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CP violation in K = 3m.
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For the weak nonleptonic decay K~3m, we analyze the amount of CP violation expected to arise
in the Kobayashi-Maskawa model using two recently uncovered aspects: (1) quadratic terms in the
K~3~ amplitude (found in the CP-conserving data) and (2) electromagnetic and isospin-breaking
effects in the relation of the CP-violating parameters of K~2~ and K~3~. Previous to the in-

clusion of these effects the non-e signal in g+ p ('g~ p=6+E''+ p) required interference with the
highly suppressed AI = —,

' amplitude; however in the present analysis the e'+ p signal is not

suppressed. We estimate values for e'+ p about an order of magnitude larger than previously antici-
pated, although still smaller than e.

I. INTRODUCTION

Attempts to understand the origin of CP violation are
hampered by the scarcity of experimental information on
the subject. All of the many models of CP nonconserva-
tion can fit the one observed nonzero signal (i.e., e mea-
sured in KL ~2') It is. important that CP violation be
observed in other systems in order to be able to distin-
guish the various models. ' In this paper we reanalyze the
decays of Ks~3tr within the Kobayashi-Maskawa (KM)
model of CP violation. This is the system which is
closest to the observed CP violation in KL ~2~ and there
is presently an experimental program attempting to find
evidence of CP nonconservation in K ~3m transitions.

There has been considerable previous theoretical work
on the K~3~ decays. ' The dominant nonleptonie am-
plitudes can be related to those in K~2~ by use of
current algebra. However, there are two new ingredients
in our analysis which lead to a significant modification of
previous results. (1) In the PCAC (partial conservation of
axial-vector current) connection of K~3~ and K~2tr
the presence of higher-order momentum dependence,
visible in the known K~3m. amplitudes, removes the
AI= —,

' suppression of the CP-odd interference, producing
a larger signal. (2) In K~2tr, the importance of elec-
tromagnetic and isospin-breaking eAects has only recently
been understood. ' We include these eftects in our
analysis of K~3~. The combined result of these two
contributions allows the direct, "non-e, " portion of the
signal to be nearly an order of magnitude larger than pre-
viously estimated.

In order to see how this result obtains we shall in the
following section define the model within which we work
and review its impact in the K~2~ sector. In Sec. III we
define notation and undertake the theoretical calculation
of CP-violating eAects within the K~3~ system. Finally
we summarize our findings in Sec. IV.

6H—: —cosO~ sinO~ g c;0; .
NL
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Here the expansion coeKcients c; are complex numbers,
with the dominant CP-violating contribution arising from
the penguin diagram:

c&0, =( 0.047 i0.0—97')dy —„(1+),)g's

X g q;y" ( I —y's)X'q, ,
i =u, d.

where

(3)

~= sin02 sin03 sin6 .

For our purposes, we shall use only the two features that
(i) all operators O; are right-handed singlets, and trans-
form as 8- or 27-dimensional representations of SU(3) un-
der left-handed rotations, and (ii) all CP violation is in the
AI = —,

' octet sector.
We also shall employ the so-called "electromagnetic

penguin" (EMP) diagram, which involves the replace-
ment of a gluon in the usual penguin term by a virtual
photon. The resulting interaction has both purely left-
handed terms and also those with a nontrivial transforma-
tion property in the right-handed sector. The former are
small 0(aE~/a, ) corrections to the usual weak Hamil-
tonian and are generally neglected. However, the latter
play a more important role, as we shall demonstrate.
These terms have the form

J„=qUKMQ (1+7 s)q

with UK~ being the unitary generation-mixing matrix
written down originally by Kobayashi and Maskawa,
whose notation we shall employ.

For our application, we require the weak interaction re-
sponsible for AS = 1 nonleptonic decay. The form of this
operator is now well established and is generally written
in terms of a series of local four-quark operators 0;:

II. CP-VIOLATING FORMALISM AND KL ~2
We shall work here with the so-called "standard" mod-

el of the weak interaction, wherein the charged weak
current takes the form with

GF
HE~p = — —cosO~ cosO3 sinO~(c707+c808 )v'2
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O~ =s, y„(1+y 5)d, [ub y"(1 —ys)ub —,'db—y"(I—y&')db —'sb—y "(I—Ys')sb 1

O, =s, y„(1+y,)d„[uby"(1 —ys)u, ,'—db—y"(1 —ys)d. ——,'s y"(1—y». 1

and

C 7 —( 0.037 —0.067' )a FM

c8=(0.008 —0.011r)aEM .
(6)

L = —m„uu —md dd —m, ss, (7)

The key feature here is that both the left- and right-
handed currents are in SU(3)-octet representations. It will
turn out that it is the AI = —,

' piece of this operator which
will be most important to our own work.

