.879x 1078
+2.948%10~° +2.850x 10~° +0.468 1078 +3.712x10°° +3.195x 10° +0.489x 103
t=14 —1.333x1077 —1.563%x 1077 —3.001x 1077 —1.567x 1077 —1.802x 107 —3.465x10"7
+0.473x 1077 +0.393x 1077 +0.818x 1077 +0.606x 107 +0.469x 1077 +0.996x 10~
t=15 —3.174x10°° —3.674x10°° —5.366x10~° —4.008x10° —4.712x10°° —6.737x107°
+0.679%x10~° +0.593x10°° +0.871x 10~ +0.911x10°¢ +0.785x 10~ +1.140 10~°
t=16 —9.300% 1073 —1.009x10~* —1.271x10~* —1.303x10°* —1.426x10°* —1.789x10~*
+1.040x 1073 +0.118x 10~* +0.122x 107* +0.154x 10~* +0.178x 10~* +0.183x 10~*
t=17 —3.378x 1073 —3.593x 1073 —4.173x 107} —5.341x 1073 —5.693x 1073 —6.625% 1073
+0.272x 1073 +0.255x 1073 +0.243% 1073 +0.446% 1073 +0.420x 103 +0.408 x 103
K =0.16
™ P
AT=0.02 0.01 0.005 AT=0.02 0.01 0.005
t=0 1.661x 10 1.642x 10 1.631x 10 1.296x 10 1.271x 10 1.260< 10
+0.008 % 10 +0.008 % 10 +0.014 % 10 +0.010x 10 +0.008 % 10 +0.014% 10
t=1 2.187 2.231 2.230 1.248 1.244 1.233
+0.021 +0.024 +0.025 +0.013 +0.008 +0.010
=2 5.732 107! 6.156 10! 6.160 107! 2.619x 107! 2.597x 107! 2.505% 10!
+0.124x 107! +0.153x 107! +0.188x 107" +0.057x 10" +0.041x 107! +0.040% 10~
t=3 1.905% 10! 2.321x 107! 2.420% 107! 7.143 1072 7.502x 1072 7.309¢ 1072
+0.070% 10! +0.088 107! +0.113x 107! +0.294% 102 +0.200x 102 +0.160x 102
t=4 7.332x 1072 1.058% 10! 1.216x 107! 2.360x 1072 2.782% 1072 2.841x 1072
+0.329 1072 +0.050x 10! +0.064 % 107! +0.117x 1072 +0.099 % 102 +0.117x 102
=5 3.070x 1072 5.308 x 1072 7.049 % 102 8.791x 1073 1.187x 1072 1.335x 1072
+0.165% 102 +0.298x 102 +0.407x 1072 +0.535x 1073 +0.050x 10?2 +0.101x 102
t=6 1.307x 1072 2.798x 1072 4.452 1072 3.363%107° 5.352x 10°? 7.114x 1073
+0.077x 102 +0.177x 1072 +0.290% 102 +0.237x 1073 +0.265%10? +0.762x 103
t=7 5.712x 1073 1.560% 102 3.084 1072 1.314x 1073 2.555%x 1073 4.169x 107
+0.390% 1073 +0.109x 102 +0.234x 1072 +0.117x 1073 +0.156x 1073 +0.576 x 10~*
=8 27761073 1.007x 102 24271072 5.691x10~* 1.432x10°° 2.849% 107}
+0.222%x 1073 +0.081x 1072 +0.215x 1072 +0.661x 10™* +0.114x 1073 +0.480x 1073
t=9 1.992 1073 8.532x 1073 2.221x 1072 3.786 < 10~* 1.130x10~* 2.434%107°
+0.175x 1073 +0.739x 1073 +0.217x 102 +0.502x 10~* +0.104 <1073 +0.454% 1073
() 0.9221 0.9158 0.9135
+0.0038 +0.0030 +0.0048
N A
AT=0.02 0.01 0.005 AT=0.02 0.01 0.005
=0 1.388 1.356 1.344 3.264 3.191 3.164
+0.017 +0.014 +0.022 +0.041 +0.032 +0.052
t=1 3.500x 1072 3.412x 1072 3.229%x 1072 8.406 < 1072 8.148 < 1072 7.747 %1072
+0.098 x 102 +0.063 < 1072 +0.089x 102 +0.232x 10?2 +0.150x 102 +0.219% 102
t=2 1.912x 1073 1.907x 103 1.701x 1073 42481073 4.189x 1073 3.765x 1073
+0.118x 1073 +0.065% 10~? +0.116x 10?3 +0.254 1073 +0.145x 1073 +0.258x 103
=3 1.553x10~* 1.630x 10~* 1.431x107* 3.058x10~* 3.061x10~* 2.733x10~*
+0.177x 10~* +0.072x10* +0.125x 107* +0.334x10~* +0.135% 10~* +0.241x 104
t=4 1.914% 1073 2.304% 1073 2.073x 1077 3.260x 1073 3.571x 1073 3.195% 1073
+0.292x 107° +0.137x 1073 +0.257x10°° +0.504 % 10~° +0.211x10°° + 0.398x10°°
=5 3.306x10~° 4.555%10°° 5.120x 10°° 4.909x 10° 6.017x10°° 6.417x107°
+0.567x 10~° +0.394 107° +0.825x 10~° +0.832x10°° +0.535x 10~° +1.125%x10¢
t=6 6.420x 1077 1.061x10°° 1.813x 10~ 8.560 1077 1.236x10~° 1.985x 10
+1.262x 1077 +0.125% 10~° +0.335x 10° +1.675% 1077 +0.156x 107° +0.453%10°°
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TABLE V. (Continued). L
K =0.16
N A
AT=0.02 0.01 0.05 AT=0.02 0.01 0.005
t=7 1.308 % 1077 2.745x 1077 7.506 107 1.585x 1077 2.854% 1077 7.181x 1077
+0.301x 1077 +0.428 % 1077 +1.457% 1077 +0.371x 1077 +0.491 <1077 +1.801x 1077
t=8 2.683x 1078 8.197x 1078 3.304x 107 3.053x 1078 7.793x 103 2.782x 1077
+0.886 1078 +1.691x10°% +0.703 x 1077 +1.105x 1078 +1.800x 108 +0.844 1077
t=9 5.270x 10~° 2.832x 1078 1.325x 1077 5.690x 10~° 2.449x 108 9.780x 10°*
+2.312x107° +0.914x 103 +0.409 % 1077 +2.712x107° +0.731 1078 +4.327x10%
=10 6.972x 10~ 1° 8.220x 10~° 4.208% 1073 0.895x10~° 7.632x107° 2.761x10°?
+9.448 10710 +6.331x10° +3.374% 1073 +1.033%x10° +4.491x107° +2.316x 1073
t=11 —2.090%10~° —8.585x10°° —1.388x 10" —1.424%10° —5.551x107° —1.396x 1073
+1.995% 10~° +9.021x107° +4.143x 108 +1.816x107° +5.574%107° +2.365x107%
t=12 —1.611x10°8 —7.505% 1078 —1.419x 1077 —1.299x 1078 —5.647x 108 —1.009x 1077
+0.978 x 108 +1.953x 108 +0.635x 1077 +0.898 < 108 +1.343x 1078 +0.433 %1077
r=13 —1.174x 1077 —4.948 107 —7.475x 1077 —9.933x10? —4.191x 1077 —5.481x 1077
+0.509 % 10~ +0.720 107 +1.831x 1077 +4.535x 108 +0.566 10~ +1.500% 1077
t=14 —1.192x10°° —3.185x10°° —4.280x10~° —1.134%10°° —3.057x10°° —3.856x107°
+0.262x10°° +0.334x10°° +0.730x 10~° +0.265% 10~ +0.361x 107 +0.740x 10~°
t=15 —1.572x 1073 —2.791x 1073 —3.394%x10°° —1.777x 103 —3.155x10°? —3.804x 1077
+0.260% 1073 +0.216x 1073 +0.524% 1073 +0.329% 107° +0.277x10°° +0.678 X 1073
t=16 —2.925x10~* —3.792x10~* —4.001x 10~ —3.904%10~* —5.184x 10~* —5.435x 1074
+0.368 < 10~* +0.300 10~* +0.449 % 104 +0.553x10~* +0.456x 104 +0.710x 10~*
t=17 —7.116x 10?3 —7.963%x1073 —8.541x 1073 —1.113x 1072 —1.266x 1072 —1.357x 10
+0.366% 1073 +0.401 % 107? +0.559% 103 +0.063 % 1072 +0.069 % 1072 +0.098 < 102
K =0.162
™ P
AT=0.02 0.01 0.005 AT=0.02 0.01 0.005
t=0 1.635x% 10 1.236 10
+0.011x 10 +0.012x 10
r=1 2.431 1.275
+0.048 +0.010
=2 7.345% 10! 2.596 107!
+0.328 % 10! +0.050x 107!
t=3 3.151x 107! +7.407x 1072
+0.207x 107! +0.265% 1072
t=4 1.662x 10! 2,753 1072
+0.141x 10! +0.141 <1072
t=5 9.958 % 102 1.203 1072
+1.129¢ 102 +0.083 % 1072
t=6 6.605% 1072 5.916x1073
+1.013x 10?2 +0.503x107*
t=7 4.739x 1072 3.285x107*
+0.932x 10?2 +0.411x 1073
=8 3.724 1072 2.091x10°?
+0.836x 10?2 +0.371x107°
t=9 3.368 X 1072 1.711x 1073
+0.780x 10?2 +0.355% 1073
() 0.9023
+0.0045
N A
A7=0.02 0.01 0.005 AT=0.02 0.01 0.005
t=0 1.296 3.049
+0.020 +0.046
t=1 3.204 102 7.622< 1072
+0.058 < 10~? +0.143 1072
t=2 1.737x 1073 3.767x 103
+0.059x 103 +0.116 1073
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TABLE V. (Continued).

