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Multiplicity distributions in pp collisions at 540 GeV and "bremsstrahlung analogy"
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Multiplicity distributions of particles produced in different rapidity intervals in 540-GeV pp col-

lisions are analyzed using the model of "bremsstrahlung analogy. " It is found that the model de-

scribes the main features of the data well, although the detailed shape of the distributions for large ra-

pidity intervals is not precisely recovered. Fluctuations of the plateau height are described by a I
distribution with k=2.

I. INTRODUCTION

In this paper, we analyze, using the model of "brems-
strahlung analogy, "' the new data on the multiplicity
distribution of particles produced in pp collisions at 540
GeV (Ref. 3). It was shown in Ref. 3 that in all (pseudo)
rapidity intervals ( —g„g, ) centered at q =0, the multi-
plicity distributions can be fitted very well by a negative-
binomial distribution:
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where (n ) is the average multiplicity. k is a parameter
related to the relative width of the distribution D/(n ) by
the formula
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It was found in Ref. 3 that k ' (and, thus, also the rela-
tive width of the distribution) decreases with increasing
Qc'

Let us also note that in the limit (n )~~, (n )P(n ),
i.e., the Koba-Nielsen-Olesen (KNO) function of the dis-
tribution (1.1), tends to

kk
(n )P(n)~g(z)= z" 'e
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with z=n/(n ). It was argued in Refs. 6 and 7 that the
shrinking of the KNO function with increasing rapidity
interval can be qualitatively understood as an effect of en-

ergy and momentum conservation which tends to cut the
high-multiplicity tail of the distribution and which effects
are clearly stronger for a large rapidity interval than in
the central region where the produced particles are very
slow. Using the model of bremsstrahlung analogy, ' it
was also shown that the size of this effect is substantial: it
can approximately account for the observed violation of
KNO scaling between CERN ISR and collider energies

and for the difference between the spectra in the central
rapidity and full rapidity regions.

In this paper we extend the analysis of Refs. 6 and 7 in
two directions. First, we improve some approximations
employed there: (a) we do not neglect the width of the
elementary "bremsstrahlunglike" components and (b) we
do take into account the effects of the decay of the pro-
duced clusters. We show, in fact, that these two effects
introduce important quantitative corrections to the pic-
ture. Second. we compare the results with the recent data
of Ref. 3 which are much more detailed and complete
than the data of Ref. 8 which were analyzed in Ref. 6.

In the next section we describe the model of "brems-
strahlung analogy" for the production of particle clus-
ters' and introduce some basic notation. In Sec. III the
energy and momentum constraints are analyzed. Section
IV deals with the effects of the cluster decay. Our con-
clusions are listed in the last section. In Appendix A
some analytic formulas for the correlation coeKcients in
cluster production are derived while Appendix B gives the
derivation of the corrections as a result of the decay of the
clusters.

II. PARTICLE PRODUCTION
AND "BREMSSTRAHLUNG ANALOGY"

In the bremsstrahlung analogy the multiproduction of
particle clusters is taken to be a sum of simple com-
ponents, each one giving a uniform distribution in rapidity
y, dn/dy =A. , and a Poissonian multiplicity distribution.
This is very much like the situation in ordinary brems-
strahlung by a charged particle, where a given trajectory
of the particle, corresponding to a certain classical
current, produces one such simple Poissonian component.
If we do not select the trajectory of the charged particle,
however, we get a sum of the various simple components.
We recall that this approach gives a general picture of the
qualitative features of multiproduction, a correct descrip-
tion of leading-particle behavior, ' and accurately predict-
ed the forward-backward correlations found at the CERN
collider.

Each simple component is labeled by the density in ra-
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pidity of the produced objects ("clusters" ), and we call
this density A, , which may be considered as analogous to
the strength of the classical current or the strength of the
coupling to the radiation field. The probability of having
a certain A. in a collision is given by a weight function P.
For future convenience and without loss of generality, we
choose to write P as a function of X/k. Thus,

probability of k=P(A, /A, )
—dA, .

1
(2.1)

N(A, ) =A, b.y, (2.3)

where Ay is the rapidity interval considered.
Equation (2.3), when substituted into (2.2) with the

scaling function given by (1.3), gives, after integration over
k, the multiplicity distribution of the produced clusters
P(N) in the form (1.1) with

(N) =A, by . (2.4)

To obtain a realistic distribution of the produced parti-
cles one has to take into account two effects. First,
energy- and momentum-conservation constraints should
be introduced. Their effect is twofold: (a) they modify

With this normalization in addition to J P(z)dz=1, we

also have J zf(z)dz= l. It was shown in Ref. 6 that in

the high-energy limit g(z) is identical to the asymptotic
KNO function.