Finally, we shall require the inclusion of isospin break-
ing (ISB) via mass terms in the QCD Lagrangian

l
K'&-. &

l

—K'&,
(13)

without affecting the physics. The value of the mixing pa-
rameter F will depend on this phase

where here and in the remainder of our work we shall
drop quantities that are second order in CP violation,
such as e .

Since AS=+1 and hS= —1 transitions cannot inter-
fere with one another, there exists the freedom to make a
strangeness gauge transformation

where here the isospin-breaking term
e~e+ l P (14)

L ' = —
—,'(m„—md )(uu —dd ) (8)

and hence is not directly measurable. However, physical
quantities are phase invariant. It is conventional to define

is proportional to the light-quark mass difference. (Elec-
tromagnetic isospin-breaking effects are less important and
will be neglected here. ) The role of this piece of the La-
grangian is to mix a portion of the (large) b,I=—,

' ampli-

tude into matrix elements which transform as hI =—', . Be-
cause direct contributions to the latter are generally small,
even a modest amount of mixing can generate a
significant impact.

Within this framework, we can now review the treat-
ment of KL ~2a in order to define notation. The
E ~2~ matrix elements can be decomposed in terms of
their final-state isospin structure

i ho 1 i 62
A (K ~m+n)= Aoe . + A2ev'2

(~+~-la. lK, & =6+6
(sr+~

l

H
l
Ks&

(~'~'lH. lK, &

gpo p p
= E' —2E

&~'~'lH. lK, &

(15)

(16)

T

Imp[2 ImAp
+2

2V2 ReM ~2 ReAp

mi(6p —bo I

v'2 Re A2

Im Ap

Re Ap

(17)

Here e is the value of e in the gauge where ImAp ——0.
More generally, we have

A (K ~vr m)=Aoe .' —/2Aqe
(9) where M;~ is the mass matrix which connects K,K .

Since under a gauge change

ReAp=5. 5 & 10 m~,

52 —5o ———42'+8',

ReA2
co=— =0.045 .

ReAp

(10)

Of course, in a theory with CP violation A p, A 2 are, in

general, complex numbers and thus we define

The physical eigenstates constructed from K and K
can be written as

where 61 are the phase shifts for elastic scattering by two
pions in an isospin I configuration and AI are the associ-
ated weak decay amplitudes. Experimentally we have'

ImA

Re AI Re AI

ImA

ImM &2 ImM ~2 —2P,
ReM )2 ReM )2

(18)

where

we see that these definitions of e, e' are unchanged under
a strangeness gauge change.

In applying the previously described interactions to this

process, we shall emphasize their different chiral transfor-
mation properties. Thus, for the conventional weak Ham-

iltonian, which has the behavior (8L, 1~) and (27L, 1~)
under chiral rotations, we write

LINq~ =gsTrkbB„UB"U +gq7C; b Tr(A, ;B„UU A, UBzU ),
(19)

' 1/2
lK,'&= —,

' [(I+e) lK'&+(I —e) lKO&],

1/2
IKZ &= —,

' [(I+e) lK'& —(1 —e) lK'&],
(12)

8

U= exp F J J

is the usual nonlinear matrix describing the pseudoscalar
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mesons, F =94 MeV is the pion decay constant, and the
C symbol represents an SU(3) Clebsch-Gordan coefficient.
We require g27 « g 8 according to the validity of the
AI = —,

' rule.
On the other hand, the dominant part of the elec-

tromagnetic penguin operator has an (8L, 8I( ) chiral prop-
erty and can be represented by the effective Langrangian

L:g EMP Ti [ A'6U[X3+
g

A 8]U

Finally, isospin-breaking ~ -g mixing effects utilize the
usual nonleptonic weak interaction but are generated by
the mass-mixing Lagrangian

g (KO ~+~—
) g NL+ g NL+ ~ EMP1

v'2

g(KO 0 0) g NL +2g NL+ g ISB
(23)

In our discussion, we shall also include ~ -g mixing,
whose treatment is outside the traditional chiral-
Lagrangian framework. For calculations of this mixing,
we utilize the quark model as a guide. Such a procedure
should be adequate within the considerable uncertainty of
the final result.

