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Dyon solutions in the temporal gauge
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Using a new non-Abelian gauge field tensor, the Yang-Mills field equations are solved asymptoti-
cally to show that spontaneous breaking of SU(2) symmetry by the Higgs-triplet field leads to the
dyon solutions in the temporal gauge as well.

It is well known that the gauge theories in which the
electromagnetic group U(1) is taken to be a subgroup of a
larger group such as SU(2) magnetic monopoles can be
created as regular solutions of field equations. ' As an ex-
tension of such theories, Julia and Zee showed that a
non-Abelian gauge theory with Higgs fields exhibits classi-
cal solutions that are both electrically and magnetically
charged. Enlarging the gauge group, finite-energy mono-
pole and dyon solutions have also been found in an SU(3)
gauge theory. In all such theories, the monopoles ap-
pear as the static solutions of the field equations in the
temporal gauge, while dyons correspond to the static solu-
tions in the nontemporal gauge. No dyon solutions to our
knowledge are known in the temporal gauge. We show in
the present paper that the static dyon solutions may also
be obtained in the temporal gauge, if a new non-Abelian
field tensor is used and the spontaneous breaking of the
SU(2) symmetry by the triplet of Higgs fields is con-
sidered.

We consider first a pure triplet scalar Higgs-field system
for which the Lagrangian density may be given by

under the gauge transformations (5), we introduce the vec-
tor gauge fields A„' and B„' to form the gauge-covariant
derivatives

and

y)a (a gac+ gebcg b )yc (6a)

(D„'y)'=(a &"+ge 'B )y' (6b)

(D„P)'~U(D„P)' (7a)

(D„'P)'~ U(D„'P)' (7b)

provided the gauge vector fields A & and B„' transform as

A„UA„U ' ——(a„U)U
1

e
(Ba)

where e and g are two coupling constants, which couple P
with the gauge fields A„' and B„', respectively, in order to
restore the gauge invariance of the Lagrangian density (1).
With such an arrangement we observe that the covariant
derivatives (D„P)' and (D„'P)' transform like Eq. (5): i.e.,

where V(P') describes the self-interaction of the scalar
field and has the form

and

B„UB„U ' ——(a„U)U
1

(Sb)
V(P') = (P'P' f')'— — (2)

in which k and f are real constants with A, «1 and P'
denote the Higgs-triplet fields. Now let us introduce a
gauge function

Now, in order to make the gauge fields true dynamical
variables we need to add a term to the Lagrangian density
(1) involving their derivatives, then the Lagrangian density
becomes

U= exp[ i A'(x) T'], — (3) ,' [(D„P)'(D"P)'+(D—„'P)'(D'&P)']

where A'(x) are real functions of space-time and T'
represent the group generators of gauge group SU(2) obey-
ing

—V(P') —,'F„'~"'—
in which the gauge field tensor F„' acquires the form

[Ta ? b] t+bcTc (4)

in which e' ' are the structure constants of the gauge
group SU(2) with a, b, c running from 1 to 3. Under the
gauge functions of SU(2) gauge transformations, the scalar
fields P transform as

(5)

Since the Lagrangian density (1) is not gauge invariant

(apB (ra aoBpa+gf abcBpbB ) (10)

where 6& z is a completely antisymmetric field tensor
with p, v, p, o running from 0 to 3. The field tensor F„'
transforms under the gauge functions (3) as

Fq ~UFp U
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and the Lagrangian density (9) is gauge invariant under
the transformations (7) and (11).

The Euler-Lagrange variation of the Lagrangian density
(9) with respect to the potentials A„' and B„' give the fol-
lowing field equations, respectively:

Using Eq. (17) these terms may be written as

2+2 me(A'A"' —A A~)= ' (A'A"'+A'A" )P P 2 P P

(19a)

and

FPv )a e &abcyb( D Py )c

Fp~)a g&abcctb(D'py)c

(12a) and

(12b)

2+2 Plg
(B B" BB—")= (B 'B"'+B B" ) (19b)P P 2 P P

where

P~ 2 PP (13)

(14)

The energy of the system may be calculated from La-
grangian density (9) as

6'=
—,
' f d x Fp;Fp;+FggFJ'b+(Dpp)'(Dpp)'

+ (D; y)'(D; y)'+ (D py)'(D py)'

is the dual of field tensor F„' . The Euler-Lagrange varia-
tion of the Lagrangian density (9) with respect to P gives
the equation

We see from Eq. (19) that the two components A„', A„
and B&, B„acquire the masses m, =ef and mz gf wit——h
the charges +e and +g, respectively, while third com-
ponents A„and B„remain massless. Thus, the quan-
tized spectrum of spontaneously broken SU(2) theory con-
tains two charged massive vector bosons of charges +e
and +g with the masses ef and gf and a y photon associ-
ated with the gauge fields A„' and B„', respectively, and
also separates out the electromagnetic fields from the
three-vector potentials A ~ and B„' of SU(2) gauge group.