K =0.162
N A
AT=0.02 0.01 0.005 AT=0.02 0.01 0.005
t=3 1.457x10~* 2.634x10*
+0.094 < 104 +0.143 1074
t=4 2.167x 10773 3.069x 10~°
+0.245% 10° +0.287x 10°°
t=5 4.638x10°°¢ 5.329x10°¢
+0.745x10~° +0.767x 10¢
t=6 1.198 10~ 1.199 10~
+0.228x 10~° +0.212x 107
t=7 3.218x 1077 3.016 1077
+0.792% 1077 +0.598 % 1077
t=8 7.474x 1078 6.971x 1078
+4.948 108 +2.106 108
t=9 —0.483x 1078 0.708 % 108
+5.218x 1078 +1.861x 108
t=10 —4.576 1078 —1.613x10°%
+8.564 108 +2.147x10°%
t=11 —1.102x 1077 —5.168x 108
+1.328x 107 +3.918x10°%
t=12 —3.086x 1077 —1.760x 1077
+2.075% 107 +0.847 < 10~
t=13 —1.141x10°¢ —8.297x 1077
+0.312x10°° +2.058 %107
t=14 —5.882x10°¢ —5.456x107°
+0.685x 10~° +0.655x10°
t=15 —4.384x10°° —5.058x10°3
+0.324 %1073 +0.387x 1073
t=16 —5.121x107* —7.131x10~*
+0.334x 10~* +0.539x 1074
t=17 —1.003x 102 —1.621x10?
+0.050 % 102 +0.091x 1072

Amom=3401t15 MeV (N;=0)
=270£25 MeV (Ny=2). (43)

In Table VII we see that my/m, and ms/my became
closer to the experimental values:

mgP/myPt=1.22, m&"/mFP=1.31.

This better agreement is caused by a steeper slope of the
AT extrapolation curve for nucleon (slightly less steep for
A) as observed in Fig. 12. We cannot conclude, however,
whether this is a real physical effect or merely represents
either a size effect that the baryons are not contained in
the lattice or an artifact due to our extrapolation pro-
cedure combined with large statistical errors. In any case,
an analysis at a larger value of 3 should be made before
drawing conclusions on its physical significance.

