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Predicted properties of Delbriick scattering for photon energies up to 10* MeV
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Using an exact numerical evaluation of the lowest-order Feynman graphs and the impact-factor
approximation of Cheng and Wu for the lowest-order as well as the multiphoton-exchange Feynman
graphs, properties of Delbriick scattering are investigated at energies between 1 and 10* MeV. The
predicted scaling behavior starts showing up above about 100 MeV, i.e., at much higher energies than
previously anticipated. At angles below 30° the amplitudes are predominantly imaginary and are
modified by multiphoton exchange by factors of 2 to 4. At angles above 90° real and imaginary parts
are of the same magnitude at all energies. Discrepancies observed between the predictions of the ex-
act numerical evaluation of the lowest-order Feynman graphs and the impact-factor approximation to
the lowest-order amplitudes make a reinvestigation of computational methods for the Coulomb-

correction effect highly desirable.

I. INTRODUCTION

Delbriick (D) scattering, i.e., the elastic scattering of
photons in the Coulomb field of a nucleus, has been dis-
cussed for several different reasons. (i) For nuclear-
structure studies carried out using the method of photon
scattering, D scattering is a background process which has
to be taken care of in order to arrive at the genuine
nuclear-structure information."? D scattering and elastic
nuclear scattering are coherent processes, with the D-
scattering component being dominant for heavy nuclei
and forward angles. Below 10 MeV D scattering is ob-
served up to scattering angles of 180°, whereas above 100
MeV the intensity is forward-peaked within a few degrees.
(i) From the point of view of quantum electrodynamics
(QED), D scattering offers a clear-cut access to vacuum
polarization in the presence of strong electric fields.>* By
a precise measurement®> of elastic differential cross sec-
tions at the photon energy 2.75 MeV it was possible to
test a single Feynman graph of the order Z2¢°® with an ac-
curacy of 5%. This is the highest accuracy ever achieved
for a Feynman graph of this high order. (iii) Further-
more, D scattering as well as photon splitting may serve
as gauge-invariant tests of the QED electron propagator,
since the D Feynman graphs contain closed electron
loops.6—#

The first reliable calculations of D amplitudes were car-
ried out in the early 1970s. Papatzacos and Mork®© cal-
culated D amplitudes in the lowest-order Born approxi-
mation from the fourth-rank vacuum-polarization tensor
using conventional Feynman techniques and gauge invari-
ance. De Tollis and co-workers'! ~!* have calculated the
fourth-rank vacuum-polarization tensor numerically in
terms of rational, logarithm, and dilogarithm functions
using double dispersion relations. Because of these
efforts, numerical data have been obtained>°~'* for the
lowest-order D amplitudes for energies up to 70 MeV.

Using the impact-factor method, Cheng and Wu!®!7 ar-
rived at imaginary parts of lowest-order D amplitudes,
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valid asymptotically at photon energies much larger than
the electron mass and for fixed nonzero momentum
transfer. By replacing the photon propagator entering
into the formula for the lowest-order amplitude by a
modified expression, the exchange of an arbitrarily large
number of photons with the nucleus, i.e., the Coulomb-
correction effect, was taken into account.

An interesting property of the D amplitudes was dis-
cussed by Cheng, Tsai, and Zhu.'® Calculating the
lowest-order D amplitude without approximations, they
found that for fixed angle 6 the amplitude scales in the
form w~!f(0) as w/m — o, where o is the photon energy
and m the electron mass. In addition, they proved that
this scaling behavior is expected to occur also when the
Coulomb-correction effect is included. As a test they ana-
lyzed'® experimental data in the energy range around 10
MeV and found a strong conflict with the scaling laws.
This conflict has later been partly removed by the present
authors!? by properly disentangling the experimental data
in terms of D amplitudes and nuclear amplitudes.