Applying these interactions to K~2~, one finds, as de-
scribed more fully in Ref. 8,

&rsvp p Tr
m„0 0

0 md 0 (U+U )

0 0 m,

(22)
where 2 o ", 3 2, and 3 receive contributions from
g8 g27 gp7 and gFMp, respectively, while 3 arisesISB

from gs and the ~ -g -g mixing discussed above. Solv-
ing for e' we find

0 v 2 Im g EMP 23/2 — lm g IsB
(1—3/2') + (1+3/2')

Reg NL 3~ Imp NL 3 m~ oN

Imd o
NL

I~EMP +ISB) —( 1 ~~EMP ~IISBgu'2 Reg NL V'2 (24)

We note here that both AEMp and A~sB contain the factor

=31
CO

(2&)

which enhances these contributions considerably over the
O(a)=1% effects which might be naively expected. The
reason for this enhancement is that while the EMP and
ISB terms are indeed O(a) relative to the leading b,I= —,

'

piece, these corrections are sizable, of O(a/0I), relative to
the AI =—', component to which e' is sensitive.

Numerical estimates of AEMp, A~sB in Ref. 8 yielded

III. CP VIOLATION IN E ~3m

[Fi HNL] [F( HNL]' (30)

where F5 and F' are the axial-vector and vector charges,
respectively. Thus, for example, defining

A number of authors have previously treated the
K~3~ system, both CP conserving and violating, by re-
lating K~3~ to K~2~ via current-algebra PCAC
methods. This relationship is possible because of the left-
handed transformation property of the weak Hamiltonian,
which yields

IIEMP —0.38( 1+50%%uo )

0~+0~034~046
(26)

(~+~-~'~H(-) K, &

9+ —o ~ + — o [+] ~ ~+~+ —o '
vr ~ H ~KL&

(31)

where the specific size of the latter number depends upon
the analysis of g-q' mixing. Overall then these factors
lead to a modification of the simple prediction

where H„(,+' (H' )) represents the CP even (-odd) com--
ponent of the weak Hamiltonian, Li and Wolfenstein have
derived the result '

NL
(0) 03 ImA0

3/2 RegNL
(27)

6'+ o = —26' (32)

by the factor

0.7 & (1 —AEMP —QISB) ~ 1.3 (28)

Reversing this calculation, we can relate the CP-violating
phase g of the A0 amplitude to the experimental value
of e'

3/2
~

e'
=(24~40)

~

e'
~

+EMP +ISB )

We now move to consider the K~3~.

which relates the direct AS=1 CP-violating transition in

Ks~3vr to that found in K&~2~. We shall see, howev-

er, that one should expect considerable modification of
this result from the electromagnetic penguin and mixing
effects discussed in the previous section and, in addition,
from a new feature which is relevant for K~3rr (but not
for K~2m) —the possibility of higher-order terms in the
effective weak Lagrangian. Thus, the lowest-order
effective Lagrangian [Eq. (19)] involves two derivatives.
One anticipates, however, that there will exist higher-
order contributions involving four or more derivatives:



36 CP VIOLATION IN K—+3~ 801

I

=L + Trk, 6B„UB"U B,U(3 U'
1

II

Trk, 6(3„U() U 8"U(3 U + .
2

(33)

Here the leading two-derivative piece reproduces all the
standard current-algebra PCAC analysis of the CP-even
and -odd contributions to K~3~, wherein the decay am-
plitude is expanded to first order in the momentum
squared. The terms in g', g" are two of the many possible
Lagrangians with four derivatives. Contributions from
these pieces of the Lagrangian are of order q /A with
respect to those from L~2), where A is a chiral scale pa-
rameter, expected to have a value of about one CieV.
Taking q -mz we find that these higher-order terms
contribute effects only at the m~ /A —25% level and

hence they are usually neglected. We note also that since
they contribute terms of the form

PX'Pm-, P~2 P~3 ~

etc. , which vanish as any of the four-momenta become
soft, there is no restriction on such terms arising from the
K~2m. sector. Nevertheless, one anticipates their pres-
ence both on theoretical grounds —the chiral Lagrangian
method is really a low-energy expansion with additional
contributions becoming relevant at higher energy —and
based upon phenom enological considerations, wherein
such terms are necessary to explain the size of the quadra-
tic terms in the K~3~ decay amplitude.

