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The features of soliton-antisoliton (fermion-antifermion) pair creation due to instantaneous uni-
form external electric fields are investigated in the sine-Gordon (massive Thirring) theory. Under
the coherent-state approximation of soliton states improved via the generator-coordinate method,
it is found that the momentum spectra of solitons and antisolitons have a peak structure, some of
whose qualitative properties are quite reminiscent of those of the electron and positron peaks
found in recent heavy-ion collision experiments at Gesellschaft fur Schwerionenforschung
Darmstadt.

In a previous paper ' we pointed out the possibility that
the peak structure in positron and electron energy spec-
tra observed in heavy-ion collision experiments at
Gesellschaft fiir Schwerionenforschung Darmstadt (GSI)
is attributable to a nonperturbative mechanism of strong-
field QED. In order to analyze such a question we have
proposed, in Ref. 1, a framework of nonperturbative
QED, the bosonized lowest-partial-wave QED. It is the
quantum field theory of j=

2 electrons and j=0 elec-
tromagnetic fields, first written in a form of two-
dimensional fermion theory, and then converted into a bo-
son theory via the bosonization technique. Far away from
the external source (which mimics the effect of heavy
ions) the theory simply reduces to the sine-Gordon theory.
Thus, the electrons are essentially the sine-Gordon soli-
tons in our theory.

In this Rapid Communication we discuss the problem
of soliton-antisoliton pair creation due to the rapidly
time-varying external source in the sine-Gordon theory.
Of course it does not directly address the same question in
bosonized QED because of the difference of our theory
from the sine-Gordon system, which reflects the original
three-dimensional topology of the system. Nevertheless, it
is of interest because the developed formalism here is
applicable, after suitable modification, to bosonized QED.
Furthermore, as we will see later, we obtain important in-
formation concerning the nature of soliton-antisoliton pair
creation. In particular, we will find a peak structure in
momentum spectra of solitons and antisolitons, whose po-
sition moves very slowly with the strength Z of the exter-

nal electric field, i.e., ~Z'. These features of the soliton-
antisoliton pair creation are reminiscent of those observed
in GSI experiments.

We are particularly interested in the rapidly changing
external source rather than the adiabatic one. This is be-
cause the experimental feature of the peak structure in
positron and electron energy spectra, if it is the matter of
the strong-field QED, definitely favors the hierarchy of
the time scales, ~creation)~ &co))ision as discussed in Ref. 1.
Therefore, we investigate in this paper the features of
electron-positron pair creation in the instantaneous ap-
proximation, namely, in the limiting situation where the
source has a 6-function-like time dependence. We, how-
ever, start with a more general formalism.

We consider the sine-Gordon theory coupled with an
external source described by the Lagrangian

X=-,' (l) y)'+ cos y
—

1 +J(x)y(x).
m' Jx

m

The particular manner in which the external source cou-
ples with the sine-Gordon field in (1), though standard,
requires comment. From our original motivation we are
interested in the massive Thirring model, the equivalent
fermion theory of the sine-Gordon model, in an external
electric field. After the bosonization this system reduces
to (1), including the coupling with the external source.

We concentrate on evaluating

T=o (Pi P2lslo)l(ols lo),
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where S denotes the S matrix

S -exp i—„' d'x J(x)y(x) (3)

the canonical conjugate of p. Then the one-soliton state
with momentum P is taken as (with p» being the classical
kink solution)

of the external-source problem and
~ Pi, Pz&,„, represents

the asymptotic out state of a soliton-antisoliton pair with
momenta Pi and Pi, respectively. We note that by drop-
ping the time ordering in (3) we merely change the unob-
servable phase of the S matrix. We will return to the
meaning of the denominator in (2) in our later discus-
sions.

Then our whole problem is to determine the asymptotic
out state of a soliton-antisoliton pair. In this paper, we
rely on the coherent-state approximation of soiiton states,
improved via the generator-coordinate method.

We quantize the system (1) by imposing the canonical
equal-time comtnutation relation between p(x) and x(x),

I

( P&, -C(P)„dxe'~"
~ y»(x)&,

which is the superposition of the coherent state

(4)

I e»(xi)&-exp i„dx PK(x xi) K(O, X) I O&, (5)

~
C(P)

~
-„dtexp[itP+F(t)],

where F(t) is defined as

localized at x -xi. In (4) C(P) denotes the state normal-
ization constant determined so that (P )

P'& 2mb(P
pt).

F(xi —x2) ——'
~ dx dy [p»(x —xi) —P»(x —x2)]b„+ (x —y) [P»(y —xi) —P»(y —xq)],

and

At+ ( —y) [ + (t, ), (t,y)]
p +OO

4~~-- dI I 0 ik(x —y)

a(k) -„dxe '""[k'y(o,x)+i'(O, x)l .

