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We study the formalism of the sphaleron approximation to baryon-number violation in the stan-
dard model at temperatures near 1 TeV. We investigate small fluctuations of the sphaleron, the com-
petition of large-scale sphalerons with thermal fluctuations, and the damping of the transition rate in

the plasma. We find a suppression of the rate due to Landau damping and due to factors arising
from zero modes. Our approximations are valid in the regime 2M' {T)«T«2M~{T)/a~ for
models where A. -g . We find that the rate of baryon-number violation is still significantly larger
than the expansion rate of the Universe.

I. INTRODUCTION

Grand-unified models contain interactions which
violate conservation of baryon number. These violations
have spurred the search for proton decay and perhaps
given us an explanation of the baryon asymmetry of the
Universe. The standard model also contains baryon-
number violation. Baryon number, though a classical
symmetry, has an anomaly involving the weak SU(2)
gauge group. ' Nonetheless, such a violation will never
appear in the perturbative calculation of an S-matrix ele-
ment. Baryon number is violated in the S matrix only
through nonperturbative effects and arises from transitions
between different vacuum states. Each transition violates
baryon number by nf units, where nf is the number of
families. At zero temperature, these transitions are rnedi-
ated by the instanton of the weak SU(2) group. Instan-
tons correspond to quantum tunneling between the vacu-
um states, and so are exponentially suppressed. The
suppression is
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which is to say that it never happens.
Instanton tunneling has also been analyzed at finite

temperature. The infrared divergences which plague the
analysis at zero temperature, arising from large-scale in-
stantons, are cured by Debye screening at finite tempera-
ture. Moreover, to calculate the rate in the semiclassical
approximation, one should use the temperature-dependent
running coupling constant in (1.1). The prefactors are re-
liably calculated by analyzing small fiuctuations about the
instanton. The conclusion of this analysis is that baryon-
number violation due to instanton tunneling is still so
small that it is effectively zero.

In a clever analysis, Kuzmin, Rubakov, and Shaposhni-
kov have argued that baryon-number violation in the
standard model is unsuppressed at high temperature,
specifically T) 1 TeV. There is no suppression because
the transition arises from classical thermal fluctuations
rather than quantum tunneling. For example, consider
the quantum mechanics of a particle in the one-
dimensional potential shown in Fig. 1. At zero tempera-

ture the only connection between the two vacua is quan-
tum tunneling, which is exponentially suppressed. At
temperatures high compared to the potential barrier Vo,
the thermal distribution favors states with energy E» Vo
and the particle can move over the barrier classically;
there is no suppression. At intermediate temperatures the
particle has a certain probability of being thermally excit-
ed over the barrier given by the Boltzmann distribution
and proportional to exp( —P Vp).

We would like to adapt this picture to the field theory
of the standard model. Manton, and Klinkhamer and
Manton, have identified an unstable, time-independent
solution to the equations of motion of SU(2)-Higgs gauge
theory. This solution is called the sphaleron and corre-
sponds to the barrier Vo between vacua. The sphaleron
eft'ectively has baryon number nf/2 which is half of the
violation caused by a transition. Being unstable, the
sphaleron can only correspond to a stationary phase of
the Euclidean action, not a minimum. We will show in
Sec. I A, however, that it is nonetheless appropriate to ex-
pand the path integral about a sphaleron background. At
zero temperature, a static solution has infinite Euclidean
action and cannot contribute to a semiclassical approxi-
mation. At finite temperature, the action is integrated
only over the region of 0&r&P of imaginary time. The
contribution of the classical action of the sphaleron is then
just a Boltzmann factor exp( PE,~ ). —So transitions
which involve the sphaleron, while suppressed at zero
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FIG. 1. Potential for a one-particle analogy in quantum
mechanics.
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temperature, might become increasingly important as the
temperature increases.

In analogy with the simple quantum-mechanical exam-
ple discussed above, the rate at which gauge-field
configurations pass over this barrier gives a measure of the
rate of transition from the region of one vacuum to anoth-
er. But each such transition will violate baryon number
through the anomaly. Kuzmin et al. therefore write

dXg pE (1.2)

where the factor of T is included on dimensional grounds
and the energy E p of the sphaleron is a few times
Mii /aii . Implicit to this analysis is the assumption that
each baryon-number sector has thermalized so that the
Boltzmann factor is a relevant measure of the rate. Note
that the rate becomes very large at the critical temperature
T, where symmetry is restored in the Weinberg-Salam
theory because Mii approaches zero there. If Eq. (1.2) is
appropriate near T„then the rate becomes order one in
units of T.