Thus, in the case of K ~m. +sr ~ it is traditional to
write the decay amplitude as an expansion about the
center of the Dalitz plot:

A (K ~7r+7r 7r )= M(0)[1 +o( S3 sp)+p(s+ —s )+y(s+ —s ) +5(S3 —sp) + ] . (34)

Here o is the slope, P describes the charge asymmetry, and y, 6 are called the "quadratic" terms. " We employ the nota-
tion

s;=(k —p;), sp= 3(s++s +s3) (35)

The available experimental data have been analyzed by Devlin and Dickey yielding a fitted form to the (CP-even) decay
amplitude:

2
$3 —Sp $3 —SpV'2A (K 7r+7r 7r ) —9. 15—0.71+(14.1+1.31) —4. 85 +0.88

S+ —S
+ 0 ~ ~ (36)

sp sp Sp

in units of 10 . In the above the first number refers to the AI= —,
' component of the transition and the second to that

with AI= —,'. The associated uncertainties are at the 0.2% level for M(0), o and about 20% for y, |1. We see then that

g27

g8

AI = —'
2

AI= —'
—10%

2

(37)

as expected and that the quadratic terms, which can only arise from g', g", are definitely present. A detailed fit to this
momentum dependence in fact yields

Ai, A2 —1 GeV

in agreement with our theoretical prejudice. The results of the fit are given below.
Now examine the decay K ~7r+7r 7r including all relevant features of our analysis: (i) lowest-order terms' g8, g37,

(ii) higher-order chiral pieces g', g", (iii) electromagnetic penguin g8, and (iv) 7r -71 -71 mixing. We find then the contri-
bution from terms (i) and (ii) to be

1 mr&
2

g (Kp + — 0) g NL +2g NL+ g NL+ g NL $3 $0
m' —m' 2&2 mx. '

1
2+, , Ib k.PoP+ P +c(k P P .Po+-k.P P+.Po-)l-6F~ m~2 —m ' (38)

where here 3 o ", 2 2
" are the K~2n decay amplitudes

defined in the previous section and b, c are unknown con-
stants related to g', g". (The analysis of Ref. 5 has shown
that these two combinations of four-momenta give the
most general form of the quadratic terms, aside from fac-
tors which are absorbed into the definition of 3p. ) The
forms arising from mechanisms (iii) and (iv) are somewhat
involved. We quote here only the CP-violating contribu-
tion at the center of the Dalitz plot, for which we find

A (K ~7r+7r 7r )

. 1 15 003 NLmd —m=0Q gEMp —l Im 2 p6F m,

(39)

where the range is between full 71-71' mixing (8=20 )~
no mixing (9=0). We note that the electromagnetic
penguin does not contribute to this channel ~ In the case
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of the isospin-breaking terms, the full contribution ap-
pears in Appendix A.

As mentioned previously, the terms involving b, c above
are not restricted by KL ~2~ data since both kinematical
quantities vanish in all soft-pion limits. Instead the
coefficients b, c must be determined empirically, by fitting
the experimental data. The results obtained in such a fit
are'

(Of course only the real portion of the amplitude is deter-
mined. ) In order to see the impact that such terms deliver,
we note that the contribution of the leading {two-
derivative) portion of the Lagrangian to this process is (all
amplitudes are quoted in units of 10 )

&2AI2I(IC'~~+~ 7r') =(7.5 —0.5)+(9.1+0.7)
sp

Re& 2 Rec
Sp =1.5, sp ~ ~

ReAp
' Redp

(41)
(40)

while the higher-order (four-derivative) terms in b, c yield

S3 —Sp
&2A(4)(K ~~+a m )=1.9+5.5 —3.7

sp

S3 —SQ
2

s+ —s+0.6
Sp

The total amplitude

12
s3 —sp s3 —sp S+ —Sv'2A„, (K ~w+n Ir )=(9.4 —0.5)+(14.6+0.7) — —3.7 +0.6

2

(43)
Sp sp

provides a good picture of the experimental data [cf. Eq. (36)].
By looking at the imaginary piece of the K ~rr+rr rr amplitude in Eqs. (38) and (39), we can now proceed to calcu-

late e'+ p. The only problem here is that the phase of the higher-order parameters b, c is unknown, so we parametrize
these by