We note that the state (5) minimizes the expectation
value of the Hamiltonian normal ordered with respect to
the annihilation operator:

I

Since (4) gives an approximate eigenstate of the total
Hamiltonian, it can be regarded as the asymptotic state.
In fact, it can be shown that (4) gives a better approxima-
tion than (5) (in the sense of variational method) to the
eigenstate of the Hamiltonian as we will see later.

To construct the antisoliton state
~
P&, we exploit the

charge-conjugation operator of the original fermionic
variable. After translation into the Bose variable, it leads
to the transformation property C x(x )C ' —x(x ).
Therefore we just take —p» instead of p» in (5) to con-
struct the antisoliton state.

Now our asymptotic out state is constructed as

p +OO

( P, ,P,& -C(P, )C(P, )„
r

dxidx2e' '"'+ ' 'exp i dx—[y»(x —xi) —y»(x —xp)]tr(O, x) ~O&, (lo)

which describes an uncorrelated soliton-antisoliton pair with momenta Pi and P2, respectively. Given the out state, it is
straightforward to calculate the pair-creation amplitude T with the result

—i (P I X I +P2X2) +F(X I
—X2)T-C(Pi)c(Pz)„dxi dx2e

xexp ~ dtdxdy[p»(x —xi) —p»(x —x2)]J(t,y)[n + (O,x),p (t,y)]

J(t,x) -b(t)Z . (12)

Under the instantaneous approximation we can calculate
the commutator appearing in the second exponential in
(11)using the fact that

[x'+'(O, x),y' '(O, y)] - ——b(x —y) .

One may suspect that taking the peak position at t =0
in (12) is artificial and may ask what happens if we take it

where the function F(t) is defined in (7). The super-
scripts (+) and ( —) appearing in (11) imply the positive-
and negative-frequency parts, respectively.

We introduce the instantaneous approximation of the
source and also assume it uniform based on the physical
picture mentioned before. Namely, we take

I

to be peaked at t to. But it is easy to observe that, from
the original expression (2) with the S matrix (3), the
change of the peak position merely aff'ects the unobserv-
able phase of the pair-creation amplitude, as expected
from physical intuition.

Let us analyze the soliton-antisoliton pair creation de-
scribed by (11) with (12). First of all, one should note
that under the uniform source (12) the produced solitons
and the antisolitons have identical momentum distribu-
tions. It is obvious from the expression of (11) that we
have a b function b(Pi+P2) under (12) because the rest
of the integrand in (11) depends only on xi —x2. There-
fore, the identity of the soliton and the antisoliton energy
spectra is the general consequence of the uniformity of the
source, independent of the detail of the production mecha-
01sm.



654 YUMI HIRATA AND HISAKAZU MINAKATA

Let us now enter into the question of the shape of the
momentum spectra. To gain qualitative insight we first
work with approximations

yx. (x) = e(x),2%m (i3a)

a.'+'(x) =—b(x), (i3b)

where 8(x) denotes the step function. Equation (13b) im-

plies the replacement of Jk +m by m in (8). These ap-
proximations are only meant to be an attempt to grasp the
gross features of the soliton-antisoliton pair creation. We
will return to the problem of the accuracy of these approx-
imations in later discussions.

Under the approximations (13) we obtain an analytic
expression of T:

T =2rr8(P)+P2)

2 3K I
I

2 3

+ Z
2

(14)

That is, we have a peak structure in momentum spectra of
the soliton and the antisoliton, which are identical to each

I

y (x) = [e(x) ——'e(x)e (is)

where e(x) = +' 1 for x~&0. The parameters of the second
term are determined so that the first derivative of the kink
solution at x =0 coincides with that of the exact solution,
px. (0) =2m /JK. We employ the approximate form (14)
rather than the exact solution itself because the latter does
not have a manageable Fourier transform.

Under (14) the function F(t) defined in (7) allows a
simple form of momentum representation

other. The peak position moves with the strength Z of the
external electric field as ~Z'. The width of the peak is
not, however, particularly narrow. It is of the order of the
soliton mass, in accord with our physical intuition. (Re-
call that the classical soliton mass formula gives
md =8m '/X. )

We now turn to a more accurate numerical analysis of
(11), without recourse to the approximations (13). In
fact, a close examination of (11) indicates the necessity of
an improved form of the soliton profile because the in-
tegral in (7), without using (13b), has an ultraviolet
divergence, which is the artifact of the infinite slope of the
soliton profile in (13a).

To overcome such a problem, we improve the soliton
profile (13a) by adding the correction term

( )
zm 2m2

z

4 ~ + oo

dq (1 cosqt )— gp

q q
2m

' 2 2

which is usable in numerical computation.
In our numerical anal sis we concentrate on the case of

the strong coupling, k/m =2', which corresponds to
the bosonized QED. ' In Fig. 1 we plot the momentum
dependence of the pair creation amplitude at Z =2.5m, ~,

whose square is proportional to the soliton production
cross section. The result (14) with the approximation
(13) is also plotted.