If this rate is large enough, then it constrains baryo-
genesis. A process that violates baryon number will, in
equilibrium, equalize the number of baryons and anti-
baryons. Thus, any baryon excess created in the early
Universe may be wiped out. These processes, however,
only violate B+L; B —L does not have an anomaly and
is exactly conserved in the standard model. If one pro-
duces a B —L excess in the early Universe, it will not be
washed away. ' There may be other possibilities as well.
Perhaps one might even imagine generating baryon num-
ber by nonequilibrium processes involving the sphaleron.
Despite these uncertainties, a proper analysis of the basic
rate of baryon-number violation in the standard model is
an important step in understanding baryogenesis in
cosmology. In this paper we will investigate the formal-
ism of the sphaleron approximation to baryon-number
violation at finite temperature.

The sphaleron solution only exists when the SU(2) sym-
metry is broken. As T approaches T, from below, the en-
ergy of the sphaleron approaches zero and its spatial ex-
tent grows to infinity. Above T„there is no energy bar-
rier between vacua. That is, one can find paths through
configuration space (not solutions to the equations of
motion) which connect two vacua and such that the max-
imum potential energy along the path is arbitrarily small.
But there is no path which assumes the smallest such bar-
rier since there is no path along which the potential ener-

gy is everywhere zero. Thus, there is no saddle point to
the potential energy, such as the sphaleron, about which
one can expand. The approximation (1.2) is therefore
only sensible for temperatures below the critical tempera-
ture T, —100—360 CzeV. Above that temperature, baryon
number may be substantially violated, but this violation
cannot be seen in an analysis based upon the sphaleron.
However, in the region where the analysis is valid, the
rate computed in Eq. (1.2) is sufficiently large to ensure
that any baryon (B +L) excess would be washed out.

It will be our purpose to tighten the approximation in

Eq. (1.2) by more rigorously examining the prefactors that

A. Basic formalism

The basic idea is to write a path-integral expression for
the rate of baryon-number violation and then to calculate
this path-integral in a Gaussian expansion about a static
sphaleron background. The sphaleron background alone
gives

exp — dr LF [P, ] —e
f3

0
SP (&.3)

The integration over Gaussian fluctuations then gives the
prefactor for this exponential.

At first glance, expanding about a static solution may
not seem to make sense since we are interested in a non-
static process. The purpose of this section is to explain
why one should expand about the sphaleron and to tie
down the exact path-integral expression that one need cal-
culate. This problem has been investigated for false-
vacuum decay at finite temperature by Aleck, Linde,

multiply the exponential and by analyzing how damping
in the plasma affects the rate. We will analyze the model
A, -g, where k is the Higgs-boson self-coupling, at tem-
peratures between 2M@(T) and 2Mii (T)laii. We find
that, in the temperature range where our analysis is valid,
the rate is indeed high enough to easily wash out any ini-
tial baryon excess.

The expression that we shall derive for the rate vanishes
as the critical temperature is approached from below.
This occurs because the size of the sphaleron becomes
infinite in this limit. We then expect that the sphaleron
configuration becomes unlikely since it cannot compete
with ordinary thermal fluctuations, which have much
smaller spatial extent. However, we shall find this drop in
the rate precisely where the approximations we use in our
analysis break down. Specifically, the assumption that
one can analyze the problem in small fluctuations about
the sphaleron will no longer be valid. At the end of the
paper we shall give a rough argument that shorter-range
configurations, which can compete with thermal fluctua-
tions, take over the role of the sphaleron near the critical
temperature and above.

In the remainder of this section we shall discuss the
formalism that underlies the estimate (1.2) and our com-
putation of the prefactors. Then we will briefly review the
sphaleron solution of Klinkhamer and Manton. In Sec. II
we will compute the dependence of the prefactors on M~,
T, and a ~ and carefully discuss the nature of our approx-
imations and the regime in which they are valid. In Sec.
III we incorporate the damping of the transition rate due
to interactions with the plasma. We shall see that Landau
damping is the most significant effect. In Sec. IV we will
discuss what may happen at temperatures above the re-
gion where the previous analysis is valid. Left for appen-
dixes are (a) a discussion of the formalism of the dilute
sphaleron-gas approximation, (b) the calculation of the
zero-mode integration for the sphaleron, (c) a derivation
of the pseudoparticle formalism used in Sec. III, and (d) a
more detailed look at the argument of Sec. IV.
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and Mottola. '