(44)

Since both b, c are generated by AI = —,
' Hamiltonians there is no reason to expect the vanishing of either phase, as will be

explicitly demonstrated in a particular model in Sec. IV.
Working in the "natural" phase convention in which

K -sd and K -ds
the bI= —', amplitude A2 has no CP-violating phase (g'=0) but A o" does:

ANL ANL
~

ig
(45)

Then we find, at the center of the Dalitz plot,

ImM(0)
ReM (0)

Im Ap

Rehp
=i &2cog(1 —IIFMP —QIsB)+i [0 45((hb —. g) —0.24(p, —g)] (46)

EMP —0

QISB=( ~
~+ 1)AISB ~

(47)

(48)

where the range in the latter corresponds to difFering values of g-g' mixing, with the first value being no mixing and the
latter full mixing. Combining this with the previously derived expression for e we find

+EMP +ISB
p

—E 2
+EMP +ISB

Q2 0 45(gb —g) —0..24(P, —g)
~I FMP I~IsB0b—= —e' (2~4) —(12~20) +(6~10) (49)

p —26 (50)

where we have used Eq. (28).
Of course, due to the unknown phases pb, p, no firm

prediction can be made, but the order of magnitude of
each term is considerably larger than the result

obtained previously, so that barring strong accidental can-
cellations, one expects a very much larger value for e'+
than given in earlier analyses.

Of course, the above analysis is purely phenomenologi-
cal. In order to verify that such an enhancement in the
e'+ p signal can actually occur, we have in Appendix B
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e'+ o —10m' (51)

examined, within the framework of the vacuum-saturation
approximation, the origin of these higher-order terms.
We find that these terms do indeed have a different CP-
violating phase from that found for the lowest-order La-
grangian and that even though these higher-order com-
ponents are suppressed by a factor mz /A -25%%uo, they
produce a value for e'+

r(K+ ~+~+~ )-r—(K —~ ~ ~+)
r(K+ ~+~+~ )+-r(K -~ ~ ~+)

R e )complete Dalitz plot

2 Re& )restricted Dalitz plot ~ (52)

where the last number incorporates a cut to the relatively
small portion of the Dalitz plot with s3/4m & 1.1 while

+

which is an order of magnitude above that found in
K~2~. We stress, however, that this result should not
be used as a definitive prediction —the vacuum-saturation
method is not presented here as a reliable approach in this

regard, and the results are not to be trusted in detail.
Rather, our calculation is simply meant as an illustration
that large values of e'+ o/e' do really arise.

(a

IV. SUMMARY

The new features contained in the present analysis are
the inclusion of electromagnetic and isospin-breaking
effects in both K~2~ and %~3~ amplitude, and also
the awareness of the effects caused by quadratic terms
present in the K~3m amplitude. The former (EMP and
ISB) can modify the prediction for e' in K~2vr as was
previously pointed out in Ref. 8. In g+ o their effect is
not in general identical. However, this situation requires
that the relation between e'+ o—=g+ o —e and e' be re-
viewed. Also, quadratic terms are seen to be present in
the CP-conserving decay amplitude. These play a major
role in the analysis of CP violation because when they are
included, the interference in the decay amplitude can take
place between larger terms both of which have AI= —,',
rather than requiring interference with the suppressed
AI =—,

' amplitude.
The combination of these effects increases the predicted

value of e'+ o/e', with the overall effect expected to be an
enhancement by up to an order of magnitude. The quad-
ratic terms unfortunately have a weak phase which cannot
be reliably determined from theory, so that firm predic-
tions cannot be made. However, their effect on e'+ o was
calculated in Eq. (46), and their size was estimated in a
particular model in Eq. (51). The effect is large primarily
because of the lack of AI =—', suppression.

Similar considerations will modify the analysis of the
rate asymmetry in charged kaon decays, K —+~~—

m
—w+.

