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Decoupling of the pion at finite temperature and density
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We use the Nambu —Jona-Lasinio model at finite temperature and density to investigate the static
and dynamical properties of the pion. Near the chiral phase transition the pion is found to decouple
from matter. The relevance of this result for hadronic matter is discussed.

It is generally believed that with increasing baryon den-
sities and temperature, hadronic matter undergoes a phase
transition to a quark-gluon plasma. ' This exotic form of
matter is believed to have been produced in the early stage
of the Universe, and hoped to be realized in the laborato-
ry using relativistic heavy-ion colliders. Most of the
theoretical insights on this state of matter come from lat-
tice Monte Carlo simulations. ' While all these numeri-
cal calculations support the concept of a phase transition
both at finite temperature and densities, they still lack the
necessary accuracy for a quantitative description of the
phenomenon. Aside from systematic errors, the main
problems with lattice simulation are related to finite-size
effects and the dilemma between chiral symmetry and fer-
mion doubling. At this stage, it is therefore relevant to
investigate the temperature and density effects on hadron-
ic matter using alternative methods to Monte Carlo simu-
lation.

Phenomenological attempts to determine the critical
temperature and density at which the transition happens
already exist. Two types of transition are in general ex-
pected: a confinement-deconfinement transition and a
chiral-restoring transition. Lattice QCD simulations sug-
gest that these transitions happen at about the same tem-
perature. The purpose of this paper is to investigate the
chiral phase transition in the Nambu —Jona-Lasinio mod-
16

At zero temperature and fermion number density, the
ground-state wave function can be thought of as a con-
densate of quark pairs much like Cooper pairs in a super-
conducting phase. Because of the attractive character of
the interaction, it pays for neighboring quarks in the vacu-
um to pair, causing a spontaneous breakdown of chiral
symmetry. In this phase, the pion can be thought of as a
coherent isospin excitation in the ground-state conden-
sates. Increasing densities and/or thermal effects will

tend to wash out the quark condensation and restore
chiral symmetry. When the temperature is increased, the
ground state undergoes a phase transition (believed to be
second order) from a Goldstone-Nambu phase to a
Wigner-Weyl phase. As a result we will show that the
pion decouples from matter. The same behavior occurs
for increasing densities p. When p

' becomes compara-
ble to the correlation length in the condensed pairs, qq
constituents behave as free particles causing the pion to
decouple again.

To illustrate these effects, consider the Nambu —Jona-
Lasinio model in its canonical form:

&=0(t~™)0+GPA)'+(0t'rYs4)')1

where m is the current-quark mass and G a dimensionful
coupling constant. This model is neither confining nor
finite, and one might ask how the confinement-
deconfinement phase transition relates to the chiral phase
transition in this case. A phenomenological way of en-
forcing confinement in this model is to use a nonlocal
four-fermion interaction. The finite size of the confining
potential cuts down the high-momentum components
from the spectrum, ensuring at the same time finiteness.
In this case the vacuum wave function, the mass gap, and,
in general, the low-lying excitations are all dominated by
the low-lying components of the spectrum. These effects
can also be achieved using a simple momentum cutoff A.
This cutoff regulates the bad UV behavior in most physi-
cal quantities. The cutoff scale is in some way the analog
of the size of the confining potential. In either case, a
phase transition occurs whenever the temperature scale
(T) or density scale (p), become comparable to either A or
G. Throughout, we will assume that G and A are temper-
ature and density independent. We will discuss at the end
the effect of temperature on both G and A.
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To evaluate the static pion properties at finite tempera-
ture and density, we need to construct the pion wave
function. For that, we have to understand first, how
quarks propagate in the correlated vacuum state. The
pairing mechanism in the ground-state wave function can
be understood in terms of constituent quarks with a
constituent-quark mass difFerent from the current mass m.
This can be achieved in terms of a quark self-energy:

5 '(k) =it' —X(k) —m +is .

6
o ~
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where we have defined
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Because of the local character of the interaction, X turns
out to be momentum independent. To analyze the com-
bined eA'ects of temperature and density we will use the
imaginary-time formalism. For that, we will make the
substitution

where the sum is over all discrete energies
co„=(2n +1)IP, with P=T '. Taking into account the
symmetry properties of the system, we can use the param-
etrization

&=~i —y Oo
0 (4)

to reduce (3) into a set of two coupled integral equations
of the form

4G dk
(2nfn, +1)(o~+m)g, (5a)

(2~)' k„rok—
8G f' dk kn
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where n, =3 and nf ——2 are the number of colors and
flavors, and for convenience we have defined

k„=p+ oo+i cu„, cok
.=k'+ ( ~ ) +m )

In the relation for k„, p is the chemical potential. The
discrete sums in (5) can be done using contour integrals.
The result is

~ g ~ ~

FIG. 1. Hartree-Fock equation for the self-energy kernel.