The critical hopping parameter shifts from
K, =0.1844+0.0012 to K, =0.1611£0.0002 with the in-
clusion of vacuum quark loops. A finite A7 makes the
effective hopping parameter effectively smaller than its in-
put value. For example, our largest hopping parameter
K =0.162, which apparently exceeds K., corresponds to
the real hopping parameter around K =0.16 due to the
finite Langevin time step A7=0.01, as may be seen from
a comparison of values of ma and m,/m.

The definition of quark mass is somewhat ambiguous
with the Wilson action. We conventionally define it using
the relation suggested from the free field

my = -ZIE(K -1
We then obtain for full QCD

mga =0.00128+0.000 26
or (45a)

mg=2.110.4 MeV

—K.7 Y. (44)

using (39), and for quenched QCD
mga =0.005 69+0.000 57

or (45b)
mg=5.610.6 MeV .

These m,’s differ approximately by a factor of 2-3. If we
form the ratio to A; we obtain

my /AL =1.4+0.2 for N,=0,
my /AL =0.840.2 for Ny=2 .

(46)

Let us now examine the question of whether the spatial
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TABLE VI. Hadron mass for full QCD (A) and quenched QCD (B). A fit is made to the propagator
for the range t =5-13 (m,p), t =3-7 and 11-15 (S,A), and 1 =6—9 (N,A).

A. Full QCD
(a) m,
AT 0.02 0.01 0.005 0
K
0.14 1.736 1.670 1.650 1.614
+0.033 +0.020 +0.033 +0.037
0.15 1.366 1.261 1.195 1.142
+0.028 +0.021 +0.022 +0.028
0.155 0.984
+0.023
0.16 0.856 0.631 0.458 0.348
+0.023 +0.023 +0.026 +0.030
0.162 0.436
+0.057
(b) m,
0.14 1.764 1.698 1.678 1.642
+0.038 +0.022 +0.037 +0.041
0.15 1.419 1.313 1.244 1.190
+0.032 +0.024 +0.025 +0.032
0.155 1.050
+0.031
0.16 0.959 0.767 0.602 0.532
+0.030 +0.022 +0.041 +0.040
0.162 0.665
+0.042
(c) ms
0.14 2.612 2.474 2.393 2.324
+0.272 +0.147 +0.186 +0.244
0.15 2.233 2.019 1.772 1.628
+0.205 +0.142 +0.092 +0.139
0.155 1.749
+0.126
0.16 1.561 1.250 1.046 0.886
+0.158 +0.093 +0.098 +0.133
0.162 0.934
+0.098
(d) m 4
0.14 2.571 2.454 2.367 2.308
+0.219 +0.121 +0.150 +0.195
0.15 2.235 2.045 1.836 1.715
+0.193 +0.114 +0.090 +0.135
0.155 1.759
+0.109
0.16 1.654 1.363 1.106 0.966
+0.149 +0.069 +0.101 +0.130
0.162 1.110
+0.071
(e) my
0.14 2.898 2.849 2.836 2.811
+0.154 +0.105 +0.130 +0.160
0.15 2.327 2.124 1.978 1.875
+0.132 +0.122 +0.116 +0.146
0.155 1.736
+0.126
0.16 1.596 1.256 0.863 0.692

+0.143 +0.108 +0.117 +0.148

847
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TABLE V1. (Continued).

A. Full QCD
AT 0.02 0.01 0.005 0
K

(e) my

0.162 1.376

+0.263

(0 ma
0.14 2.907 2.872 2.856 2.839
+0.158 +0.114 +0.144 +0.172
0.15 2.352 2.164 2.014 1.918
+0.137 +0.125 +0.117 +0.150

0.155 1.773

+0.137
0.16 1.671 1.348 0.994 0.886
+0.154 +0.104 +0.176 +0.186

0.162 1.440

+0.169

B. Quenched QCD
B K m, m, ms m 4 my ma

5.5 0.14 1.770 1.797 2.532 2.529 2.947 2.961
+0.016 +0.018 +0.153 +0.130 +0.089 +0.098
5.5 0.15 1.496 1.541 2.342 2.322 2.561 2.588
+0.017 +0.019 +0.201 +0.159 +0.097 +0.103
5.5 0.16 1.214 1.293 2.229 2.156 2.176 2.229
+0.017 +0.020 +0.319 +0.217 +0.099 +0.107
5.5 0.17 0.910 1.057 2.178 2.015 1.786 1.897
+0.019 +0.022 +0.578 +0.330 +0.107 +0.116
5.62 0.15 1.250 1.303 2.066 2.089 2.168 2.209
+0.015 +0.020 +0.141 +0.119 +0.098 +0.105
5.65 0.15 1.199 1.252 1.929 1.975 2.131 2.171
+0.021 +0.023 +0.110 +0.097 +0.097 +0.104
5.73 0.16 0.631 0.760 1.584 1.385 1.133 1.191
+0.029 +0.037 +0.389 +0.173 +0.212 +0.186
5.75 0.16 0.576 0.736 1.172 1.345 1.174 1.253
+0.041 +0.038 +0.127 +0.110 +0.208 +0.156
5.79 0.16 0.448 0.602 1.613 1.264 0.935 1.145
+0.036 +0.048 +0.601 +0.117 +0.201 +0.217

extent of our lattice is large enough to contain hadrons.
In Fig. 15 we compare the 7 and N propagators obtained
with periodic and antiperiodic spatial boundary conditions
for the quark propagator at K =0.15 and K =0.16 on the
configurations generated with the periodic boundary con-
dition at f=35.5, A7=0.01. (The behavior of p and A
propagators are similar to that of 7= and N, respectively.)
The extracted mass is tabulated in Table VIII. For
mesons the difference is small and within statistical errors
(except for a somewhat larger deviation at K =0.16 and
A7=0.01 which, however, is not seen at A7=0.005 with
an effectively smaller lattice size). For baryons, however,
the difference is noticeable at K=0.16. This could be
counted as a possible finite-size effect arising from the in-
crease of baryon size for smaller quark masses, and also
from an effective shrinking of the lattice spacing with in-
creasing K and decreasing A7 (recall that decreasing At
means an effective increase of K). It is possible that the
difference might also come from the nonvanishing

momentum of baryons for the antiperiodic boundary con-
dition [see Eq. (36)]. To ensure the absence of the finite-
size effect, we perhaps need a spatial extent of 12° or
larger for our parameters.