The electromagnetic penguin was included in the analysis
of Cxrinstein, Rey, and Wise, and provides a small
suppression (their parameter g would be + 0.4 according
to Ref. 4). Isospin-breaking mixing does not affect
K+~~+~+~, but can modify the relation of the asym-
metry to e'. Again quadratic pieces will enter in an
unpredictable manner because of their unknown weak
phase. However, they should remove the AI= —,

' suppres-
sion because they can contribute to both the I =1 sym-
metric and mixed symmetry states. Again we would ex-
pect roughly an order of magnitude increase due to these
effects, so that

7
'lg

(c}

FIG. 1. The diagrams which contribute to the isospin-
breaking eft'ect in K ~~+~ vr . The notation is such that a cir-
cle represents the weak interaction, an &( represents the isospin-
breaking interaction, and a11 remaining vertices are the usual
strong interaction.



DONOGHUE, HOLSTEIN, AND VALENCIA 36

APPENDIX A: THE ISOSPIN-BREAKING
CORRECTION

The dominant effect of isospin breaking comes from the
inequality of the up- and down-quark masses in

H =m„uu+mddd . (A 1)

For example, this interaction induces ~ -q mixing:

the former number integrates over the whole Dalitz plot.
The direct CP-violating effects studied in this paper are

not large. Presently operating experiments measuring

g+ 0 hope to have a sensitivity of order e, and could not
yet see the deviations of g+ p from e which are predicted
here. In the more general class of CP-violating theories
the measurement of g+ 0 to order e is, however,
significant. For example, a theory of CP violation which
is purely parity conserving could generate e in the K K0 —0

mass matrix and could have q+ 0 as large as several
times e while generating no signal in e' because the latter
occurs in a parity-violating process. The only constraint
on g+ 0 would arise indirectly from the strength of the
parity-conserving dispersive contributions to e such as
K ~~ ~K . However, the KM model contains both
parity-conserving and parity-violating interactions. We
have estimated the relation of these in K~2~ and
K~3vr, and found a larger e'+ 0 signal than previously
thought. If future experiments can push the sensitivity in

g+ 0 down, our estimates suggest that e'+ 0 could be as
large as 0. 1e if e'/a=0. 005.

+2A(K"~rr g)

+2A (K ~vr"rl')

1

2 2'-9
m —m„

1

2 2

or

Ap=Ap + —,'A(K ~rr ri)
1

2 2m —mz

+ —,
' A (K' ~Pq') 1

2 g "rT

m —m '9

A(K ~~ g)p p

3

1

2 2m —m„
2&2

A (K ~n rj')
3 m~ —mz

The imaginary parts of these amplitudes satisfy

ImA(K ~ rI )

A NL

Im A (KP-~Pqp')
ANL

A (K ~rr+rr )= Ap + Ay /&2:—Ap+ A2/&2,

A(KP P P) ANL +2ANL (A3a)

(A3b)

(A4)

md —m„
(m„' —m )

m —mS

y'3 md —m„

=(7J H
~

77 ) =&2(7J H 77 ),

2m„
(A2)

with the first result following from SU(3) and the second
using the quark model. At this stage we neglect gg' mix-
ing but will add it later. In K~2~, this mixing generates
contributions to A0 and A2..

Again the first result is due to SU(3), while the second fol-
lows in a quark model. To be specific, the important
quark-model features are (1) Im A (K ~g')
= &2 ImA (K ~g), which follows in all quark models,
and (2) the momentum dependence of the K~w g' ampli-
tude is such that the amplitude vanishes in the soft g' lim-
it, as would be required by nonet symmetry or the
vacuum-saturation method.

In K~3~, we must consider all the diagrams of Fig. 1.
For ri& all can be calculated using chiral SU(3). We find
(setting m =0)

A (K' ~+~—~')
~8

NLA0
5+2

6&3F m ' $0
(a+b)

NLA0 g 877 S3 —S0+ — 2+2
6&3F m ~8

—m S0
(c+d)

+0 (e)

A0 "A~ ~

&3F„m„,'
$3 $01+2

S0
(A5)

In the case of g', the above quark-model assumptions plus the vanishing of the KL~~+~ g' amplitude in the soft g'
limit, are sufficient to determine the form of the amplitudes. We find
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& (& ~rr+vr ~p)
"0