Now the observed multiplicity distribution P(N) is
given by a weighted sum over the fundamental Poisson
distributions p(A, , N):

P(N)= jp(X, N)g(k/A, )
—dk .

1
(2.2)

To summarize, the dynamica1 content of the model is
characterized by (a) the independent emission of particle
clusters and their subsequent decay and (b) the fluctuation
of the plateau height A, as expressed by the function
g(A, /A, ).

The physical origin of these fluctuations in A. is not en-
tirely clear. One may think of them as a reAection of the
dependence of particle production on the impact parame-
ter' or on momentum transfer in elementary parton-
parton scattering which presumably starts the observed
process of particle production. " It should be stressed
that, without further physical input, the model does not
make any statements about the shape and energy depen-
dence of P(A. /1, ). However, once g(Elk) is known, the
model gives well-defined predictions, which can be tested
experimentally.

In the high-energy limit, when energy-conservation
constraints are unimportant, p(A. , N) is a Poisson distribu-
tion characterized by an average multiplicity N(k) given

by

the shape of the distribution p(A, ,N) making it narrower
than the original Poissonian distribution; and (b) they also
modify the simple linear relation between N(A, ) and k. It
was shown in Ref. 6 that the second effect has important
consequences for the observed distribution of particles and
can even explain an apparent violation of KNO scaling as
observed by the UA5 Collaboration. These corrections,
which both induce a shrinking of the distribution with
respect to the nonconstrained distribution (1.1), are small
in the central region of rapidity Ay « Y „and become
more important as Ay is closer to Y „.As a result, the
KNO distribution shrinks when Ay increases toward
Y „.This is in qualitative agreement with the results of
the UA5 Collaboration.

The second effect one has to consider is the decay of
the clusters into particles. It is more important at small
Ay where the number of particles is not very large.

We see that the two effects described above are largely
complementary and both work in the direction required
by the data: the KNO spectrum shrinks at large Ay. The
question remains as to whether they are strong enough to
explain the actually observed change in the data as the ra-
pidity interval changes. This is analyzed in the next two
sections.

III. CORRECTIONS FOR ENERGY
AND MOMENTUM CONSERVATION

In this section we show how energy- and momentum-
conservation constraints modify the cluster multiplicity
and rapidity distributions. In view of the general formu-
las (2.2), we only need to know the effects of the conserva-
tion laws on the distribution p(A, ,N) which otherwise
would be a simple Poissonian. In our approach, based on
the "bremsstrahlung analogy, "' the distribution of clus-
ters at fixed A, is given by the longitudinal-phase-space for-
mula

N dp
A'

I2~ = Q A, J dpi' dpR 6 Po —EL —Eg —g E';

N!,.
1

e; i =1

N

X5 P pL pR +pi (3.1)

Po and P are the total energy and (longitudinal) momen-
tum of the system, pL, pz are the momenta of the leading
clusters, and pi . . p~ are the momenta of the produced
clusters. The corresponding energies are denoted by e's.
In Eq. (3.1) the transverse motion of the clusters is
neglected (it contributes only to the transverse mass of the
cluster).

The inclusive distributions of the produced clusters are
then given by

pM(&;p&, . . . , pM )=k g I2iv(A, ;Po —e&
' ' ' —eM~P —pi —p~)

1V =0

It was shown in Ref. 12 (cf. also Ref. 7) that

I2~(k;PO, P) .
A' =0

(3.2)
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k fixedoo 1
Q~(A, ;Qo, Q)

x=o (~.'-a'-- 1(~+1)'

@=0.5772. . . Euler's constant .

—2y

(Qo+ Q)'(Qo —Q)'()(Qo+ Q)()(Qo —Q»
(3.3)

Substituting (3.3) into (3.2) and introducing the light-cone variables x;—=pe ' ', where y; are the rapidities of the pro-
duced clusters and

p=m/&s

(m is the transverse mass of the clusters), we obtain

pM(A, ;pi, . . .pM)=A, (1—xi+ —xM+) (1 —x )
. . —xM ) 0(1 —xi+ . —xM+)0(1 —xi . . —xM ) .