We now consider the scalar- and axial-vector-meson
masses. As seen in Fig. 11(b), statistical errors are large
for t =7-11, and reliable mass values could not be ob-
tained by the fit to t =5-13. We, therefore, attempted at
extracting scalar and axial-vector masses by the fit to the
propagator data for t =3-7 and 11-15. Fortunately, the
scalar and axial-vector propagators show a better ex-
ponential falloff from small 7 values as compared with the
case for 7 and p, and the increase of masses caused by
this change of time intervals is probably less than 20%.

The scalar- and axial-vector-meson masses are shown in
Fig. 16 as a function of A7, and then in Fig. 17 as a func-
tion of 1/K. The spectroscopic parameters, which are ob-
tained by applying the second equation of (38) are given in
Table VII, together with the quenched values. Statistical



36 LANGEVIN SIMULATION OF THE FULL QCD HADRON MASS . .. 849

TABLE VII. Summary of spectroscopic parameters.

Full QCD
AT=0.02 Ar=0.01 Ar=0.005 Ar=0 Quenched
Az 2.718 2.854 2.924 2.838 1.795
+0.205 +0.139 +0.136 +0.161 +0.076
A, 1.105 1.312 1.541 1.579 0.615
+0.106 +0.078 +0.116 +0.124 +0.037
B, 0.661 0.588 0.491 0.465 0.779
+0.054 +0.029 +0.049 +0.045 +0.035
An 1.756 2.091 2.675 2.838 0.984
+0.467 +0.391 +0.395 +0.499 +0.183
By 1.122 0.981 0.672 0.570 1.345
+0.251 10.145 +0.139 +0.164 +0.169
Aa 1.635 1.963 2.449 2.476 0.879
+0.495 +0.389 +0.506 +0.574 +£0.197
Ba 1.230 1.081 0.818 0.780 1.497
+0.269 +0.142 +0.207 +0.206 +0.183
As 1.611 1.916 1.744 1.782 0.235
+0.621 +0.400 +0.322 +0.462 +0.640
Bs 1.126 1.007 0.921 0.809 2.047
+0.292 +0.132 +0.116 +0.147 +0.705
Ay 1.395 1.674 1.751 1.797 0.394
+0.585 +0.311 +0.326 +0.450 +0.420
B 4 1.277 1.140 0.981 0.889 1.832
+0.276 +0.099 +0.120 +0.144 +0.442
K. 0.1672 0.1636 0.1619 0.1611 0.1844
+0.0009 +0.0004 +0.0003 +0.0002 +0.0012
Kpnys ' =K, 7! 0.0054 0.0041 0.0028 0.0026 0.0114
+0.0009 +0.0005 +0.0006 +0.0005 +0.0011
a~! (GeV) 1.15 1.30 1.56 1.64 0.98
+0.10 +0.06 +0.16 +0.16 +0.04
my/m, 1.69 1.67 1.37 1.23 1.73
+0.40 +0.26 +0.31 +0.37 +0.23
ma/my 1.10 1.10 1.22 1.36 1.11
+0.24 +0.16 +0.28 +0.37 +0.13
ms/m, 1.70 1.71 1.88 1.74 2.63
+0.46 +0.24 +0.30 +0.36 +0.91
ma/m, 1.93 1.94 2.00 1.91 2.35
+0.45 +0.19 +0.32 +0.36 +0.57
100 [ T
errors are about 3 to 5 times larger than those for 7 and p BRI ]
due to smaller amplitudes of the propagator. (For the - e+ k-014
e B
quenched case errors are even larger because of the small [ e K=:015 ]
value of 8=5.5.) From this table we quote the scalar- S B
and axial-vector-meson masses to be mg/m,~1.710.4, [ ) B
m,/m,~1.9 £0.4. These values appear to be quite 3 M////*’ K-0te ]
reasonable, if we recall the possible + 20% bias which we 0900 — 1
mentioned above. . .
C. Chiral order parameter [
0851 ) I P R " 1
The Ar dependence of the chiral order parameter 0 ool a7 002 003

(Y) = LtrGy (where G =D ') is shown in Fig. 18 and

the value extrapolated to A7=0 is given in Fig. 19 (see

also Table V for numerical values) as a function of 1/K FIG. 18. The chiral order parameter {({) as a function of
together with the data for the quenched case. A, together with lines for the A7 extrapolation.
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TABLE VIII. Selected data of the hadron mass for full QCD with the antiperiodic boundary condi-
tion imposed for solving quark propagators. This table should be compared with Table VII, where the
periodic boundary condition is imposed, to see the finite-size effect. The periodic boundary condition is
used when gauge configurations are generated.