The present work has been carried out for several
reasons. (i) One aim is to arrive at predictions of D ampli-
tudes at intermediate energies, i.e., between the low-
energy domain below 30 MeV and the high-energy
domain above 1 GeV. Both the low-energy?®?! and the
high-energy* domains were subject to previous investiga-
tions, whereas the intermediate-energy range is largely
unexplored. From a nuclear-physics point of view this
energy range is of special interest for elastic photon-
scattering studies, since information is expected about
pions in complex nuclei’ and about the modification of
the nucleon polarizability due to the nuclear medium,??
which are not available from any other type of investiga-
tion. (ii) Apart from this practical aspect, it is our inten-
tion to arrive at quantitative information about the validi-
ty of the scaling law found by Cheng, Tsai, and Zhu.'®
Up to now it has been known only vaguely at what pho-
ton energies @ the scaling behavior is expected to show

up.
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For the purpose of these investigations the formulas
provided by De Tollis and Pistoni!® and by Cheng and
Wu'!7 have been evaluated by Monte Carlo procedures.

II. NUMERICAL EVALUATION
OF THE LOWEST-ORDER FEYNMAN GRAPH

We use the following conventions for the D amplitudes:

%‘T— (| Ay |24 | 4L | D Za)re® (1a)

T
=(| A,y |2+ | A, | DN Za)re?, (1b)

with a=e?/47 the fine-structure constant (fi=c=1),
ro=e2/4mm the classical electron radius, and Z the
atomic-charge number. The scattering amplitudes A4
for linear polarization are related to the helicity ampli-
tudes A, . _ via

AH:A+++A+_ N (23)
A1:A++—A+, . (23)
In order to extend existing tabulations*>°~!> of lowest-

order D amplitudes to higher energies we evaluated nu-
merically the following expressions derived by De Tollis
and Pistoni:'?

Im 4, .(d,p)

s
1 k2/4 X b '
= [ [T ax [z avteyzidie) )

with k=w/m, 6 the scattering angle, d =k sin(6/2),
p=kcos(6/2), x,=[pt(k?’—4y)"?]>, and b=(1
_ l/y )1/2'

The integrands A4, (x,y,z;d,p) are irrational functions
of their arguments and are given explicitly by De Tollis
and Pistoni.” The integration has been carried out using
a Monte Carlo technique. Appropriate substitutions of
the integration variables as described in Ref. 14 have been
used in order to reduce the region of integration to a unit
cube and to reduce the variance of the calculated integrals
in each iteration step of the Monte Carlo procedure. Typ-
ically, the integration volume was subdivided into 64 sub-
volumes of equal size, and in each of them the integrand
was evaluated at 200 points. Except for very high ener-
gies @, convergence of better than 19% was obtained in
less than 50 iteration steps, corresponding to 1 minute of
CPU time on a Cray-1. All calculations have been per-
formed in 64-bit arithmetic. For high energies w the vari-
ance of the integrals is given by error bars in Figs. 1-7.

The calculations of the real parts of the lowest-order
amplitudes involve the evaluation of a fourfold integral as
described in Refs. 13 and 14. Since these calculations are
very time consuming and since for the cases of our in-
terest the real parts are much smaller than the imaginary
parts, we made no effort to supplement the existing tabu-
lations.

III. NUMERICAL EVALUATION
OF THE HIGH-ENERGY APPROXIMATION

In the limit of high energies w and for fixed nonvanish-
ing momentum transfer A=2w sin6/2 the D amplitudes
can be calculated to all orders in (Za) using the impact-
factor method derived by Cheng and Wu.'*'"" Applying
the convention given by (la) the expression derived by
Cheng and Wu'’ for the D amplitudes can be rewritten as
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FIG. 1. Amplitudes for Delbriick scattering through 6=0.5°
multiplied by w/m. (A) Scattering with helicity flip, (B) scatter-
ing without helicity flip. a imaginary lowest-order amplitude
calculated from the exact evaluation of the lowest-order Feyn-
man graph (3). b imaginary lowest-order amplitude calculated
using the impact-factor method (4) and (6). c—e imaginary
Coulomb-corrected amplitudes calculated for Z=73, 82, 92, re-
spectively, using the impact-factor method (4). f real lowest-
order amplitude calculated from the exact evaluation of the
lowest-order Feynman graph (not shown in Figs. 1 and 4).
Dash-dotted curves indicate high-energy limits (8).
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with f,h being rational functions of their arguments as . ,
given in Ref. 17, and lim SPATZa) ozl TE (6)
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_ As can be seen from (4), the real parts of the D ampli-
gi=1. (5b) A . A o
tudes vanish in this asymptotic limit. The quantities
Equation (4) is valid in the limits @ >>m and A>>m?/w.  (1/w)A,,, are functions of the mometum transfer A only
Contributions to D scattering involving multiphoton ex-  and, therefore, the same is true for
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FIG. 2. Same as in Fig. 1 but for 6=5". FIG. 3. Same as in Fig. 1 but for 6=10".
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In the case of high energies w and small scattering an-
gles 6, ie.,, o >>A>>m or 1>>2sin6/2>>m/w, (4) can
be integrated analytically giving'’

