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It has been pointed out that a simple quantum-mechanical system, involving a charged particle
moving in a uniform magnetic field, can exhibit what looks like an anomaly. This note analyzes the
problem, and shows that in such cases the anomaly is (in some sense) already present at the classical

level.

A couple of years ago, Manton' described a curious
kind of anomaly which occurs in a simple quantum-
mechanical system, namely, that of a charged particle
moving on a flat two-dimensional torus in a constant
background magnetic field. He pointed out that there is a
translation (momentum) operator P which commutes with
the Hamiltonian, but whose expectation value is not con-
served. One way? of seeing why Ehrenfest’s theorem is
side-stepped in this example is to observe that the opera-
tor P does not preserve the domain on which the Hamil-
tonian H is Hermitian. The Schrodinger equation implies
that

%(P):i([H,P]Hi((H*_H)P) .

Even though [H,P]=0, and H'=H when acting on a
“physical state” i, the state Py is not physical, and
((H"—H)P) is nonzero. So d{P)/dt does not vanish.

The purpose of this note is to examine this type of sys-
tem in somewhat greater generality: namely, we look at a
charged particle moving on some manifold M, in a back-
ground magnetic field that is not necessarily uniform. It
turns out that if there is a classical constant of motion
which is well defined, then the corresponding quantum
quantity is also conserved. In other words, in the exam-
plel referred to above, the classical constant of motion is
already ill defined, and so this is not really an example of
‘an anomaly in the usual sense of word. But, of course, it
remains relevant to the anomalous field theory (the
Schwinger model) discussed in Ref. 1.

Consider a charged scalar particle moving on a mani-
fold M, in the presence of a magnetic field. This means
that we have a complex line bundle L over M, and the
Hilbert space of wave functions is the space # of square-
integrable sections of L. On L there is a connection Dj,
which locally (with a choice of gauge) can be written?

36

D;=0;+iA;. The magnetic field is Fjx = —i[D;,Dy].

Let v/ be a vector field on M. The magnetic field is in-
variant under motion along v’ if its Lie derivative* £, F ik
vanishes. Since we have

L,Fj=3;(0'Fy) =3 w'Fy) , (1
this invariance condition can also be written
vIFj = —0x V¥ ()

for some scalar function ¥ (see Ref. 4, Eq. 1.7). However
(and this is a crucial point), the vanishing of the expres-
sion (1) only guarantees that W exists locally on M; as we
shall see later, it may not exist globally.

Assuming for the time being that WV does exist globally,
we know* that it appears in the constant of motion associ-
ated with the symmetry v’/. Let us first recall what this
looks like at the classical level. We have to introduce a
metric gj on M, with associated connection V;, and we
have to assume that v/ is a Killing vector:

VjUk+Vkvj=O N (3)

i.e., v/ is a symmetry of gjx as well as of the magnetic
field. The classical equations of motion are

XI=F/xk (4)
and the constant of motion is x jvj +W. Proof:
d

Z(X jUj):ijj—l—)'Cj)'c "Vkvj

=Fjx */4+0 using (3) and (4)

=—% %3, ¥ by (2)

d
——dt\p'
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We now want to extend this structure to the quantum-
mechanical level. In order to do so, one has to “lift” the
vector field v/ to a Hermitian operator ¥ on the Hilbert
space 7f, compatible with the connection D;. The lifting
condition is that ¥ should have the form

V=i'D;+f, (5)
where f is a real-valued function on M. The compatibility
condition is

[D;,V]1=i(V;v")D; (6)

(acting on scalars). The significance of (6) is that it im-
plies that ¥V commutes with the Hamiltonian
H= —%gf"DjDk. Proof: acting on a scalar, the commu-
tator is’

—2[H,V]=D/[D;,V]+[D;, VD’
=iD/(V,;v*)Dy +i(V;v*)Dy D/
—iRxv/D¥, using (6)
=i(Av*)Dy +i (Viv*)(D; Dy 4 Dy D;)— iR jxv’D*
=0 using (3) .
In fact, the conditions (5) and (6) imply that
v¥Fyy=—9,f ,

which is the same as (2), with f=.

To sum up, if v/ is a Killing vector, and the magnetic
field Fj; satisfies (2) for some globally defined scalar W,
then the corresponding operator V' commutes with the
Hamiltonian, and its expectation value is constant in time.
The point is that ¥ maps physical states (i.e., elements of
F£) to physical states, and so the kind of problem referred
to at the beginning does not occur in this case. On the
other hand, if ¥ is not globally well defined, then a prob-
lem can occur (see example 2 below).

Example 1. The Dirac monopole. Here the magnetic
field on M =R?— {0}, namely

Fy=qr %ejux' (g =const) ,
is spherically symmetric. So take v’ to be a rotation:
v/=é*x, 0, (w;=const) .

Then (2) is satisfied, with

V=gr 'o;x’ .

Since V¥ is well defined on M, no problems arise: angular
momentum is conserved both classically and quantum
mechanically.

Example 2. Constant magnetic field on a flat torus.
Suppose each coordinate x/ is periodic: this defines a flat
torus M (the number of dimensions is irrelevant, although
the original example! was in two dimensions). Choose v’
to be constant, and Fj; to be constant (and nonzero).
Then (2) holds, with

\I/=—ijvjxk . (7)

But this is not periodic, and therefore not well defined on
M. So the classical “constant of motion” x /v; +W¥ is not
single valued (or, alternatively, not continuous). And the
operator ¥ on # does not exist at all; or to put it another
way, the operator iv/D; +¥ maps elements of # to things
that are not in #. The generalized momentum is not
conserved either classically or quantum mechanically.

In a case such as example 2, the problem occurs be-
cause M is not simply connected. Conversely, if M is sim-
ply connected, then W is always globally defined. Of
course, it has been known for a long time that novel
features can arise when configuration space is not simply
connected; in particular, for example, one can get a 6-
vacuum structure.

I am grateful to N. S. Manton for correspondence in
connection with these matters.

IN. S. Manton, Ann. Phys. (N.Y.) 159, 220 (1985).

2J. G. Esteve, Phys. Rev. D 34, 674 (1986).

3The indices j, k, J,. .. are spatial indices, referring to local coor-
dinates on M. Units are chosen so that c=fi=e=m =1.

4R. Jackiw and N. S. Manton, Ann. Phys. (N.Y.) 127, 257

(1980).

5The curvature conventions are [V j,Vk]é-l:R jkm ’§’" and
Rjx=R;x'. If v/ is a Killing vector, then Av/=R;/v*, where
A=V;V;.