(3.4)

(3.5)
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in terms of which the distribution can be written as

P~(q„A.)=, g F~+&(A, ;q, ) .( —Y

Nt jt

This formula gives the inclusive distribution of the clus-
ters taking the conservation laws into account. Our task
now is to deduce from this the (exclusive) multiplicity dis-
tribution of the clusters in difFerent intervals of rapidity.
To this end we observe that the (factorial) moments of the
cluster multiplicity distribution in the interval
are given by

distribution (N)P~ integrated over A. according to the
formula (2.2), using Eq. (1.3) with k =2, as suggested in
Ref. 6. Other parameters were A=1.55 and cluster mass
=1 GeV.

In performing this calculation Pv(rj, ;k) was approxi-
mated by the first two terms in Eq. (3.7). Neglecting the
non-Poissonian correction, a 2&0 hardly produces a
change in the curves of Fig. 3. Only for q, =5.0 the
high-multiplicity tail of the distribution becomes slightly
higher.

IV. EFFECTS OF THE CLUSTER DECAY

It is shown in Appendix B that the generating function
for the distribution of particles in the interval ( —q„g, )

By defining multiparticle correlation coefficients a~ by

k

Fk=(Fi) + g I ai(Fi)
1=2

one can show that

-C2
Q flp

0.22

F N —Fl

P~(rl, ;A, ) =
NI

N —Fl
at d& F Ne

I! dF' N!
(3.7)

0.2Q

0.18

hoping that the series converges rapidly, which should be
the case if the corrections to a Poisson distribution are not
too large. The I-particle correlation coefficients can be ex-
pressed in terms of factorial moments (3.6) (Ref. 13). For
a2 and a3 we obtain

0.16

Q. l 4

(x2 =F2 —F), a3 ——F3 —3F)F2+2F )
2 3 (3.8)

0.12

In Fig. 1 the parameter —a2/F~ is plotted versus k for
difFerent values of g, . In Fig. 2 the parameter ++3/F~ is

shown. One sees that these expansion parameters are
small, particularly if g, is not too close to g „.We con-
clude that, at this high energy, the expansion (3.7) is rap-
idly converging, and one can approximate the distribu-
tions by considering just one or two terms in (3.7).

The efFects of the conservation laws on the width of the
distribution can also be seen from Fig. 1 by observing that
a2/Fi =D /(n ) —1. One sees that, as expected, the dis-
tribution is narrower than Poissonian (for Poissonian
D /(n ) = 1) and that the observed shrinking becomes im-

portant only when g, is not far from g
Finally, in Fig. 3 we show the KNO plot for the cluster

0.08

0.06

0.02

FIG. 1. Correlation coe%cient of two particles for two values
of the rapidity cutoff.
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can be written as

P(z) =F [G (y; g„z)], (4. l)

where F[/(y)] is the generating functional of the cluster
rapidity distribution and G (y;q, ;z) is the generating func-
tion of the distribution of particles in the interval

( —g„q, ) which come from the decay of a cluster pro-
duced at rapidity y.

Using the results of the previous section we write the
generating functional F[g(y)] in terms of the single-
cluster inclusive distribution pI(y) and the two-cluster
correlation function C~(yI,yz) as

$2F[g(y) ]= I + —,
' jdy I dye Cq (y I,yq ) exp p]y y —I dy

&IOI(yI )&PI(y~)
(4.2)

where ( —g„g, ) is

CZ(yIyZ) =pe(y»yr) —pI(yI )pI(yZ) (4.3)

D(y —y')4'=—1 dy'

cosh (y —y')
(4.4)

If y and y' are pseudorapidities rather than rapidities, this
distribution corresponds to isotropic decay of the clusters.

It follows from (4.4) that the probability that a particle
from a cluster produced at rapidity y falls into the interval

with pI and pq given by Eq. (3.5).
For the rapidity distribution of the decay products of a

cluster produced at rapidity y we assumed

G(y, q, ;z) =g(l+d (y, q, )(z —I )), (4.6)

where g(z) is the generating function of the multiplicity
distribution in the cluster decay. It was taken to be a po-
lynomial in z. Assuming that the cluster can only decay
into one, two, or three particles with respective probabili-
ties a, 1 —2a, and a, we get

sin h2q,
& (y; q, ) = D (y —y')dy'=

cosh2q, + cosh2y

(4.5)

Consequently, the generating function G(y, g„z) is
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FIG. 2. Correlation coefticient of three particles for two
values of the rapidity cutoA.