i om | 2 1F3(Za)

A== T3 (Zay

87’ ,,esch(27Za)
—[1-2(Z —_—
oy =2z

F22Za)ImVY' (1 —iZa) (8)

Equation (8) may be replaced!” by a simpler expression in
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FIG. 4. Same as in Fig. 1 but for 6=15".

the limit Za—0. When comparing (4) and (8) with the
corresponding expressions of Ref. 17, consideration has to
be given to the fact that the amplitudes 4, of this paper
are smaller by a factor 1/4 than the corresponding am-
plitudes given by Cheng and Wu.!’

We evaluated the fourfold integral of (4) by a Monte
Carlo technique. This calculation was straightforward ex-
cept for the non-helicity-flip amplitudes A4, ., including
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FIG. 5. Same as in Fig. 1 but for 6=20°.
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the Coulomb-correction effect. As-will be discussed in
more detail in the next section these amplitudes showed
an unexpected oscillatory behavior in the limit of high en-
ergies w. In order to make sure that these oscillations
were not artifacts of the Monte Carlo procedure, different
variable transformations have been applied. The oscilla-
tions were present independent of the special form of the
variable transformation as long as the Monte Carlo pro-
cedure lead to convergence.

IV. RESULTS AND DISCUSSION

The results of the present numerical investigation are
summarized in Figs. 1-9. In Figs. 1-7 the data shown as
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FIG. 6. Same as in Fig. 1 but for 6=30".
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squares and solid circles have been calculated by the
present authors using the impact-factor method of Cheng
and Wu'®" and the exact evaluation of the lowest-order
Feynman graphs as given by De Tollis et al.,' ~'* respec-
tively. Error bars attached to solid circles indicate the nu-
merical accuracy achieved with the Monte Carlo pro-
cedure. The data denoted by crosses have been taken
from the tabulation of Kahane et al.’* Open circles are
results of recent numerical calculations carried out by De
Tollis et al.'* The horizontal dash-dotted curves are
from (8) and represent the impact-factor method in the
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limit @ >>A >>m. The data of Fig. 8 are taken from the
tabulation of Kahane et al.,"’ except for the data at 30,
50, and 70 MeV which were calculated by De Tollis and
co-workers.'* Solid curves are guides for the eye connect-
ing or interpolating between data points.

For the lowest-order amplitudes we find a good agree-
ment between the exact evaluation of the Feynman graphs
(curves a) and the impact-factor method (curves b) for the
very small scattering angle of 6=0.5°. This agreement ex-
tends from the lowest energies of a few MeV to 10* MeV.
With increasing scattering angle 6 the amplitudes ob-
tained from the impact-factor method become increasingly
too large, the deviation from the exact lowest-order result
being larger for the non-helicity-flip amplitude A4, ,
than for the helicity-flip amplitude 4, . Since A4, ,
=1(A4,+A4,) and A, _=1(A4,— A4),), it has to be one of
the first two terms in the square brackets of Eq. (3.8)
given in Ref. 17, i.e., the function f(x,0,z,z;A) in (4)
which contributes the largest part to this discrepancy.

Our findings concerning the properties of Delbriick am-
plitudes may be compared with the premises under which
the different approaches have been obtained. The
impact-factor method of Cheng and Wu!” has been stated
to be valid for

m <<o 9)

and
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FIG. 8. Real and imaginary amplitudes for Delbriick scatter-
ing through 6= 150° multiplied by @/m, calculated from the ex-
act evaluation of the lowest-order Feynman graph.