(@) m,
AT 0.02 0.01 0.005 0
K
0.14 1.735 1.669 1.648 1.612
+0.032 +0.021 +0.033 +0.036
0.15 1.368 1.256 1.198 1.141
+0.028 +0.020 +0.021 +0.027
0.16 0.854 0.568 0.452 0.297
+0.023 +0.026 +0.048 +0.044
b) m,
0.14 1.763 1.697 1.675 1.639
+0.036 +0.023 +0.037 +0.041
0.15 1.420 1.306 1.249 1.192
+0.031 +0.024 +0.022 +0.030
0.16 0.964 0.698 0.614 0.464
+0.027 +0.029 +0.047 +0.046
(c) muy
0.14 2.934 2.898 2.872 2.854
+0.156 +0.107 +0.139 +0.168
0.15 2.370 2.175 2.046 1.947
+0.129 +0.122 +0.114 +0.144
0.16 1.663 1.387 1.325 1.156
+0.120 +0.102 +0.193 +0.182
(d) ma
0.14 2.942 2919 2.890 2.881
+0.167 +0.116 +0.151 +0.182
0.15 2.393 2.208 2.081 1.986
+0.135 +0.123 +0.114 +0.147
0.16 1.743 1.483 1.428 1.283
+0.135 +0.106 +0.153 +0.171
‘OO> A I IR EE R IR We have also measured the double quark loop average
] G, -t =0)={[tr(ysGp)]*), which gives rise to the
3 ¥y > 3 R difference of 7 and 1 propagators at t =0. As is seen in
095k N E Fig. 20 the value for full QCD does not differ much frorp
, + ] that for the quenched case, and the ratio
L A G,_-(0)/G,(0)~ 10~* is quite small at K =0.16. There-
3 4 i 1 fore the effect of vacuum quark loop is not likely to
090 ! . enhance the m—m mass difference over that in the
F 1/Ke  « FULL QCD (AT -0) 1 quenched case. Recently it has been pointed out*® within
’;Kc » QUENCHED = the quenched appro.ximation that 9‘5,7,7,(1) t?ecomes com-
r parable to G,.(¢) if K.—K=10 and if the gauge
085 T 75 configuration is topologically nontrivial. It is very impor-
1/K tant to study whether this phenomenon is modified by the

vacuum quark loops. Full QCD simulation at such a

FIG. 19. The chiral order parameter {¢) for full QCD small quark mass, however, is beyond the capacity of the
(A7=0) and quenched QCD as a function of 1/K. current computing power.
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A LA S

e FULL QCD (AT =0)
> QUENCHED
1/Ke
0
i

3

FIG. 20. Double quark loop propagator for the pseudoscalar
at t =0, as defined by G, ,(t=0)={(trysD~")*). Solid and
open circles represent full (A7=0) and quenched QCD values,
respectively.

D. The line of critical hopping parameter on (8,K) plane

To study the general structure of lattice QCD with the
Wilson fermion it is necessary to know the position of the
critical hopping parameters K. () as a function of 3 and
Ny. We extended our spectroscopic analysis employing a
smaller lattice 6> 12 to find K.(B) for 3=4.0 and 5.0
(Ny=2 and/or 4). The resulting pion mass is given in
Fig. 21(a) for 3=5.0 and 21(b) for B=4.0 both for full

(o) (mpa)® =50

FIG. 21. Pion mass squared as a function of 1/K. Simula-
tions are made with Ar=0.01. (a) 3=5.0 (N;=0,2,4) and (b)
B=4.0 (N;=0.4).

and quenched QCD (the mass data is given in Table IX).
These analyses are of a more qualitative character and we
did not carry out the A7 extrapolation. We present K.(3)
in Table X and in Fig. 22. The typical error due to the
finite A7(=0.01) is 8K, ~0.002. In Fig. 22 we have also
shown the curve for m,a =1 (dashed line).

V. PHYSICAL IMPLICATIONS

It is quite conceivable that a part of the vacuum-
polarization effect can be absorbed into a shift of the
gauge coupling constant 3. To investigate this point we
estimate the magnitude of the shift of S by matching the
Wilson loop of full QCD at given values of K and A7 with
that for the pure gauge system at a shifted coupling
B+ AB. (The value of Wilson loop for the pure gauge sys-
tem is taken from Ref. 39. We also generated new data
for B=5.0-5.5 on 6* and 8* lattices using the standard
Monte Carlo algorithm. Our data smoothly continue to
those of Ref. 39 within the accuracy required for our pur-
pose.) The result is shown in Table XI and also in Fig.
23. The dependence of AS on the loop size is modest; Af3
for various sizes agrees within 209% even at K =0.16. A
trend is observed, however, that a larger Wilson loop
gives slightly a larger shift. We may estimate A3 at
K =K. by extrapolating the curve (A7=0) of Fig. 23 to
K., which gives

AB(K =K.)~0.34—0.36 . (47a)

For a consistency check one may alternatively measure
the distance in 8 between K. (3=5.5, K.=0.1611) and
the critical line K =K. () for quenched (N;=0) QCD
(see Fig. 22). This gives also

AB(K =K.)~0.35—-0.39 , (47b)

in good agreement.

Let us compare Af3 for the 11 Wilson loop with that
predicted in an effective hopping-parameter expansion.*
To order K'* this expansion predicts AB~0.061 for
K =0.14, AB=0.089 for K =0.15, and AS~0.13 for
K =0.16. The value for K =0.14 almost agrees with our
measurement, but that for K =0.16 is a factor 2 smaller
than the estimation from the simulation.

At B=5.0 (A7=0.01) we found that the magnitude of
the shift AB at K =K, estimated from the Wilson loop
(AB=0.42-0.46) is appreciably different from that ob-
tained from the distance measurement in the (3,K) plane
(AB=0.32-0.37) in the manner described above for
B=5.5.

We think that this is a remnant of the behavior in the
strong-coupling limit where the shift AB shows a marked
increase with the size and the effect of vacuum quark
loops cannot be absorbed into the shift of 3. In fact one
can readily see in the hopping-parameter expansion that,
at =0,

AB~KF/4, 48)

with P the perimeter and A4 the area of the Wilson loop,
e.g., AB=48N K* from W (1x1), AB=T72(2N;/3)"*K?
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TABLE IX. Hadron mass at 3=5.0 and 4.0 with A7=0.01.
Numbers of gauge configurations used in the analysis are
presented in B. The periodic boundary condition is used

TABLE X. Critical hopping parameter K.

throughout.