FIG. 3. KNO distribution of nondecaying clusters. The
curves are calculated with A, =1.55, m =1 GeV, and aq&O. The
dotted lines represent the distributions which are uncorrected for
energy-momentum conservation. g,„=6.3.
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g(z)=az+(1 —2a)z +az' . (4.7)

All calculations were performed for a=0.3. The formu-
las (4.1)—(4.7) define the generating function of the parti-
cles in the interval ( —q, , g, ). To obtain the distributions
themselves we applied the relation

1 d "P(z)
P(&, )

z=0
(4.8)

The observed distribution of the particles in the interval
( —g, ,q, ) is obtained from P (k, n ) by integrating over k:

P(n)= j g: P(k. , n) .
dA

(4.9)

&n& P„

10-4

This formula gives the final distribution, which includes
corrections from both energy-momentum conservation
and cluster decay. In Fig. 4 the resulting KNO distribu-
tions (n )P(n) are plotted versus n l(n ) for different
values of g, . For simplicity, they were calculated assum-
ing a2 ——0. One sees a clear tendency of a broadening of
the distribution with decreasing q, . The experimental
data from Ref. 3 are also shown in this figure. They are
in reasonable agreement with our calculations. We con-
clude that our calculation reproduces the main features of
the data. It is also seen, however, that some details of the
distribution are not correctly described. Our calculation
gives too high a value for the zero-prong probability and a
slightly too long tail for g, =5. On the other hand, it de-
scribes very well the general tendency of a shrinking of

the distribution. We have checked that these features do
not disappear when one varies the parameters of the clus-
ter decay.

V. CONCLUSIONS

We have analyzed the efT'ects of energy and momentum
conservation on the rapidity dependence of the multiplici-
ty distribution of particles created in high-energy pp col-
lisions.

Our conclusions can be formulated as follows.
(a) As already pointed out in Refs. 6 and 7, the effects

of energy and momentum conservation are very strong,
even at collider energies. They tend to make the KNO
distribution in the larger rapidity intervals shrink
significantly. This feature is qualitatively consistent with
the data of Ref. 3.

(b) A realistic description of particle multiplicities, tak-
ing into account the presence of isotropically decaying
clusters was attempted. Assuming the uncorrected distri-
bution of clusters in the form of a negative binomial with
k =2, it was shown that the combined eA'ects of energy
and momentum conservation and cluster decay provide a
good description of the main features of the data.

(c) Some details of the data are not explained however:
the calculated probability of zero-prong events is con-
sistently too high, except at very small rapidity intervals;
the tail of the calculated distribution is slightly too high
compared to data at large rapidity intervals. We thus
conclude that part of the dynamics is missing in the mod-
el. This is not surprising in view of its simplicity.

(d) The spectra obtained are not sensitive to details of
the cluster decay.

To summarize, it was shown that a realistic model of
bremsstrahlung analogy describes very reasonably the
main features of the data on the multiplicity distribution
as function of the rapidity. The remaining dynamical
problem is therefore the origin of the cluster distribution
in Eq. (1.3) with k =2. This problem remains, however,
unsolved.
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APPENDIX A: EFFECTS OF
ENERGY-MOMENTUM CONSERVATION AT

'gc = +max

2 4 6 8 10
z = n/&n&

FICx. 4. KNO distribution of particles from clusters decaying
into one, two, or three fragments; up=0. Other parameters as in
Fig. 3. The dotted lines are the same as in Fig. 3. g,„=6.3.

1. For fixed A,

We derive the deviation from a Poisson distribution
[i.e., the a~'s from (3.7) and (3.8)] due to energy-
momentum conservation in the case where we consider
the full rapidity interval:
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P.P
gc = ~max

Pl

All information can be obtained from (3.3):

Cg ——g fl)v= e Y I (k+1)
N rn

y =0.5772. . .Euler's constant .

We first create the generating function

G~(x) = = g x~P~,

(A 1)

(A2)

(A3)

tion it is to set, e.g. , all a3 ——u4 —— ——0, especially since
after the integration over A, we will even have the first
k +1 moments correct if we take +k+1 ——aI, +2

——. ——0.
An improvement which is the result of the washing out of
details due to the A, integration.

2. After integration over A,

We calculate the effect on the width of the KNO func-
tion due to energy and momentum conservation, after in-
tegrating over X. This A, averaging will be indicated by
additional angular brackets. We clearly have

Fk =((N(N —1) (N —0+1)))
where the PN s are the normalized multiplicity distribu-
tions = f" )t —Fi, (A)

0
(A8)

dx x =0

and where the factorial moments are given by

FI, (A) = (N(N —1) (N —k + 1) )

Substituting the Fq (A, ) from (A4) we have

((N»= f" q = 2X[Y,„—g'(X)],

(A9)

So, e.g. ,

d 'G) (x)
dx' x=1

(A4)

((N(N —1)»
4/2 P g 2 2/2

0

=e e(N)(x —]j A( (A5)

with

f),(x)=2k(x —1)g(A, + I)+21nl (A, + 1) —21nl (Ax +1) .