A A
778 1T S3 —SQ

2
2—

6F ~6m ~ sp
7]0

A A
7]077

6F ~6(m —m~ )
g0

s3 —sp2+ 2
sp

+0 (A6)

with ImA = —2 ImAQ
At this stage we consider g-g mixing using

cosO g8 —sinO gp,

sinO ps+ cosO gp

with O= —20'. Using (A2) and (A4), the %~2' amplitudes become

(A7}

ImA = ImA " 1— md mu

m,

2—(cosO —&2 sinO) +I™(cosO+ sinO/~2)
6 mz

= ImAQ" 1 —0.39

ImA p md —m„NL

ImA2 3v'2 m,

md mu

m,

2

(cosO —V2sinO)2+2 "2 (cosO+ sinO/e2)2
mz

(A8)

=0.55 ImA N"
m,

so that

Im A QNL

v'2 Re Ap

md —m
1 —0.39

m,

ReAQ md —m„—0.55
Re A 2

Im A QN"

(1—Sl )a)V2 ReAp
(A9)

with

ReAp md —m„
AgB =0.55

Re A 2

=0.33~0.44 . (A10)

md mu

m,

In the case of I&~3~, the mixing is different in the two classes of diagrams (a+ b) and (c+ d) because of the different
relative weights of the g8 and gp contributions. Working at the center of the Dalitz plot we have

ImA N" 2~21m'(ZP ~+~-~P) =
6F

cosO — sinO (cosO —v'2 sinO)4

+2(cosO+ ~2 sinO)(cosO —~2 sinO)

mz
2 s~z .

cosO+ sinO (cosO+ sinO/v'2 }
m ~ 4

ImA NL

6F„
md —m„

1 —1.15
m,

2
m& sinOcosO—m„—mg v'2

sinO
cosO+ v'2

(A11)

This generates E+ p using Eq. (46),
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md mu

m,

&2 Red2
Re Ap

1 —1.15
Ims N"

ReAp
1 —0.39

m,

Imd p" &2 Re 32 md —m„=I —0.76
Re Ap Re Ap m,

—Red' Imago=l 2
Redo ReAp

Red p md —m„
1 —0.54

Red 2 m,
i &2~$—( 1 —Q,B ) (A12)

with

Redp md —m„
Alp ——0.54

Red 2
+IB (A13)

(0
~
uy„yqd ~ ) = —i&2F p„,

(~+(p) sy„d K+(k)) =(k+p) J'+[(k —p) ],
(~+(p)~ (q)

~
sy„ysu

~

K+(k))

(B2)

Without g-g' mixing this value would have been

A)g ———0.50(g . (A 14)

i&a
PP+ 2 2PP

/7' m~ —m„

APPENDIX B: THE FACTORIZATIGN MODEL

0, =dy„(1+yq)uuy"(1+yq)s
—uy„(1+yq)udy"(1+ys)s . (B1)

In many ways, the most unfamiliar aspect of our
analysis is the inclusion of terms beyond the usual linear
expansion of the matrix element. We now know from ex-
periment that these terms are present in the amplitude,
and theoretically we can understand why they should be
present from the general framework of chiral Lagrang-
ians. ' However it is also useful to see how such terms
arise in an explicit calculation. In this section we use the
vacuum-saturation technique to study the origin of these
higher-order terms. We will learn that the scale factor for
the strength of the new terms, which enter at order
mz /A, is about 1 GeV, and that the higher-order terms
may have a diA'erent CP-violating phase than that found
in the lowest-order result. The vacuum-saturation
method is not presented as a reliable approach in this re-
gard, and the results are not to be trusted in detail. Rath-
er our calculation is simply meant as an illustration of the
types of eftects which one can expect.