Instead of presenting similar plots for different value of
Z, we show in Fig. 2 the Z dependence of the peak posi-
tion and the width in units of the classical soliton mass.
Here the peak width refers to the full width at half max-
imum of the amplitude squared. We can observe from
these figures that Z' dependence of the peak position is
well reproduced already at relatively small Z, but with
more gentle slope than the asymptotic value predicted by
the approximate result (14). On the other hand, the ap-
proximate result (14) gives rather poor estimations for the
height and the width of the peak. Roughly speaking, how-
ever, the latter is of the order of the soliton mass.

The simultaneous presence of the peak structure in the
soliton and the antisoliton momentum spectra and the
weak Z dependence of the peak positions are welcome to
our interpretation of the peak structure in GSI experi-
ments as the effect of strong-field QED. The peak width
expected from our calculation, however, is not particularly
narrow, and clearly is insufficient to explain the "line"
structure observed experimentally.

Does T squared really imply the production probability
of soliton and antisoliton? The answer is no, because it is
(P~P2~S~0) squared not T squared that measures the
probability. For our choice of the uniform external
field, however, the denominator in (2) has a form
exp( ZL/4m ), with —L being the size of the one-
dimensional world, and becoming vanishingly small as
L ~. Therefore the exclusive probability for the
creation of one soliton pair vanishes in our case. This
should not come as a surprise, because the unitarity dic-
tates that each exclusive probability goes to zero if the
average number of the pair increases as the size of our
world grows. Despite vanishing absolute probability, our
investigation of the properties of the soliton-antisoliton
pair creation is meaningful since it reveals interesting
features of the system, once they are created, due to the
nonperturbative production mechanism.

In this paper we have discussed the property of soliton-
antisoliton (which mimics e+e ) pair creation due to the
rapidly changing external electric fields. We have demon-
strated that the mechanism exists which is responsible for
fermion-antifermion pair creation with qualitative
features reminiscent of the peak structure in GSI experi-
ments. Of course we have dealt with a related but
different model from bosonized QED, and the obtained
peak width is not sufficiently narrow. But we believe that
our result opens the possibility of explaining the anoma-
lous peak structure in e+e spectra, as the eA'ects of non-
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FIG. 2. The numerically calculated results of source depen-
dences of the peak position (O) and the width of the peak (e)
are plotted in units of m, ~, the classical soliton mass. The Z
dependence of the peak position is shown to be well approximat-
ed by the straight line 0.36Z+2.31. The same quantities ob-
tained by using the approximation (13) are also plotted; the
dashed line for peak position and the dash-dotted line for the
width. All the dimensionful quantities are measured in units of
mcus.

FIG. 1. The momentum dependence of the soliton (or antisol-
iton) production amplitude at Z 2.5m, ~ is plotted (solid line).
The momentum is measured in units of m, ~, the classical soliton
mass. The same quantity multiplied by 5 computed by the ap-
proximation (13) is also plotted (dashed line). The amplitudes,
not amplitudes squared, are presented for ease of drawing the
figure.

perturbative QED in the strong field, in supporting the
suggestion given in Ref. l.

Finally some comments are in order.
(1) What is the essential difference between our ap-

proach and the old QED approach to the spontaneous
positron creation in the strong field? It is simply the fact
that they are working with the diA'erent hierarchy of the
time scales. Namely, while the old approach was dealing
with the situation i„„t,,„&&r„~~;„,„where the adiabatic
approximation holds, we have examined the case with op-
posite hierarchy.

(2) We have not addressed the question of how good
the coherent-state approximation is improved via the
generator-coordinate method. Concerning the soliton
mass, this method with the Gaussian approximations and
(13b) gives the correction to the classical mass formula,
m, -rrt, ~

——,
'

m, which should be compared with
—(I/tr)m, the result of exact one-loop computation.
While this result is encouraging, we certainly need better
ways of testing our approximations used in this paper.

(3) To deal with bosonized QED we have to take into
account other factors which come from the original
three-dimensional topology of the system. Work toward
this direction is in progress.

One of the authors (Y.H. ) is grateful to A. Hosaka,
K. Harada, and H. Kubota for useful conversations. She
expresses gratitude to Soryushi Shogakukai for financial
support. Numerical computation was carried out at the
Institute for Nuclear Study, University of Tokyo, and at
Tokyo Metropolitan University.

'Y. Hirata and H. Minakata, Phys. Rev. D 34, 2493 (1986).
~T. Cowan et al. , Phys. Rev. Lett. 54, 1761 (1985); H. Tsertos

et al. , Phys. Lett. 1628, 273 (1985).
iT. Cowan et al. , Phys. Rev. Lett. 56, 444 (1986).
4S. Coleman, Phys. Rev. D 11, 2088 (1975).
5C. Itzykson and J.-B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980).
K. Cahill, Phys. Lett. 538, 174 (1974).

7W. Greiner, B. Muller, and 3. Rafelski, Quantum Electro-
dynamics ofStrong Fields (Springer, Berlin, 1985).

SR. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 11,
3424 (1975).