A. Hadron mass
(a) B=5.0, Ny=0 (8°x16)

K mq my
0.15 1.860 1.903
+0.041 +0.045
0.17 1.419 1.520
+0.045 +0.051
0.18 1.190 1.346
+0.044 +0.054
0.19 0.943 1.192
+0.037 +0.058
0.20 0.649 1.080
+0.041 +0.117
(b) B=5.0, Ny=2 (6*x12)
0.17 1.323 1.424
+0.022 +0.026
0.18 0.979 1.151
+0.031 +0.042
0.185 0.758 1.029
+0.042 +0.042
(c) B=5.0, Ny=4 (6°x12)
0.16 1.578 1.649
+0.020 +0.024
0.17 1.273 1.389
+0.023 +0.027
0.175 1.029 1.207
+0.041 +0.043
(d) B=4.0, Ny=0 (6*x12)
0.16 1.830 1.871
+0.018 +0.020
0.18 1.453 1.542
+0.017 +0.021
0.20 1.043 1.238
+0.017 +0.024
0.22 0.444 0.965
+0.041 +0.067
(e) B=4.0, Ny=4 (6*x12)
0.16 1.819 1.860
+0.016 +0.019
0.18 1.417 1.512
+0.013 +0.017
0.20 0.952 1.185
+0.019 +0.027
B. Number of gauge configurations
4.0 30 (7=20-50) 30 (r=20-50)
5.0 5 (r=5-10) 20 (7=20-40) 20 (7=20-40)

B N;=0 2 4
4.0 0.226 0.221 6'% 12 (A7=0.01)
+0.001 +0.001
5.0 0.210 83% 16 (A7=0.01)
+0.002
0.193 0.185 6*x 12 (A7=0.01)
+0.001 +0.003
5.5 0.1844 0.1637 9*%x 18 (A7=0.01)
+0.0012 +0.0004
0.1611 93 18 (A7=0)
+0.0002

from W(1x2), and AB=72 (N;/6)'*K?* from W (2x2),
etc.

It is a nontrivial question whether the shift estimated
from the Wilson loop could also account for the magni-
tude of decrease of hadron masses in full QCD. We then
calculated hadron propagators in the quenched approxi-
mation at 3'=B+AB(K,A7r). We took Af for the large
Wilson loop (3XX3-4X4), because hadron masses are
controlled by the large-distance behavior of propagators.
In Figs. 24(a)-24(d) and Table XII the masses for full
QCD are compared with those in the quenched approxi-
mation with the shifted 8. The agreement between the
two cases is very good for every K and Ar, and no appre-
ciable deviation can be seen within our statistics.

7 RBLI L B L B L B LS

Kc (B) b

B 5

FIG. 22. Critical hopping parameters K =K () (A7=0.01)
for Ny=0 (quenched), 2, and 4. Open circles are taken from
Ref. 41. Lines interpolate measured points to guide the eyes.
Dashed lines show the hopping parameter for which m,a =1.
The cross for the A7=0 point is added to demonstrate the typi-
cal error induced by finite time step Ar.
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TABLE XI. Effective shift of the gauge coupling Af3 from the
Wilson loop matching.

K =0.14
AT=0.02 0.01 0.005 0
1x1 0.01 0.06 0.07 0.09
+0.00 +0.01 +0.01 +0.01
2x2 0.01 0.06 0.08 0.10
+0.00 +0.01 +0.01 +0.01
3x3 0.01 0.06 0.08 0.10
+0.01 +0.01 +0.01 +0.01
4x4 0.02 0.09 0.11 0.13
+0.07 +0.03 +0.03 +0.03
K =0.15
1x1 0.06 0.10 0.13 0.15
+0.01 +0.01 +0.01 +0.01
2x2 0.06 0.11 0.14 0.17
+0.01 +0.01 +0.01 +0.01
3x3 0.06 0.12 0.15 0.17
+0.01 +0.01 +0.01 +0.01
4x4 0.08 0.13 0.16 0.17
+0.05 +0.02 +0.03 +0.03
K =0.155
1x1 0.14
+0.01
2x2 0.16
+0.01
3%3 0.17
+0.01
4x4 0.16
+0.02
K =0.16
1x1 0.12 0.19 0.23 0.28
+0.01 +0.01 +0.01 +0.01
2x2 0.14 0.22 0.26 0.32
+0.01 +0.01 +0.01 +0.01
3%3 0.15 0.24 0.29 0.32
+0.01 +0.01 +0.01 +0.01
4x4 0.15 0.25 0.29 0.32
+0.03 +0.01 +0.01 +0.02
K =0.162
1x1 0.23
+0.01
2x2 0.26
+0.01
3x3 0.28
+0.01
4x4 0.30
+0.02

TABLE XII. Comparison of hadron masses at K =0.16 for
full QCD (B=5.5, Ar=0.005) with those for quenched at shift-
ed B’s. B=5.79 and $=5.73 correspond to those which match
the large (4xX4-3X%3) and the small (1x1) Wilson loops, re-
spectively. For a similar comparison at other values of K and
A7 consult Table VII.

Quenched Full QCD
B=5.5 5.73 5.79 =5.5
ma 1.214 0.631 0.448 0.458
+0.017 +0.029 +0.036 +0.026
m, 1.293 0.760 0.602 0.602
+0.020 +0.037 +0.048 +0.041
my 2.176 1.133 0.935 0.863
+0.099 +0.212 +0.201 +0.117
ma 2.229 1.191 1.145 0.994
+0.107 +0.186 +0.217 +0.176
(g) 0.9350 0.9165 0.9099 0.9135
+0.0031 +0.0034 +0.0029 +0.0048

A similar comparison was also made for the chiral or-
der parameter (¥1). Since this is a local quantity we
may expect a better agreement with A3 corresponding to
smaller Wilson loops. This in fact was found to be the
case (see Table XII).

From this analysis we conclude that a bulk of the
quark-vacuum-polarization effect can be absorbed into a
shift of the gauge coupling constant. At a more precise
level, however, the shift seems to depend slightly on
length. In other words, the gauge field fluctuation of a
given length scale in full QCD is very similar to that of
the pure gauge system with a shifted effective coupling
whose magnitude varies slightly with the length scale. A
good agreement of the full QCD and the quenched case at
any At also suggests that most of the effect of finite At
may also be absorbed effectively into a shift of S3.