Our approach is to apply the analysis of Aleck. Let
us follow this analysis in the case of the potential in Fig.
1. We will work at a temperature large enough to justify
a classical treatment, but small compared to the barrier
potential. We want to know the rate at which particles go
over the barrier when the particles start in approximate
equilibrium in the left well. This is the probability of
finding a particle at the barrier, heading in the right direc-
tion, times the rate at which it crosses the barrier. So

ImZbarrier

IT Zo
1/2

detpcoo
Im

detpN

—pvo
e

—pvoe

CO COO PVIm g . e
277 CO

CO sinh(Pcop/2 )
Im

2m sinh(Pcs'/2)

I = (&(x)p6)(p) )

J dp dx exp{ —P[ —,'p + V(x)]16(x)p8(p)

f dp dx expI —P[—,'p + V(x)] I

COO PV
e

2&
(1.4)

where we have calculated the partition functions in
Gaussian approximation about the saddle point and then
taken the classical limit P~O in the last line.

)Vote on notation. The unstable mode has an imaginary
frequency ca=ice . We will often refer to it by the real
quantity co, but the reader should keep in mind that cu

and co differ by a factor of i.

where the denominator was approximated by a Gaussian
integral. This is related to the imaginary part of the free
energy evaluated as small fluctuations around the sphale-
ron and around the left vacuum:"

ImF= T Im(lnZ) = T ImZ
Z

Im j dp dx exp[ —P( —,'p + Vp ——,'co x )]

dp dx exp — —,'p + —,'~~

B. The sphaleron solution

Manton and Klinkhamer" found their static solution for
a pure SU(2) gauge theory and then incorporated elec-
tromagnetism by perturbing in sin 0~. In this paper we
shall work in the approximation that sin 0~ ——0. So we
shall focus on the pure SU(2) solution.

The solution may be written in the Ao ——A„=Ogauge
in the following form. (Recall that after fixing Ap ——0,
one may still make another, time-independent gauge
fixing. For the static sphaleron solution it is convenient
to work in A„=O.)

COO PV
e

2') P
(1.5) A =v rXrr, P= —h (g)r crPp,

f(() v

V'2 (1.9)

co f3
I = ImE=

co ImZ barrier (1.6)

Adding another degree of freedom, so that the barrier is
now a saddle instead of a maxima, is easy since both I
and ImE are modified by the same factor in the Gaussian
approximation:

J dp~ dy exp[ P( ,'p~ + —,'co~ y )—]-
dowdy exp[ —P( —,'ivy + —,'coip y )]

The relation (1.6) is not affected. ANeck shows that, for
T & cu, the relation is also not affected by quantum correc-
tions.

For systems with an infinite number of degrees of free-
dom, the generalization of Eqs. (1.6) and (1.7) is easy:

(The factor of —,
' in the last line of the equation arises from

the analytic continuation, ' but here may be considered as
mere convention for what we mean by ImZ. It will not
be very important to our calculation. ) We now have a re-
lation between I and path-integrals for cases with a single
degree of freedom

0
g=gvr, Pp—= (1.10)

Qs=nf 2 d xK = —,'nf,0

32m2

where nf is the number of families and

(1.12)

(1.13)

is the object whose divergence is trFF. [Some care must
be taken to evaluate (1.12) in the right gauge. See Ref. 4
for details. ] Similarly, the lepton number is also
effectively QL =nf /2.

The energy of the sphaleron is E =(2M~/aii )E where
E varies between 1.56 for A, =O and 2.72 for A. = ao. The
radius of the sphaleron is roughly (2M~)

where f and h are numerically determined functions with

f (0)=h (0)=0, f ( ~ ) =h ( ce ) = 1 .

The solution approaches the pure gauge f ( oo ) =h ( oo ):—1

exponentially quickly at spatial infinity. Graphs of f and
h appear in Fig. 2 for the case we shall study: A, =g .

Manton and Klinkhamer show that this solution corre-
sponds to baryon number
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If this coupling is small, then a Cmussian (i.e., one-loop)
approximation to Z,p is justified. We shall work with
temperatures high enough that we may use the three-
dimensional theory but low enough that n3 is small. That
is, we assume that the temperature falls in the narrow
range

.5
2Mw « T «2cVw/ew . (2.6)

'o 1Q

g Vf'

FIG. 2. f{g) and h {g) for the sphaleron when A, =g .

