
PHYSICAL REVIEW D VOLUME 36, NUMBER 3 1 AUGUST 1987

Branching, geometrical scaling, and Koba-Nielsen-Olesen scaling
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The phenomenon of Koba-Nielsen-Olesen scaling up to about 100 GeV in c.m. energy in pp col-
lision is described in a branching model supplemented by impact-parameter smearing with geometri-

cal scaling as an essential input. A high-accuracy At of all data points from CERN ISR is achieved

by use of only one parameter, which relates the particle productivity to hadron opacity at each im-

pact parameter. It is deduced that the average number of initial clusters is between 4 and 5, depend-

ing upon the energy.

I. INTRODUCTION

Since the observation' of the violation of Koba-
Nielsen-Olesen (KNO) scaling of the multiplicity distri-
bution P, for c.m. energy between 200 and 900 GeV is
accompanied by the observation of low Er jets -(called
minijets) in the same energy range, it is reasonable to re-
gard the two phenomena as intimately related. The cen-
tral question in soft hadronic processes therefore reverts
to the long-standing one: why does P, exhibit KNO scal-
ing for &s (100 GeV? Indeed, without a satisfactory
answer to this question, it is not likely that any quantita-
tive investigation of KNO-scaling violation at higher ener-
gies can be very reliable. In this paper we show that
KNO scaling is a consequence of branching and geometri-
cal scaling.

The study of KNO scaling has a checkered history with
many turns, too numerous to be summarized here. In re-
cent years the use of negative-binomial distributions has
revitalized considerable interest in the subject. After the
discovery by the UA5 group that its data can best be
fitted by an s-dependent k parameter (decreasing with s),
thus rendering a naive interpretation of k in terms of cells
in a stochastic cell model unreasonable on physical
grounds, many alternative views have been suggested to
accommodate the variation in k and the associated KNO-
scaling violation. Concurrently, the interest in studying
branching processes grew, partly because the branching
mechanism ofters a possible connection between basic dy-
namics and KNO scaling; moreover, its solution ap-
proaches the asymptotic scaling curve from below, in ac-
cord with experimental observation. None of these more
recent investigations focuses on the issue of why KNO
scaling works so well up to the top of the energies achiev-
able at CERN ISR. In the ISR energy range 20—65 GeV,
although the second moment Cq of the solution G„ofthe
simplest branching equation (which has a modified form
of the negative-binomial distribution) can be shown to
agree with data for a fixed k (Ref. 10), the higher mo-
ments have subsequently been shown to disagree with
data. " A Poisson smearing of k with a particular s
dependence of (k) can give a good fit of the data, ' but
no good physical basis for the mathematical procedure
has been suggested.

Our viewpoint is that if branching is a sensible dynami-
cal mechanism for multiparticle production at low p~,
then it must apply to hadronic collisions at each impact
parameter b. There is no guarantee that after integration
over all b the multiplicity distribution would remain as a
solution of the branching equation. Indeed, any model
that is claimed to have some connection with basic dy-
namics must face the question at some level of what the
eff'ects of impact-parameter smearing (IPS) would do to its
predictions. The importance of IPS has been stressed by
many authors, a few of whom are listed in Refs. 13—15.
It is generally recognized that the broad KNO distribu-
tion can be obtained by superimposing narrow distribu-
tions at various b (Ref. 14). What we show here is that,
while 6, not only is wide but for fixed k even broadens at
subasymptotic energies, the IPS of G„can give an excel-
lent description of the scaling data. It should be
remarked that our concerns are on providing a physical
interpretation of the data which are to be examined at a
very high level of accuracy. That level was not contem-
plated earlier, ' ' but is now forced upon us by the work
in Refs. 11 and 12, which showed the inadequacy of the
higher moments of the prediction of a simpler branching
model' without IPS. Nowhere shall we assume a KNO-
scaling curve either before or after IPS.

II. THE GEOMETRICAL BRANCHING MODEL

becomes simply trb0 (s), with the inelasticity function
g (s, b) becoming g (R) = 1 —exp[ —2II(R)], which satisfies
the normalization constraint

dRgR =1.
0

C. 2)

If the multiplicity distribution at s and b is G„(s,b), then

In describing the geometrical properties of hadronic
collisions, we adopt the formalism that incorporates the
empirical property of geometrical scaling. ' Thus the
eikonal function Q(s, b) is a function of the dimensionless
scaling variable R =b/bo(s), where ba(s) is the size pa-
rameter that describes the s dependence of o.,~,

o. ~, and
o;„.The inelastic cross section
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the observed distribution is

P„(n)=f dR g(R)G„(s,b),
0

(3)

where n (s) is the average multiplicity at s, i.e.,
ii = g nI'„. We write G„(s,b) as G„(N),where N(s, R) is
the average multiplicity at s and R: N (s, R) = g nG„(N).
Averages over R as in Eq. (3) shall hereafter be abbrevi-
ated by the notation & ), e.g. , P„(n) = & G„(N)), and
a=&N).