The mean-field approach to the pairing problem is
equivalent to solving the Schwinger-Dyson equation for
X(k) in the Hartree-Fock approximation. From Fig. 1 we
have

d4k2=26 Tr S k —5 k +i~y5Tr i~y5S k
(2vr)

~k =~k+(P+ o0)

+
nk

—=(1+e '
)

(7a)

and used explicitly the short-distance cutoff' A '. n — in

Eq. (7b) are the quark and antiquark occupation numbers.
Notice that the baryon density p is related to the chemical
potential p by

A: dk
3w

so that a0 is proportional to p.
In the limit of zero temperature and density, Eqs. (6)

reduce to the expected gap equation

G ~k
o 1

= (2nfn, +1)(tr~+m) dk
2&2 0 COg

with o.0——0. For a given temperature and density, o.0 and
o ~, through (4), specify entirely the quark propagation in
the correlated ground state. In particular, the strength of
quark pairs is given by (q =u, d)

P „(2~)' (k„—o. , ')
(10)

To investigate the chiral phase transition we will con-
sider first the case m =0. In solving Eqs. (6), A and G
are chosen so as to reproduce as well as possible the pion
decay constant f and the fermion condensate (qq ) '~ at
T =0 and @=0 (Ref. 7). Specifically, A=700 MeV and
GA =2.00 with f =100 MeV and —(qq)'~ =270
MeV. This parameter set will be referred to as (I). To
probe the sensitivity of our results to A and 6, we will
also consider a second set of parameters (II) with A =925
MeV and GA =2.00 which yields f =134 MeV and
—(qq)'~ =357 MeV. The behavior of (qq ) with T and

p is shown in Figs. 2(a) and 2(b), respectively. As expect-
ed, increasing thermal fIuctuations cause the fermion con-
densate to vanish at the critical temperature T, for m =0.
Similarly, increasing baryon densities liberate the quark
pairs by percolation. Notice that near the critical density
p„ the typical correlation length in the pair (qq ) '~ be-
comes comparable to the characteristic baryon scale
p

' —1 fm. The dashed curves show the result for a
finite current-quark mass m =5 MeV. Because of the ex-
plicit chiral-symmetry-breaking mass term, the transition
region is smoothed out. However, one can still define a
transition temperature and density at somewhat higher
values. Changes in the parameters A and G do not afT'ect

qualitatively the above results. Finally, we show in Fig.
2(c) the phase diagram in the Tp plane for m =0. At
suKciently low temperature, the critical density is an in-
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creasing function of temperature. At higher temperatures,
however, the critical density decreases. A similar behav-
ior has been obtained in the o. model by Wakamatsu and
Hayashi. Throughout the critical line, the difference in
the energy density is positive definite, indicating that the
phase transition is second order. The set of parameters
(II) leads to values of T, and p„respectively, of 275 MeV
and 5p0, where p0 ——0. 17 fm is the nuclear matter densi-
ty, that are consistent with lattice QCD calculations. The
value of 5p0 corresponds to a chemical potential of 450
MeV. Values of T, and p, for set (I) can be obtained
from (II) by scaling T, by A and p, by A . Notice that,
in general, T, is less sensitive than p, to variations in A

1

and G. Indeed, the range of values obtained for T, by
comparing different calculations is much smaller than the
one for p, ~

As already pointed out, the pion can be thought of as a
long-range isospin excitation in the quark-pair conden-
sates. Since the latter are substantially modified by tem-
perature and baryon density, we expect similar
modifications in the pion properties. To illustrate this, we
will have to define a pion wave function. This can be
achieved using the Bethe-Salpeter equation for a massive
pion at rest. If we denote by G'(m ) the pion vertex for
a zero-momentum pion, then the Bethe-Salpeter equation
shown in Fig. 3(a) reads

d kG'(m„)=2G J [Tr[S(k)G'(m )S(k}]+ivy&Tr[S(k)G'(m )S(k)ivy&]
(2n. )

—S(k)G'(m )S(k) iry5S(k—)G'(m„)S(k)iry5] . ( 1 la)

Assuming that G'(m ) is a smooth function of m, the general solution to (1 la) reads

G'(m )=r'y5crif '+O(m„) . (1 lb)

The normalization in (1 lb) is fixed by the chiral Ward identity at m =m =O. The pion decay constant f can be de-
duced from the transition amplitude of the axial-vector current between the pion state (1 lb) and the vacuum:

~]+~ d kf m m~
4

Tr S k + v 3/5S k /0/5+3
(2ir)

(12}

as illustrated in Fig. 3(b). At finite density p and zero temperature, the pion decay constant is

kf = (o i+m) J dk 8(coq —(p+oo))
2 COg

(13a)

and at finite temperature T and zero density it is

f = (o, +m) J du Jk dk tanh a—
2 0 , a 2

cosh —a
2

(13b)

where

a =[k +(o 1+m) +(u ——,')m„]'~ gnqq = (14)

In general, f follows from (12) using the general propa-
gator at finite T and p and discrete external energies. The
result is then analytically continued to m +i@.