A Poisson distribution would have had fq(x)=0, so it
comes as no surprise that we obtain, for the a)'s in (3.7),

(N) =2k,[Y,„—y —P(A, +1)],
d lnl (z)

P(z) = digamma function .
dz

To better see the deviation from a Poisson distribution we
write G), (x) as

'2
2(Y „—y)k(x —)) I (k+ 1)

I (Ax+1)

where

g(k)—=y+(5(A, +1) — y+ ink . (A10)

In an obvious notation we then have, in first approxima-
tion,

((N) ) =(2XY,„—2(Ag) ) 1+0 (g)
~max

(A 1 1)
( (N(N —1) ) ) =(4A. Y,„—8k(kg) Y,„)

X 1+0 (~&
~max

Therefore,

((N(N —1)) )

((N) )' ((N&)

f~(x)I

al —— e
dx' x =1

a0=1, a, =O,

a2 ——(N(N —1))—(N) = —2X p'(X+ I),
a3 = —2A, p"(k+ 1),
a4 ———2A, P"(k+ I )+ 12K [P'(A, + I)], etc. ,

and thus

(A6)

(A7)

g(k) —ink, (k~ oo ) .

We then obviously have

(A13)

(x g)=
da

and, thus,

(X'g)

(A12)
2(~&&(Y )

)
max

In general we will use only functions 1((klk) for which
X —Y,„, so that we can replace g by

If we now break off this summation after the kth term we
will still have the first k moments of the distribution
correct, which gives an idea of how good an approxima- So we obtain, then,

(A14)
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cx = 2

t) in&a )
BA

(A15)

We now specify g~(z) to be of the form (1.3):

t/(z)= e 'z ' for some k &0 .I(k)
We then have

I (ct+k)
r(k)

and, thus,

(A16)

(A17)

Ymax
(A 19)

APPENDIX 8: MULTIPLICITY DISTRIBUTION
OF PARTICLES FROM DECAYING CLUSTER

where 1/Y „is the result of energy-momentum conser-
vation. Equation (A19) is also valid after the decay of the
clusters into particles.

in(k ) — ln(X )
aa , aa

=P(k +2)—P(k +1)= 1

k+1 (A18)

[P is the digamma function of (A4)]. Inserting these re-
sults into (A15) one obtains

Let us denote by Pt, (N, ,N2, . . . , Nt,. ) the probability
for producing N] clusters with rapidity between y1 and
y] +6, N2 clusters with rapidity between yq and y2+ 6,
etc. , where y +~=y +b, In the lim. it 6~0 (k~~),
the probability PI, gives a complete description of the clus-
ter production. Thus information is conveniently surnma-
rized in the form of the generating functional defined as

F[g(q)]:—lim g Pi,. (N~, . . . , Ni, )[g(y~ )] '
[g(yi, )]

Nl, . . . , Xk

(B1)

The distribution of clusters is recovered from F [g(y)] by appropriate functional diff'erentation.
If we now denote by to„(y;t/, ) the probability distribution for n particles which originated from the decay of a cluster

produced at rapidity y to be found in the interval ( —t), , g, ), the distribution of particles in this interval is

P(n)= lim g Pk(N&, . . . , Ni,. )

N . . . V,1' ~' /'
1 kn I

. n&.'
k

1 knl+''n~=n
/.

to i(y~, q, ) to i (y~', t/, ) to «(yt. , g, )
. . to k (yt, g, ) .

1

(B2)

The generating function of this distribution

P(z) =—gP (n)z"

is therefore

(B3)

P(z) = lim
k —+ oc ter y

Pt, (Ni, . . . , Nk)
1nl

l n~
to i(y), t), )z ' . w «(y„,q, )z

' '
ny

Iim g Pi,-(N~, . . . , Nt )[G(y~, g, ;z)] ' . [G(yt, , g„z)]
/ ~oc l~. ~ /

where we have denoted by G (y, q, ;z) the generating function of the distribution to„(y, q, ). Comparing (B4) and (B1) one
sees immediately that

4(z) =F [G (3,9.;z)] (B5)
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