II. THE PREFACTORS

A. The rate of baryon-number-changing transitions

On the basis of our previous discussion we want to cal-
culate

We shall find that a significant contribution to baryon-
number violation occurs in this range. Outside of this
narrow range of temperatures, our computational tech-
niques are no longer valid. In particular, if T)Mw/aw,
a weak-coupling analysis is invalid.

Before proceeding we must discuss a subtlety of the
transition to the three-dimensional theory. The nonzero-
frequency modes have masses -v„=2rrn /p in the three-
dimensional theory. As p~0, they decouple in UV-
convergent diagrams and can be ignored. They do not,
however, decouple in UV-divergent diagrams. Thus, they
affect the renormalization of the theory. To leading or-
der, their effect can be absorbed into a redefinition of the
coupling constants and masses of the theory. Thus, we
should work with the effective finite-temperature potential
for the theory. ' ' For the case of Weinberg-Salam
theory, the Higgs-boson potential becomes'

co ImZ pr=
77 ZQ

(2.1) A, (P"(t ——,'u (T))',
(2.7)

whel e Z p is calculated in Gaussian approximation about
a sphaleron background. [In calculating the full partition
function, it is important to sum multiple-sphaleron
configurations. In Appendix A we discuss this calcula-
tion in the dilute sphaleron-gas approximation. We show
that (1.3) is still valid, where Z,~ is expanded about a
single-sphaleron background. We also discuss the validity
of the dilute-gas approximation. ]

Let us begin by rescaling fields and coordinates as

(r, r)~(g, r) =gv (r, r),
A (r, r)~u A (g', r),
P(r, r)~uP(g, r) .

The action then becomes

(2.2)

S~= f dr f d (Kg[A(g, r), P(g, F), A/g ] .
fg2 ()

(2.3)

We would like to claim that, in the high-temperature limit
gup « 1, only the time-independent, zero-frequency
modes of the fields are relevant and we may replace this
by the effective three-dimensional theory:

3 2

v'( T) =v'(0) — —+
2 16K

The critical temperature and the effective 8' mass may be
written

T, =v(0) 2

1+—3g /k

Mw( T) =Mw(0) 1—

1/2

2 1/2 (2.&)

X3=X3,p+ (5$) A,p(5(b), (2.9)

If we express the critical temperature in terms of
Mw(0) =gv (0)/2, we find T, —3.SMw(0) —10Mw for
g /A. -1. Our prescription will be to work to leading or-
der in the three-dimensional theory (2.4) of the zero-
frequency modes, but to use the above effective potential.

Let us study the case A. /g —1. Then the only parame-
ter in our three-dimensional theory is a3. Now treat L3
in Gaussian approximation about the sphaleron back-
ground:

S3 = f d gX3[ A (g),p(g), A, /g ] (2.4)
where the operator 0 is order unity. The expansion
about the vacuum for Zo can be treated the same way:

g T
4~ 4muP 2Mw

(2.5)

This is a classical limit as it does not depend on A. The
coupling constant of this three-dimensional theory is given
by

X3=p Qp p .

If we ignore, for the moment, the existence of spatial zero
modes of the sphaleron, we can now do the required in-
tegration s:



36 SPHALERONS, SMALL FLUCTUATIONS, AND BARYON-. . . 585

coo ImZspr=
7T Zo

1/2
co detQO

Im
detQsp

CO PE
e

2&
(2.10)

I ——Mg (T)e
1 —PE, (2.1 1)

This rate vanishes at the critical temperature where
M~(T)~0. We shall see later that this drop in the rate
occurs in a region where our approximations break down.
First, however, we must correctly include the spatial zero
modes of the sphaleron.

The modification which we shall show in Sec. III for
this estimate of co involves the observation that for the
low-frequency region corresponding to the decay of the
sphaleron, higher-order loop corrections to the vector
propagator become important. We shall argue that these
corrections may be systematically computed in perturba-
tion theory.

