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We propose an exact, factorized, S matrix for the two-dimensional supersymmetric CP ' model,
which is compatible with the 1/X expansion. We find that antiparticles are bound states of N —1

particles.

The CP ' model and its supersymmetric version
(SUSY CP ' model) has been the subject of several stud-
ies, ' which recently focused on finite-temperature effects.
As is well known, the classically integrable CP ' model
exhibits an anomaly in its quantum version, preventing
its integrability. The determination of its zero-
temperature spectrum is thus an open problem.

Yet in the SUSY CP ' model there occurs a cancella-
tion of anomalies allowing its quantum integrability. In

this paper we verify the expectation that the exact spec-
trum and two-body S matrix can be computed. Our cal-
culations, relying on the Yang-Baxter factorization condi-
tions and 1/N expansions, should provide a firmer
ground for the study of finite-temperature effects in this
model.

The 1/N Feynman rules of this model were obtained in
Ref. 1 where we refer the reader. To establish some nota-
tion we will write the defining functional integral:
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Using these rules one observes that all particle-antiparticle reflection amplitudes vanish in order 1/N and the absence
of particle production to order 1/N . Thus in constructing the exact S matrix one will, as in the chiral Gross-Neveu
model, start with vanishing reflection amplitudes from the very beginning. Transmission amplitudes are now defined
introducing the symbols b (0; ) [b (0; )] and f (8; ) [f (0; )] to denote bosons [antibosons] and fermions [antifermions],
respectively, where the variables 0; are related to energy-momentum by Po ——m coshO', P t,

——m sinhO;, and
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It is straightforward to get the following amplitudes with
the 1/N Feynman rules:
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The computation of the transmission amplitudes ci(8)
and ui(8) present a problem yielding the indeterminate
form 0/0. This arises from the singular behavior of the
mixed A„-n. propagator at zero momentum transfer. We
circumvent this problem by inserting an infinitesimal
momentum transfer 5 at one vertex, making use of the
identity
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and finally letting 5 go to zero. With this prescription we
get

Let us now discuss some interesting properties of the
solution (la)—(le}. The pole contained in ci(8) generates
the spectrum
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The calculation of exact scattering amplitudes from the
bootstrap approach was done and reviewed many times
so we will limit ourselves to stating the result. Paying at-
tention to signs due to statistics and fixing two free pa-
rarneters by comparison with the 1/N perturbative ex-
pressions one gets the exact amplitudes (A, =2/N)
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In particular we have m~ i
——m. The fact that the bound

state of N —1 particles has the same mass as the original
particles is one ingredient in the proof that the symmetry
of our solution (la)—(le) is SU(N). In fact there are two
bound states of (N —1) particles with mass m in the N
channel and one verifies that they have identical scatter-
ing amplitudes to the original antiparticles b and f. This
entails the following identification of antiparticles with
bound states of (N —1) particles: the antiboson is identi-
fied with the bound state of (N —1) fermions and the an-
tifermion is the bound state of (N —2) fermions with one
boson. Symbolically we may write
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This implies that our fundamental particles obey general-
ized statistics, which should be treated as in Ref. 7.

For N =2, Eqs. (la)—(le) prevent the existence of the
elementary O(3) triplet in the supersymmetric nonlinear tr
model. This is also signalized by the vanishing of the
(would-be) fermion-boson reflection amplitude in the O(3)
case. Hence we expect the O(3) spectruin to consist only
of SU(2) kinks with scattering amplitudes given by Eqs.
(la)—(le).
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