Let us note here that, while the hadron masses extract-
ed from the full QCD and quenched QCD with a shifted
B agree, the value of propagators are different between the

04

03l
02l

01—

0ol .
013 017

FIG. 23. The effective shift of B determined by matching the
Wilson loop data of size from 1X1 to 4X4. The values for
A7=0.01 and those extrapolated to A7=0 are shown as a func-
tion of K. The lines drawn are guides to the eyes.
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FIG. 24. Hadron masses for full QCD with a given A7 (solid
circle), as compared with those for the quenched case with a
shifted B obtained from the large Wilson loops (3X3-4Xx4)
(open circle). (a) m; (b) p; (c) N; (d) A.

two (the ratio to the value for full QCD is presented in
Fig. 25). The propagator of full QCD falls off more rap-
idly at a small distance and gradually becomes parallel to
the quenched one at large distances.

At this point we recall the interesting feature of the re-
cent quenched calculations*! that the results for masses
are not too far from the experimental values. In fact if
and p masses are used as input the nucleon and A masses
are higher than the experimental values by only 10-15 %.
Our finding on the effect of quark vacuum polarization
shows that this is not an accident; since the bulk of the
quark loop effect is absorbable into a shift of the coupling,
the hadron masses in quenched QCD should not be very
different from those of full QCD.

It is an interesting question to ask where one can see a
clear physical effect of the quark vacuum loops. One ob-
vious place will be the opening of the decay channels such
as p—mm and A—Nm. To examine this phenomenon, we
have to explore the region where m.,a =0.2. Such a
simulation will be extremely time consuming not only be-
cause of the slower rate of convergence of ILUCR [see
(35)] but also due to the possibility of critical slowing
down and the need for a larger lattice to avoid finite-size
effects.

Another possible place is the slight dependence of the
shift AB on the length scale. To examine this point fur-

30— : B E—

[ e B=579
251 (o) T s B:575 E
= p:=573 i

2 ) 6 8 10
1
30—~ T T —]
[ e B=579 i
25 (b) p . 21575 .
= B:=573
20— -
15; 1
1.04
05k 5
ook | L. L.
0 2 4 6 8 10

FIG. 25. Ratio of (a) the 7 and (b) the p propagators for
quenched QCD with shifted ’s to those for full QCD (K =0.16,
A7=0.005). =5.79 is the coupling constant obtained by
matching the large Wilson loop (3xX3-4<4), and $=5.73 the
1 X1 Wilson loop.
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ther we have calculated the static quark-antiquark poten-
tial ¥ (r) by fitting*? the timelike Wilson loop W (rX1) to
the form A4 exp[ —tV (r)] over the time interval t =2-6 at
each spatial separation r in the range 1<r <4. The po-
tential ¥ (r) thus determined reflects the variation of the
Wilson loop with respect to its size and hence is a quanti-
ty sensitive to the size dependence of the shift AB. The
full QCD potential at K =0.16 and [B=5.5 with
A7=0.005 is presented in Fig. 26 together with the pure
gauge potential at 3=5.79. We observe a good agreement
between the two in the inner part, whereas they start to
differ in the outer region; the potential for full QCD in-
creases more slowly than the pure gauge case. This trend
agrees with the naive expectation that in full QCD the
string between a quark-antiquark pair will split at a large
separation.

The agreement of masses between the full and
quenched QCD calculations found for the ground-state
hadrons shows that these hadrons are confined in the
inner region of the potential for which vacuum quark loop
effects can be absorbed into a shift of 8 (Ref. 43). On the
other hand, this suggests that the physical effect of the
quark vacuum polarization may be more visible with the
excited hadrons since their wave functions should spread
over larger distances (e.g., in a charmonium model*
(r?),5'2/¢{r?*)s'/>~1.8). We have noted that the rate
of decrease of the propagator in full and quenched QCD
differ at small temporal distances (Fig. 25), where one ex-
pects a substantial contribution from the excited states.
The difference might therefore be ascribed to the net phys-
ical effect of quark vacuum loops. Unfortunately our lat-
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FIG. 26. Static potential estimated from rectangular Wilson
loops. Solid circle stands for full QCD with B=5.5, K =0.16,
and A7=0.005, and open circle for the pure gauge system with
B=5.79.

tice size is not large enough to examine quantitatively the
excited hadrons both in its spatial and temporal extents.

One of the pressing issues of full QCD simulation is to
examine whether the physical quantities obey the scaling
law predicted by the renormalization-group equation for
full QCD. A direct check will be provided if one carries
out another simulation at a larger 8. Unfortunately, this
seems to be beyond the computing power available to us
at present. We therefore provisionally made use of the
data at 3=5.5 and 8=5.0 to detect the effect of the vacu-
um quark loops in the following way. The
renormalization-group equation predicts that the two
length scales a; and ag at the two different 3’s, 3, and 3o,
should be connected by

SB=P1—Po= f d —d[i:——bolnal/ao+ te (49)
da

with bo=(33~2Nf)/4'n'2 the coefficient of one-loop f3
function. Since we have seen that the physics of full QCD
at f3 is well approximated by that of quenched QCD at
B+ AR, the effective difference of the 3 values should be
given by

8B'=(B1+AB1)—(Bo+ABo)
=—bolna,/ap+ -, (50)

where by =233/47" is the B-function coefficient for the
pure gauge system and a;/a, the same as in (49). Hence
we expect

8 _ 33
83 29
for Ny=2. In our case §3=5.5-5.0=0.5 and we can es-
timate 83 from the effective shift at K=K, to be

83 =(5.5+0.37+0.02)-(5.0+0.34+0.02) ~0.53 [see the
estimation for (47b)], i.e.,

63//8/3 | measured — 1.0—-1.1. (52)

(51)

This is suggestive of the reduction of the one-loop f3-
function coefficient by an amount anticipated in the pres-
ence of dynamical quarks.

VI. CONCLUSION

In this work we have carried out a Langevin simulation
of the full QCD hadron mass spectrum. We have shown
that the Langevin simulation is practically feasible and
works well for full QCD. At the same time we have
shown that an extrapolation procedure is necessary to re-
move the effect of finite time-step size for a quantitative
analysis. An important point, however, is that systematic
errors seem to be controllable to a desired accuracy.