SCATTERING AMPLITUDES [(aZ)? 1]

2
m—<<A << (10)
w

and breaks down in the limit A—0, a case which has been
treated separately.? The scaling behavior has been stated
to hold in the limits given by (9) and by

m<<A . (11)

Equation (9) does not imply a serious restriction, since
we are considering photon energies above a few MeV. In
agreement with this expectation we do not find any
discrepancy between the lowest-order predictions of
Cheng and Wu!” and De Tollis'!~!* in Fig. 1(a) and only
a small energy-independent difference in Fig. 1(b). The
statement m%/w << A of (10) implies that the photon ener-
gy should be large in comparison with 6 MeV at 6=0.5°,
and large in comparison with 1 MeV at 6> 10°. There is
no indication in Figs. 1-7 that this restriction plays a role
in the validity of the lowest-order predictions of Cheng
and Wu."

The only serious restriction of the validity of the
impact-factor method stems from the inequality A << in
(10). Literally this inequality means that the scattering
angle should be small compared to 60°. However, already
at 0=5"° there is a large discrepancy between the lowest-
order predictions of De Tollis'' ~'* and Cheng and Wu'” in
case of A4, , [Fig. 2(b)], showing that the impact-factor
method is accurate only at angles of one degree or less.

All the data shown in Figs. 1-7 clearly show indica-
tions of the scaling behavior predicted by Cheng, Tsai,
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FIG. 9. Differential cross section for photon scattering calcu-
lated to lowest order. a asymptotic approximation (8) of the
impact-factor method. Solid circles: Impact-factor method (4).
b-f exact evaluation of the lowest-order Feynman graph for
scattering angles of 6=0.5, 5, 15, 30, and 45°, respectively. The
ordinate is valid for Z=92.
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and Zhu.'* Furthermore, for the lowest-order as well as
the Coulomb-corrected data obtained by the impact-factor
method the asymptotic formula (8) depicted by dash-
dotted lines seems to correctly represent the high-energy
limit. In case of the non-helicity-flip amplitudes 4 , | the
Coulomb-corrected data perform oscillations around the
high-energy limits with amplitudes of the order of 109% or
less. We do not believe that these oscillations are due to
the Monte Carlo evaluation of the impact-factor method,
because different weightings of the integration intervals
lead to the same numerical results (see Sec. III).

Equation (11) may be used to predict lower limits for
the photon energy above which the scaling behavior
should show up. These lower limits are 60, 6, and 3 MeV
for the scattering angles 0.5°, 5°, and 10°, respectively.
For larger angles this lower-energy limit is 1 MeV or less.
In Figs. 1-8 the scaling behavior shows up at much
higher energies of the order of several hundred MeV for
the lowest-order amplitude and between 10 and 100 MeV
for the Coulomb-corrected amplitudes. The tendency of
the data shown in Figs. 1-8 is that the lower-energy limit
for the validity of the scaling behavior is shifted down
with increasing scattering angle. At 6=150° (Fig. 8) even
the lowest-order amplitudes start scaling already well
below 100 MeV. This tendency is in agreement with our
former empirical findings."

The impact-factor method provided us with information
only for the imaginary amplitude. Indeed, at scattering
angles 6 < 20° the real amplitudes shown in Figs. 1-5 are

always much smaller than the imaginary amplitudes. At
larger angles the relative size of real parts increases and
becomes equal to that of the imaginary parts at 6=150°
(Fig. 8).

Figure 9 shows  differential cross  sections
do /dt=(7/w*)do /dQ) for Delbriick scattering calculat-
ed in lowest order. The impact-factor method!®!” pre-
dicts that do/dt=(m/w*)(do/dQ) depends on the
momentum transfer A as the only parameter. The pur-
pose of Fig. 9 is to explore to what extend this prediction
is retained in the exact evaluation of the lowest-order
Feynman graph.”~'* By comparing curve b with the full
circles, we see that at 6=0.5° the exact evaluation of the
Feynman graph approaches the predictions of the
impact-factor method. This was known already from Fig.
1. However, the cross sections for larger angles, as de-
picted by curves c—f, show increasing deviations from
curve b, especially for small momentum transfer. There-
fore, do /dt is found to depend on @ and O separately, a
property which may be of importance in the analysis of
experimental data.
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