We assume that the multiplicity distribution at every R
satisfies the branching equation for the Furry process'

tU =N (s, R)/k (s,R)

in terms of which the solution of Eq. (4) is ' '
k n —k

Q„(~)= I (n) 1

I (k)I (n —k+1) w

(5)

(6)

This can be rewritten in the form of a negative-binomial
distribution, and has been used to compare with data for
m = n /k, resulting in some difFiculty with high mo-
ments. "' Our view in this paper is that Eq. (6) is for a
fixed R and is specified by Eq. (5) at that R; upon substi-
tution of Eq. (6) for G„(N), it is Eq. (3) after IPS that
should be compared to data.

Since, after IPS of the branching solution, P„(ri)does
not, in general, satisfy the branching equation, the pro-
cesses of branching and IPS are not independent. Never-
theless, in searching for a simple description of the geome-
trical properties of the multiparticle production processes,
we assume that N(s, R) and k(s, R) are factorizable, and
that they have the same R dependence: i.e.,

gk ( 1)gk gk
dt

where we have added a superscript k to Q„to specify the
initial multiplicity: Q„"(t=0)=5„k.With N = g„ng„",
we have t= ln(N/k), a relation which can be verified by
summing Eq. (4) over n weighted by n Let. tii be the evo-
lution parameter

Performing the IPS of Eq. (11) and solving for the mo-
ments

C =n /n = n 6„
n

—mn (12)

we obtain, using Eq. (10) and ti~=n/k,

Cp = & h ) + (iU —1)/n,

C3=&h )+3(w&h ) —Cp)/n+2(w —1)/n

C4= &h )+6(w&h ) —C3)/n+11(w &h ) —C2)/n

+6(w —1)/n ',

(13a)

(13b)

(13c)

C5 = & h ) + 10( tii & h ) —C4 ) /n + 35( ti~& h ) —C3 ) /n

+50(tv'&h ) —C2)/n +24(w —I)/n (13d)

The experimental values of these moments are indepen-
dent of energy, at least through the ISR range, a reAection
of the KNO scaling. On the other hand, n and m are
both energy dependent. Thus the challenge is to discover
a simple way to achieve energy independence for all the
moments as well as to obtain the right values for those
moments. The burden is clearly on finding the proper
form of /i (R) that can yield the appropriate moments
& h ) after IPS.

III. PHENOMENOLOGY

Let us now adopt the Gaussian form for Q(R) in order
to be specific; the exact form is not important as we shall
discuss later. Thus we write

Q(R) =00e (14)

The value of 00 is not free to adjust because it is deter-
mined by the position of the first minimum of the elastic
diffraction peak. ' We sha11 use the value BD——1.4. The
value of /3 is also not adjustable on account of Eq. (1),
which yields /3= 1.624. Since the number of particles pro-
duced at any fixed R shou1d be related to the opacity of
the colliding hadrons at that R, we assume the form

N(S, R) =n(s)h(R), (7) /i (R) =hDQ~(R), (15)

k(s, R)=k(s)h(R) .

Since by definition

&N) =n, &k)=k,
we require h(R) to satisfy

(8)

(10)

The property that branching and IPS are not independent
implies that n and k are not related directly by branching.
Yet it is convenient and appropriate to refer to k as the
average number of initial clusters. Indeed, it follows from
Eqs. (5), (7), and (8) that w=n(s)/k(s), a function of s
only, but, we repeat, P„(n) is not Q„"(w).

It can be established from Eq. (6) by negative-binomial
expansion that

I (n +m) gk( )
I (k +m)

(1 1)
1(n) I (k)

w =1+an, a =C~ —&/i') . (17)

If we choose y =0.35, then &h ) =1.10 and the value of
a would be 0.1. %'hat is surprising is that for these values
of y, or any in between, (a) all of the calculated moments
C3 to Cz agree well with the ISR data, as shown in Fig.
1, and (b) those moments are essentially independent of
energy (or n). While the n independence of C2 is
guaranteed by Eq. (17), the virtual independence on n of

where y is the only parameter in this problem, h0 being
determined by Eq. (10). Thus we have, for all m )0,

&h ) =h0/3 ' I dA(l —e )0 r ' . (16)
0

We vary y to fit C5, since it is most sensitive to the pre-
cise value of y. The energy dependence (or, more precise-
ly, the n dependence) of w is specified by Eq. (13a). For
y=0. 25, we have &/i') =1.055; thus for C2=1.2 we get
a =0.145 in
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FIG. 1. Moments of multiplicity distribution vs energy. The
solid and dashed lines are calculated results for two different
values of y. The data points are from Ref. 1.
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FIG. 2. Average number of initial clusters.

