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Gravitational acceleration of relativistic particles at finite temperature
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Starting from the explicit expression of a generalized energy-momentum tensor, representing the
effective source of gravity at finite temperature, it is shown that, in the case of a weak, static field
and in the low-temperature limit, the thermal corrections to the gravitational acceleration of a rela-
tivistic test particle do not depend on its kinetic energy, and that the only effect is a constant, mass-
dependent shift of the gravitational to inertial mass ratio, just as in the case, previously discussed, of
nonrelativistic test bodies.

It has been recently demonstrated' that at finite tem-
perature the gravitational and inertial masses are not the
same. The motion of a test body is not geodesic, and the
principle of equivalence is no longer satisfied. In the non-
relativistic limit and in the weak-field regime, considered
in particular in Refs. 1 and 2, the acceleration induced by
the Newton potential is different for particles of different
mass, but this effect seems too small at accessible tem-
peratures to become observable in a present Eotvos-type
experiment. '

One may wonder however what happens in the case of a
relativistic test particle, motivated also by the fact that
anomalous velocity-dependent modifications of Newton's
law are to be expected also as a consequence of many su-
persymmetric and multidimensional models of gravity
(the importance of measuring the gravitational properties
of relativistic matter and antimatter has been stressed, in
particular, in Ref. 4, and the results of a search for long-
range interactions at highly relativistic velocities have
been recently reported in Ref. 5).

To answer this question one may note that the differ-
ence between the inertial and gravitational masses, which
from a thermodynamical point of view can be understood
according to Ref. 6 as the low-momentum limit of the
free energy and internal energy, respectively, is inversely
proportional, at finite temperature, to the relativistic free
energy of the particles itself. ' ' It would seem, therefore,
that the thermal corrections to the gravitational coupling
take their maximum value in the static case, while they
approach zero in the ultrarelativistic limit.

This conclusion should not be correct, however, and the
aim of this paper is in fact to show with an explicit calcu-
lation that, on the contrary, the thermal corrections to the
gravitational acceleration in the weak-field limit are not a
function of the kinetic energy of the test body, and, at
constant nonvanishing temperature T, a constant shift of
the effective coupling is produced, depending only on T
and on the rest mass of the particle, even in the ultrarela-
tivistic case.

In order to include the thermal contributions, the ac-
celeration of a relativistic particle in a weak static field
can be obtained by approximating, in the weak-field limit,
the equation of motion which generalizes the geodesic at

finite temperature. Such an equation can be deduced, ac-
cording to the procedure developed by Papapetrou, by
considering a narrow "world tube" containing the world
line of the test particle (characterized by the energy-
momentum tensor T" nonvanishing only inside the
world tube), by integrating the conservation equation for
T" over a three-dimensional hypersurface X and defin-
ing, in the limit in which the radius of the tube goes to
zero:

d3x'v' —g T""(x')=
X

where p" is the four-momentum of the particle and

E=p'= f d'x'V' —g T'4(x') . (2)

g(0)pv Tpv pc gv T442 T'
3 jv

(4)

It should be noted that, at finite temperature, the Min-
kowski vacuum is replaced by a thermal bath, and the in-
troduction of a preferred frame (the one in which the
blackbody radiation is isotropic, i.e., the frame at rest
with the heat bath) breaks explicitly the Lorentz invari-
ance of the finite-temperature vacuum' (for a recent de-
tailed discussion of the spontaneous breakdown of
Lorentz invariance at finite temperature see, in particular,

At finite temperature the inertia of a particle is in-
creased by the interaction with the heat bath, and consid-
ering in particular a charged particle of mass m0 in
thermal equilibrium with a photon heat bath in the low-
temperature limit, T &&m0, one obtains, ' to first order
ln T

E=(mo +
i p i + 3arrT )'i—

(mo is the renormalized T=0 mass and a the fine-
structure constant).

Moreover, a detailed finite-temperature calculation'
shows that, in the weak-field approximation, the effective
source of gravity appearing in the linearized field equa-
tions, and expressed in the rest frame of the heat bath, is
generalized as
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2 T'9" =T" ——um. V" V T4 4 (5)

where V"; is the vierbein field and henceforth the index 4,
whenever explicitly written in E =p, V"4, T, and so

Refs. 8 and 9). In this paper we shall assume that the lack
of maximal symmetry of the vacuum leads to a finite-
temperature theory of gravity in which the Lorentz group
is not the dynamical symmetry group in the local tangent
space, even if, in the world manifold, general covariance
continues to hold: we are then in a quasi-Riemannian sit-
uation' '" in which, as we shall see, the effective matter
current at finite temperature is covariantly conserved.