We focus on the AI= —,
' part of the interaction and in-

clude only the operators 01 and 05 in the Hamiltonian
[see Eq. (2)], with

with p„'=(k —p —q)„. We work in the SU(3) limit and
use PCAC and crossing to determine other related matrix
elements, such as

&~+(p&)~ (q)~+(p2)
l uyvy5d 0)
i2v/2 k qq„—, , k„(B3)F. " m~' —m„' "

with k„=(p~+pq+q)„. However, the form factors will
in general be a function of q such as

f+(q')=1+, +
In this case the q variation of the form factors can be re-
lated to each other by PCAC. We find

(B4)

(~+
~
sy„d

~

K+) =(k+p)„

(0~ uy„y~d
~

rr ) = i&2F (1+m—~/A')p

~0 sy„ysu
~

K+) = —i&2F (1+m '/A')p„,

p' (p +q)'
A2 A 2

2

(~+(p)7r (q)
~ sy„y, u

~

K+(k)) (B5)

+'+2
2mz —m

In the last case A2 is not determined by PCAC, and we
will not include it in our example. Similar matrix ele-
ments can be defined for scalar and pseudoscalar densities

(~+ ~sd ~K+)=~ 1+
A

Because of some interest in charged-kaon decay, we
present the analysis in the channel %+~sr+~+~, but
since the operators are purely AI= —,', the results can be
easily transcribed to neutral-kaon decay.

The vacuum-saturation method involves current matrix
elements such as

(0
~
sysd

~

K ) = —i&2F A(1+m~ /A ),
(~+(p)7r (q)

~
sysu

~

K+(k))

i&2A p-p' (k —p —q)''+F m~ —m~ A

(B6)
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While in principle the scalar densities could have a different A than the currents, the quark equations of motion suggest
that they are the same. Our experience with form factors suggests that A should be of order m~ or m~* . Given these
definitions it is straightforward to calculate the decay amplitudes in the vacuum-saturation method (we use m =0 for
clarity):

2+
I
o, IK+&= —-', [&~,

I ur„r,d 10)&~-~,+
I sr„r,u IK+&+(I

I ur, u
I
»&~~'

I sr, d IK'& —(I 2)+ &~i'~ ~2+
I ur, r 5d

I
o&&o

I sr, r5u IK'&]

and

2

= —,'[m~ —
—,(s —sp)] —

—, (s —sp)+
2

[(s —sp) —(si —sq) /3]2 3 2 2 2

A A
(B7)

&~i+~ ~~+
I
Os I K+) = ——", [&m)+ ur5d 0) &m2+w

I
srsu

I

K )+(1~2)
—&vr+n

I
dd

I
0) &rrq+

I
sd

I

K+) —(1 2)+ &n+m n+
I urged I

0) &0
I
srqu

I

K+ )]
128 32 3 4 ip 4 2 2

27
[m~ ——'(s —sp))+ [—'m~ (s —sp) ——'mlc +(s —sp) /2+(si —sq) /2] .

2 A4
(BS)

We see that the leading-order term is unique but at higher order the two operators have quite different behavior.
For the purposes of our example, we will normalize the coeScients of the operators such that the penguin operator 05

contributes a fraction f to K~2~, Oi contributes a fraction (1 f), and —we give the penguin contribution a phase P:

2&2
cos8i sinai &

n+ ~
I

c i Oi +cqos
I

K ) = (1 f) A p+f—A pe
'~ .

Note that in this picture our previously defined phase is g=f/. Again using vacuum saturation on K~2vr, we find

i 4I'
c, &7r+77

I
O,

I
Kp) =c, —m~ =—(1 f)A p,

—
3 2

2 4

c5& 77 rr
I
05

I
K ) =cg — lFA

&
+'4 =fApe'+ 64 m~ m~

9&2 A A

(B9)

(B10)

Putting these together and factoring out the phase factor which is common with %~2', we get

3 6(sq —sp) 391+ (sg —sp)+
m~ 2 A Am

[(s) —sp) —(s+ —s ) /3]

i g(. 1 f)If— 3+ e
2m~ —

—,(s) —sp)+ (s+ —s ) —9(sg —sp) /m~2 3 2 2 2

A 2m
(B1 1)

Note that the higher-order terms do indeed induce a CP-violating phase within the (purely b,I= —,) amplitude. Taking
real and imaginary parts and using the definition of e'+ p [Eq. (46)] we find, at the center of the Dalitz plot,

2

e'+ p = i/2(1 f)—
A

(B12)

If we estimate this quantity, using 4= 1 GeV, g from Eq. (29) and f= —,', we find

E+ p 1 106' (B13)

consistent with our previous estimate of the effect of higher-order terms. This sample calculation has demonstrated then
how, within a specific model, such higher effects occur and has reinforced our estimate of their magnitude.
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