The behavior off vs T/T, and p/p, is shown in Figs.
4(a) and 4(b), respectively, for the set of parameters (I).
The full curve corresponds to the case m =0. The pion
decay constant vanishes at T, and p„and consequently
the pion decouples from matter. The same although less
sharp transition than in (qq ) is observed for f when one
breaks the symmetry explicitly using a small mass term.
Equation (1 lb) enables us to define the quark-pion cou-
pling constant in the Nambu-Goldstone phase as

At the quark level the Goldberger- Treiman relation
remains valid as one increases the temperature and densi-
ty up to T, and p„respectively. This is, of course, ex-
pected since chiral symmetry is still spontaneously bro-
ken. This same behavior has also been noted in Ref. 10.

qq is rather stable up to the transition region where it
decreases near p, and increases near T, by about 10%.
Above T, and p„Eq. (14) becomes meaningless since the
pion state crosses the qq continuum. In this case, the
pion becomes unstable against qq decays. This was first
observed by Kunihiro and Hatsuda, " and confirmed in
our calculation. There is an increase in the pion mass by
about 40% near T, and 50%%uo near p, .
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FIG. 3. (a) Bethe-Salpeter equation for the pion state in its
rest frame. (b) Transition amplitude for the axial-vector current
between the pion state defined in (a) and the vacuum, to leading
order.
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FIG. 2. (a) Behavior of the fermion condensate with T/T, .

T, is the critical temperature defined for m =0. The solid
(dashed) curve corresponds to m =0 (m = 5 Me V) and A =700
MeV. (b) Behavior of the fermion condensate with p/p, . p, is

the critical density defined for m =0. The solid (dashed) curve
corresponds to m =0 (m =5 MeV) and A=700 MeV. (c) Phase
diagram in the Tp plane. The solid (dashed) curve corresponds
to a value of A of 700 MeV (925 MeV) and GA =2.

0
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FICJ. 4. (a) Behavior of f„vs T/T, . The solid (dashed) curve
corresponds to m =0 (m =5 MeV). (h) Behavior of f, vs p/p, .
The solid (dashed) curve corresponds to m =0 (m =5 MeV).
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(15)

So far, we have assumed that the coupling constant G is
temperature independent. Lattice simulations, however,
suggest that at high temperature and/or density the string
tension vanishes and the quarks deconfine. There are nu-
merical indications that the deconfinement temperature is
about equal to the critical temperature for restoring chiral
symmetry. Assuming that this is indeed the case, we can
use the parametrization of Alvarez and Pisarski' for a
bosonic string in d~ oo, to write

2 1/2
TG

Go To

200—

100—

0
0

lt

2 P/Po

where To is some critical temperature presumably related
to T, . To arrive at (15), one only uses arguments based
on dimensionality and scaling. ' Figure 5 shows the
effects of (15) on the Tp-phase diagram. The qualitative
behavior of all discussed quantities remains unchanged.
Interestingly, the constituent-quark mass o.

~ scales like the
string tension with temperature, an indication in favor of
the lattice scaling. ' This behavior was also discussed in
Ref. 15 in the context of potential models in Coulomb
gauge, where it was observed that the chiral-restoring
transition coincides with the deconfinement transition.
The effects of density on the string tension are unfor-
tunately more subtle for a simple parametrization. Final-
ly, one might argue at this stage that by changing p and T
the cutoff scale A changes as well. While this is not com-
pletely excluded, we do not expect these changes to affect
qualitatively the character of our results.

We have investigated the dual effects of temperature
and density on the static properties of the pion in the con-
text of the Nambu —Jona-Lasinio model. We have shown
in particular, that near the chiral phase transition the pion
decay constant f vanishes and its mass enters the qq con-
tinuum. In other words, the pion decouples from matter.

FIG. 5. Tp-phase diagrams for a temperature-dependent cou-

pling constant as defined in (15). The solid (dashed) curve corre-
sponds to Tp=0. 3A (To=0.22A).

We have also argued that this behavior is enhanced by
deconfinement. It would be interesting at this stage to see
how the isoscalar bound state behaves in this model. In-
tuitive arguments suggest that like the pion, the o. meson
will also decouple. This decoupling will have important
consequences on the relativistic many-body problem.
This issue will be brought up next.
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