As we are concerned here with the thermal corrections
to the equations of motion in the weak-field approxima-
tion, it is not necessary to start from the exact expression
of the source term which includes the thermal contribu-
tions at all orders, but is enough to consider the simplest
generalized source which reduces to Eq. (4) in the weak-
field limit. We assume then, as an effective source at fi-
nite temperature,

on, is always to be understood as a tangent space Lorentz
index. This expression therefore transforms as a tensor
under general coordinate transformations, but not under
local Lorentz rotations [in the weak-field limit the source
term is decoupled from gravity, so that one must replace
V"; and ot'; and Eq. (4) is then recovered].

Assuming that the direct contributions of the tempera-
ture to the geometry can be neglected (see, however, Ref.
12), the "left-hand side" of the Einstein equations is not
modified and we have, at finite temperature, the field
equations G" =0", where G" is the usual Einstein ten-
sor. The contracted Bianchi identity G" . =0 implies
then the following generalized continuity equation for
Tp + ~

T" . = —am. V"4V 4Tv 44

3 E2

(a semicolon denotes the usual Riemann covariant deriva-
tive) which, written explicitly in terms of the Christoffel
symbols I „„,becomes

2 T2 2 T2
a,(v' —g T"')+I „"U'—g T =a„v —g a~ —V" V T +I „"v—g atr V—V T (7)

In order to obtain the equation governing the response of the test particle to a given external field, we shall integrate
this equation over the spacelike hypersurface X intersecting the world line of the particle at t =const. By applying the
Gauss theorem, expanding the gravitational field in power series around the coordinates x" of the center of mass accord-
ing to the Papapetrou procedure, and neglecting the coupling to internal mornenta for a structureless pole particle, we

obtain, finally,

d'x'& —g T" (x')+I "(x) J d'x'v' —g T (x')

(8)
T2 2 T2

avr V"4(x—) j d x'V —g T (x') +I „"(x)—am V 4(x)V"4(x) J d x'v' —g T (x') .

Now we multiply by dx /ds and, in the limiting case in which the radius of the world tube approaches zero, i.e.,
x' "~x", we apply Eq. (1), putting p"=mx " and E =mx =mx V, where, according to Eq. (3),
m =(mo +2anT /3)'~ (an overdot denotes differentiation with respect to the proper time s along the particle world
line). We have then

d 2 T 2 Tx~+I &x x = —a~ V 4 +I„"—am 2V 4V4.
ds 3 mE 3 m

(9)

In the case of constant temperature T=O and then m =0. Moreover E=mx "V„+mx "x 8~V . The acceleration
' v P

of a test particle at finite temperature can be written then explicitly as a function of the velocity and of the first deriva-
tives of the metric and of the vierbein fields as

xp+r, px x"=—a~ x "a.VP4 ——a~ 2VP4(x'V. +x x papV. )+—a~ 2V 4V41„.P.
mE 3 m

(10)

As noted before, this generalized equation of motion,
obtained in the hypothesis that the gravitational sources
are described by Eq. (5), is to be applied only in the weak-
field limit. In particular we are interested in the response
of a relativistic particle to a static field like that available
in a terrestrial laboratory. Considering then the
Schwarzschild metric in polar coordinates (r, 5,g, t) we

have g& ——diag( —e, —r, —r sin2@,e ), where

e =e =1- 2M
7

and V"4——b"4e, V„=6„e . In the case of radial
motion (8=0=y) Eq. (10) gives 8=0=j, and
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1+ a—rr (t+vt) =0,
3 E2

t 2''2 v —X 2 2 Tr+ —t e —r ——an. e =0,
m

(12)

(13)

r „and t, estimated in the case of the vanishing gravita-
tional field (v=0=A, ), which satisfies t r—=1 [ac-
cording to Eq. (14)]. We obtain then, to first order in
M/r,

where a prime denotes derivative with respect to the radial
coordinate (remember that E =mx 'V„=mte'~ and
v' = —A, ').

The integration of these equations can be easily per-
formed, and gives

2 v 2
2

e r —e "t ——am v= —1 .
teal

To obtain the radial acceleration in the weak-field limit,
in which terms higher than linear in M/r are neglected,
we can insert directly into Eq. (13) for r and't their values

Therefore, even in the case of a relativistic particle, the
only thermal correction to the acceleration is a constant,
mass-dependent shift of the ratio of gravitational to iner-
tial mass, which to first order in T is given by
ms/m;=1 (2a—nT/3. mo ), just as in the static case. '
This thermal effect induces a violation of the equivalence
principle, ' but in the weak-field and low-temperature
limit it is not expected to become dominant at very high
energies, unlike other mechanism inducing deviations
from Newton's 1aw.
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