The dependence on cz3 has canceled between numerator
and denominator. One may now make the following ar-
gument (which we shall modify in Sec. III) for the magni-
tude of ~ . Since all of the dimensionful scales have been
removed from the problem by rescalings, therefore all of
the eigenvalues of 0 will be order unity, including the
negative eigenvalue corresponding to the instability of the
sphaleron. In terms of the original spatial coordinate r we
must then have co -2M~, so

In this equation the factor ~ is of order one. It is the
square root of the product of all frequencies of oscillation
around the vacuum divided by the product of all nonzero
frequencies of oscillation around the sphaleron. Note that
each factor of g3 '=(2M~lg T)' causes the rate to
vanish more rapidly as T~T, . One should be mindful,
however, that the collective coordinate procedure may
break down if the nonzero modes are not well approxi-
mated by Gaussians —that is, when a3 & 1.

To use (2.12) we need to count the zero modes of the
sphaleron. There are four symmetries of the pure SU(2)
theory to consider: translations; rotations; the SU(2)L, of
the weak gauge group; and the global, custodial SU(2)g of
the Higgs-boson sector. Translations give a factor of
A;„Vg where Vg=(gu) V is the volume of g space, and V
is the ordinary volume of three-dimensional space. Rota-
tions give a factor (JVV)„,. Most of the gauge symmetry
SU(2)L, is not relevant if we fix the gauge to A„=0. The
only parts which survive are the global gauge rotations.
These can be removed by fixing the boundary conditions
of the path integral (see Appendix B for a complete argu-
ment). Finally, the action of SU(2)g on the sphaleron
turns out to be a linear combination of the others and so
gives no new zero modes. We conclude that the relevant
zero modes arise from three translations and three rota-
tions; so Xo =6 in (2.13), giving

CO
3 6 PEA;,(JVV)...(gu) g,

—
e "a.

B. The sphaleron zero modes

3

JV,„(JVV)„„ —PEs
cx3 e K . (2.14)

I = (JVV)lm2'
detg3 Qo —pE„

' 1/2

det g3
(2.12)

where det' indicates that zero modes should be excluded
from the determinant. The factor JVV comes from the
zero-mode integration: JV is a normalization factor and
V is the volume of the symmetry groups responsible for
the zero mode.

If there are No zero modes, then the numerator in
(2.12) will have No more eigenvalues and therefore ND
many more factors of g3 . So,

Symmetries of the theory can give important
modifications to Eq. (2.10). For instance, translational in-
variance implies that ImF must be proportional to the
volume V. In our dimensionless coordinate g, this implies
a factor of (gu) V. Note that, since v(T)~0 as T~T„
this factor vanishes near the critical temperature.

The sphaleron has zero modes corresponding to its
transformation under symmetries of the theory. These do
not give Gaussian integrals, but must be integrated sepa-
rately using the method of collective coordinates. ' Equa-
tion (2.10) must be modified to

The normalization and volume factors JV«and (JVV), ,
are calculated in Appendix 8 where we also include a
more thorough discussion of the global gauge rotations.
In the case A. =g we find

JV„=26, (JVV)„,=5.3~10' . (2.15)

C. Baryon-number dissipation

So far the analysis has not distinguished between transi-
tions which increase baryon number and those which de-
crease it. Both appear to proceed at the rate (2.14). Con-
sider a situation where we start with some baryon excess,
say produced very early in the Universe. We then expect
entropy to favor reactions which dissipate this excess. To
see this in our calculation we must include the chemical
potential reflecting the initial density of baryons and lep-
tons.

Baryon number, however, is not a conserved quantity.
Instead,

CO NoI = (JVV)g3 ' Im
277

CO —NQ —pE
(JVV)g3 'e2'

detno

det'Qsp
e

PE

(2.13)

2

Qa=B+nf ~ f d xE
32772

is conserved, with a similar expression for lepton number.
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If the initial baryon-number sector has thermalized, then
we should work with the charges Q above. Let us then
add a chemical potential term —p~gii —pL QL, to the La-
grangian. Now reconsider (2.1) in the small p limit. The
baryon decreasing and baryon increasing rates pick up a
factor of

exp[+/3(/J BQB +PL QL ) ]

=exp[+/3(n//2)(ps+pl )] . (2.16)

The difference of the rates picks up a factor of
=/3nf (pii +pl. ), and each transition changes B by nf
units. So

de
Vdt

—PE,
a3 e (2.17)

where N~ is the baryon excess. Standard thermodynamics relates p to N by

9 2Na 2 zNzpa= /3 ~ ~ pL= /3
2nf V nf

(2.18)

(We are indebted to M. Shaposhnikov for correcting an error here. See Ref. 18.) In the case of a B L=0 un—iverse, we
then have

de cx w= —13nf Tddt 4~

4

JV„(A'V)„,[ai(T)] 'e
2Mw

(2.19)

where we have noted that PE,&
is order 1 in units of ai

and have written E,„/a3=PE,~.
The reader may wonder why we have associated p with

XB in Eq. (2.18) when we previously argued that p should
be associated with Q. The question is one of time scale.
Our underlying assumption is that a given baryon-number
sector is already thermalized, but that there has not yet
been thermalization between diferent baryon-number sec-
tors.