C3 to Cq is a consequence of the structure of the moment
equations (13) resulting from IPS of the branching solu-
tion. We therefore regard our dynamical (branching) and
geometrical (IPS) description of particle production linked
by Eq. (15) with @=0.3+0.05 as a satisfactory answer at
this stage to the puzzling question about the origin of
KNO scaling.

We have checked the dependence of our result on the
exact input for Q(R). We varied Ilo by 20%%uo and found
that the moments C change by less than 2%%u&. We also
tried some other form for Q(R), e.g. , Ao exp( —PiR ), and
found no significant eff'ects on the fits of the moments.
Thus the value @=0.3+0.05 is quite stable against varia-
tions on the details about fl(R).

IV. DISCUSSION

We can learn from our result some properties of
branching as applied to hadronic collisions. First, the
evolution parameter w that specifies the extent of branch-
ing increases with n, and hence s, without bound, as evi-
denced by Eq. (17). This is, of course, eminently reason-
able. Second, and less obviously, the average number of
initial clusters k also increases with s, but is bounded.
This follows from Eqs. (5), (9) (or directly u =n /k ), and
(17):

k =(a+1/n )

Using the known experimental relationship between n and
s, we have plotted k against &s in Fig. 2. Evidently, k

can vary between 3 and 5, as &s is increased up to 100
GeV. This increase is physically more sensible than a
naive interpretation of the decrease of k in the phenome-
nological fit of the data' by UA5 based on negative bino-
mials. The decrease of k is necessary there to accommo-
date a broadening distribution. But this rule is not applic-
able in a branching model; indeed, k must increase at
nearly the same rate as n to maintain KNO scaling in the
subasymptotic regime. The result suggests that as s in-
creases, more and more of the hadronic stuff' (in the
language of the droplet model' ) becomes effective in pro-
ducing particles until it is exhausted, whence k reaches its
asymptotic value. We may also associate k with the aver-
age number of chains in the dual-parton model' or with
the average number of clusters in the fireball model' (ex-
cept that the latter prefers three fireballs in a minimal
description). To discover the interconnections among all
these approaches would be very interesting and
worthwhile.

Finally, we show how IPS of the branching solution re-
sults in the KNO curve. If we break up the continuous
R integration in Eq. (3) into a sum of four sections cen-
tered at R =0.15, 0.5, 1.0, and 2.2, we get the four
dashed curves shown in Fig. 3 for g(R )ng„(ui), the s'olid

curve being the integrated result. The case for y =0.25 is
plotted, and the normalization has been changed to 2 in
order to compare with the data on charged particles pro-
duced at ISR (Ref. 20). Note that the individual contribu-
tions have wide distributions themselves, a characteristic
of the branching solution. The region with n ~ n is dom-
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large-n behavior for all R is similar for all branching
solutions with n »k being basically exponential in char-
acter. The most striking feature of Fig. 3 is that the
overall KNO curve is not a superposition of narrow distri-
butions of the type appropriate for describing multiplicity
distribution in e +e annihilation. ' ' Here we have
come to a rather basic point: after the geometrical com-
plication is disentangled, is the production mechanism at
a given R universal in the sense of having no distinction
among pp, e+e, and ep collisions, or is the soft produc-
tion process in pp collision even at fixed R basically
different from the hard processes in e+e and ep col-
lisions' Our answer is clearly aftirmative in the latter op-
tion.
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FICJ. 3. KNO plot of multiplicity distribution. The data
points are from ISR, as presented in Ref. 1. Solid line is the in-

tegrated overall distribution. Dashed lines are contributions
from various impact parameters, as indicated by the four regions
in R in the insets.

In summary we have amalgamated branching and
geometrical scaling in a way that gives rise to KNO scal-
ing. There is one free parameter y which relates the
efticiency of particle production to the opacity of hadron
scattering. For y =0.3+0.05 we have found a nearly per-
fect description of the multiplicity distributions
throughout the ISR energy region. While the dynamical
origin for the value of y remains to be understood at a
deeper level, the stage is set for an investigation of the
violation of KNO scaling by minijets at CERN SOS,
which takes into account the geometrical aspect of the
hadrons.

inated by the small-R contribution, as is reasonable. The
curves for small R turn over at small n because k (s,R) is
relatively large (=5.1 for R =0.15) so the probability of
emitting a small number of particles (n )k) is suppressed.
At large R, the region of n, where such a suppression
mechanism operates, is pushed to the extreme low end in
n, since k(s, R) is itself small (=2.2 for R =2.2). The
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