We have seen that the inclusion of quark vacuum polar-
ization induces a significant shift in the hadron masses in
lattice units, but it is mostly absorbed into a shift of the
gauge coupling constant at least for the ground-state had-
rons above the decay threshold. Probably this is also true
for other static quantities of the ground-state hadrons, as
may be anticipated from the shape of the static potential,
which hardly differs in those parts relevant for such had-
rons from that in quenched approximation. A physical
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effect should be more clearly visible with excited hadrons,
and this is connected with the deviation of the potential
from the linear form at large distances.

Our lattice size is probably too small for a realistic esti-
mate of the spectroscopic quantities, as is indicated by an
evidence for a finite-size effect for the baryon mass. The
minimum momentum, if defined by 27/(Lsa), is 1 GeV,
considerably higher than the typical momentum carried
by quarks. In addition to resolving these problems it is
most desirable to carry out a simulation at a different
value of S to find the full QCD S function and check the
scaling. For these purposes a simulation with a larger lat-
tice is urgently needed.

For the simulation reported in this article, we used
about 1500 h of CPU time on HITAC S810/10 at KEK,
500 h for tests of the algorithms, and 1000 h for produc-
tion runs. As a typical example we quote that collecting
the full QCD data at K =0.16 with Ar=0.01 over
7=0—60 took about 120 h. Our code required 67MB of
central memory and runs at the speed of 100—150 Mflops
on S810/10. With the Langevin simulation, the require-
ment of memory and CPU time grows with the lattice
volume. For a simulation with a realistic predictive
power, say on a 16°x 32 lattice, we therefore need a com-
puter with the speed of a few Gflops or more. Computers
of such a capacity seem within reach within the next few
years and there is much hope that a first-principles calcu-
lation of the hadronic observables will become possible
shortly.
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APPENDIX

In much of the literature, conjugate-gradient (CG)
methods are used to solve the Dirac equation on the lat-
tice

Dx =b . (AD

Since the matrix D is not Hermitian, the CG method can-

not be directly applied to (Al). The equation should be
modified as either

D'Dx=D" (A2)

or

DDTu=b (x=D"u). (A3)

We will refer to the CG method based on (A2) as the
least-square (LS) type, since it minimizes ||b —Dx||. The
method*® based on (A3) is called the least-norm (LN)
type, since it minimizes ||x —D ~!b||.

The conjugate-gradient method for

Ax =b , (A4)

where A is a positive-definite Hermitian matrix converges
46
as

llxy—A4~'5|
llxo— A4 ~'b|| =

(AS)

ve—1|
Ve +1
where x, is the vth approximation and c¢ the condition
number of A4, i.e.,

¢ =Amax(A)/Anmin( 4) . (A6)

The convergence of the LS-type CG method is estimated
by

v

llxv—D b
. <
lxo—D ~'b||

o—1
o+1

(A7)

with o the ratio of the largest and smallest singular values
of D. Similar relation holds for the convergence of the
LN-type CG method with an appropriate replacement in
the norms.

We also tested the Gauss-Seidel and SOR methods,
which are sometimes used in the literature.!®3° These al-
gorithms can easily be vectorized by the hyperplane
method.

The convergence properties of various algorithms are
compared in Fig. 2 (Sec. II B) and more extensively in
Fig. 27 for the same parameters as for Fig. 2: ILUCR

P SR SR \ VI P B
0 500 1000 1500 2000 2500
ITERATIONS

FIG. 27. Comparison of the behavior of the deviation from
the true solution as a function of the number of iterations for
various algorithms. The gauge configuration and the source vec-
tor are the same as in Fig. 2. The symbols denote: C (ILUCR
with ¢ =1.2), E (LS type CG), F (LN type CG), G (CR), and H
(SOR with ©=0.7).
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FIG. 28. The behavior of the residual norm squared as a
function of the number of iterations for the examples shown in
Fig. 27. The configuration and the symbols are the same as in
Fig. 27. The residual in SOR method is not calculated.

(k =1) with ¢ =1,2, CG (LS type), CG (LN type), CR
(k =1), and SOR (w=0.7). The “true” solution D ~'b is
obtained by the ILUCR method applying a more severe
criterion. We see an excellent convergence of ILUCR
with acceleration. Two CG methods behave almost simi-
larly. The CR method without the ILU preconditioning
has a long plateau up to around the 1800th iteration, and
then suddenly accelerates its convergence. On the other
hand, the Gauss-Seidel method diverges in this case.
Even if we apply a deceleration (w=0.7), the approach to
the solution is very slow. The CPU time for one iteration

is 1.23 sec for ILUCR, 0.66 sec for CG, and 0.39 sec for
CR on HITAC S810/10. We note that one CR iteration
costs 60% in time of one CG iteration, so that in this case
both algorithms work almost equally to achieve an accu-
racy ||[x —A '] <1073, say. In less critical cases the
number of iterations needed in the CR method is almost
the same or only 20% larger than that in the CG method.
We conclude that the CR method is generally more favor-
able than the CG method. This is the reason why we
used the ILUCR rather than the ILUCG method.

In the actual computation we cannot monitor the error
itself, since we do not know the true solution D ~'4. The
criterion to terminate the iteration is the magnitude of the
residual norm. We, therefore, checked the relation be-
tween the behaviors of the residuals and errors with vari-
ous algorithms. In Fig. 28 we show the squared norm of
the residual || —Dx||? for the CG and CR methods and
[(LU)~ (b —Dx)|)* for the ILUCR method.

The most notable feature in this analysis is the
difference between the LN-type and LS-type CG methods.
The norm of their residual differ in 2 orders of magnitude,
though the error ||x —D ~'b|| is almost the same with two
methods. The difference is due to the fact that the LS-
type algorithm searches the minimum of ||b —Dx|. We
presume the LN-type method is safer than the LS type;
one has to choose the convergence criterion more careful-
ly for the LS-type CG algorithm. Another noticeable
feature is that, while the residual for the LS type de-
creases smoothly, the residual for the LN has many small
plateaus. This is a usual feature characteristic of the CG
method for a positive symmetric matrix.
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