It may also be observed that the scalar fields P must
have at least one zero' and this /=0 may be taken as the
origin of coordinates. The field configurations, which
have finite energy and satisfy field equations (12), may
now be obtained. This may be achieved by introducing
the following boundary conditions:

(20)
+ (D P)'(D P)'+ (P'P' f—')'—22 (15)

FOFqp ~ 0,
/x/~mo

(21)

from which we may readily observe that the minimum of
energy may be obtained by setting and

and

Fo; ——F)g ——0,
0 I

'=f'
(16a)

(16b)

(D„P)',(D„'P)' (22)

for the finite energy (15). The conditions (20) allow us to
write

(D„P)'=(D„'P)'=0; (16c) c)„QXQ—ep A„+ea„/=0 (23a)

i.e., the lowest-energy state is obtained at
~ P ~

=+f.
From Eq. (16b), we may also write P =+fn, where n is a
unit vector in the SU(2) gauge group space. This expres-
sion shows that three component P has reduced to one
component along the unit vector n and thus loses its two
components. We choose the unit vector n along the third
direction in the SU(2) group space, i.e., ct =(0,0,f), such
that

and

where

a„yx4 gy'B„+gp„4—=0, (23b)

(24a)

(24b)

and show that A„.n, B„n, and F„n behave like elec-
tromagnetic potentials and fields while Az)& n and Bz)& n
become massive having masses ef and gf, respectively.
For this purpose we consider the terms containing
and P as well as B& and ct in the Lagrangian density (8).
Such terms are

2

[(A„p)( A "p) (pp)( A„A")] e(d—„/X') A" (18—a)

and

and

P.B„p„=

Thus from Eqs. (23) we have

A„=,(c)„QXQ)+ a„p—1 1

ef
and

(24c)

(25a)

(25b)

[(B„p)(B"p) —(pp)(B„B")]—g(c)„QX (h)B" . (18b)
Now using Eqs. (25) in Eq. (10), we may obtain the gauge
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field tensor F„as

F„.=j [a„~.—a~„—,'s„„.(a~p —a p~)]

', (a„yx ay) — ', s„...(a~yx a.y)ef' " 2gf' "'

(30b)
Xb~ia iab8

where e""~a&b and the corresponding values of elec-
tric [Eq. (27)] and magnetic [Eq. (28)] fields may be calcu-
lated as

(26)
E- (31)

where P =/If. It may be noted that the field strength
(26) is parallel to the field P and that [(P F„„)/fI is
gauge invariant. The first part of field tensor (26), i.e., the
terms contained in the small square brackets, resembles
the Cabibbo-Ferrari field tensor for the system of both
the electric and magnetic charges in Abelian gauge theory
and may be decoupled by setting a„=O=P„. Now, work-
ing in the temporal gauge Ao ——0=80 to get the static
field p, i.e., a+=0, we obtain the electric and magnetic
field strengths from Eq. (26) as

and

, e;, (a,pxa p)2gf' '

F,k =—,e;, (a, pX ai, p) .
2ef

(27)

(28)

and

b

g ia iab

e /x/
(30a)

It may be noted from Eqs. (27) that electric field does not
vanish. The fields P in Eqs. (25), (27), and (28), satisfy the
boundary conditions (20) at infinity and vanish at origin,
may be used to set

(29)

for which the asymptotic forms of the solutions (23) may
be obtained as

and

H-—
e/x/'

(32)

respectively. The electric field given by Eq. (31) may be
regarded as the field of electric charge of strength 1/g
while Eq. (32) gives the magnetic field of a magnetic
monopole of strength 1/e. Thus our solutions given by
Eqs. (31) and (32) describe a dyon without sources and
behave properly at infinity and origin, as the origin of
coordinates is at /=0. The fields A, B, and P' are reg-
ular everywhere for the finite-energy solutions to the field
equations (12) and (14) with the boundary condition (29).
A complete view of energy density (15) shows that it is
strongly localized near the origin as the fields P vanish
there, which may be considered the position of dyon.

Thus we may observe that, contrary to the nontemporal
gauge conditions and usual gauge field tensor, the dyon
solutions are also possible in the temporal gauge with a
new non-Abelian gauge field tensor. These solutions ac-
quire significance in the sense that the possible existence
of both electric and magnetic charges on a particle is pre-
dicted and that this possibility may be extended to consid-
er the electric and magnetic sources in non-Abelian
gauge theories which may well be described in terms of
the new non-Abelian field tensor [Eq. (10)] that finds its
construction in the lines of the Cabibbo-Ferrari Abelian
field tensor.
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