Now, examining (2.19), note that

7 —Esp/a3e (2.20)

is a peaked function of a3 and therefore of temperature.
In Fig. 3 we have converted time to temperature using

r =2.42X 10 g„'[kT(GeV)] ~ s,
g, —100,

(2.21)

and we have plotted dN~ /N~d T as a function of tempera-
ture. We have again set co =Mii (T), ignoring the damp-
ing effects to be discussed in the next section. At the
peak, a3 is 0.29. But our analysis assumes a3 « 1. Thus,
the turnover of the rate may be an artifact of our approxi-
mations. We shall return to this point in Sec. IV. For
comparison, we also plot our result logarithmically in Fig.
4 along with the estimate (1.2).

A simple measure of whether the baryon excess will be
wiped out is given by comparing the rate to the expansion
rate of the Universe. This ratio can be read ofT' Fig. 3 as
T(dN~/NlidT). At the peak the process proceeds rough-
ly 10' times the expansion rate of the Universe. Even if,
more realistically, we trust our results only for F3 &0.1,
we find 10' . In any case, any baryon excess could easily
be dissipated. In the next section we shall discuss addi-
tional suppressions due to the fact that co is not precisely
equal to 2Mw. These suppressions are several orders of

magnitude, but the basic conclusion about the dissipation
of the baryon excess remains unchanged.

III. DAMPING IN THE PLASMA

I I I I ! I I I I ! 1 I I 1 ! I I I I ! f T I 1
(

I i I

a. =0.30

6x]0

~~ 4x lO
12

Z )22x]0

a ~= 0.1

0.26 0.27 0.28

=1.0
I I

0.29 0.30 0.31 0.32
T (Tev) C

FIG. 3. dN~ /N~ d T as a function of T, for A, =g
' and three

families, ignoring the damping eAects discussed in Sec. III.

Our analysis has been based on the assumption that we
can reliably work in Gaussian approximations —that is,
that interactions are not important. We have justified this
approximation for the calculation of IrnF in the limit
a3 « 1, but we have not yet justified its use in the deriva-
tion of the relation (2.1) between I and ImF. Indeed,
some care must be taken on this point. The correct inter-
pretation of this relation, and its consequences, are the
subjects of this section. We shall find that co in (2.1)
must be interpreted as the real-time frequency response of
the sphaleron, rather than as the negative eigenvalue of
the potential energy expanded about the sphaleron (which
is —2Mii by our previous scaling analysis). Thus, co
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20 f d(bE)p(bE)e ~ =——,
' g exp[ —P(n + ,')i—co ]

15
l

4 sin(Pco /2)
(3.2)

6)
Z 10

Kl

0
O

where p(b, E) is the thermal density of states. (As in Sec.
IA the additional factor of —,

' comes from analytic con-
tinuation to imaginary co.) In the high-temperature limit,
the free energy then becomes

.25

ImF= —,'co X(the other factors) . (3.3)

T (Tev)

FICx. 4. Our estimate for de/NgdT (solid line) plotted
against the simple estimate of Eq. (1.2) (dashed line).

To calculate the transition rate we want to take the
thermal expectation of that rate; so we should replace this
factor by

d AEp AEI AEe ~~E (3.4)

will be damped by effects which damp oscillations in the
plasma.

To see that the Gaussian approximation can break
down, consider the propagation of gauge fields in the plas-
ma. The oscillations are damped by the interaction of the
gauge fields with fermions (and with themselves). This in-
teraction introduces modifications to the propagator of or-
der gT/co-gT/2M~ as we shall see when we study the
propagator in Sec. IIIB. But at the temperatures of in-
terest, gT/2M~ is not && l. (For instance, it is 6 at the
peak of Fig. 2.) So one is not justified in ignoring these
interactions.

A. Formalism

where I (hE) is the real-time transition rate for a given
state.

In the classical limit, any wave which has enough ener-

gy passes over the barrier and p(AE) I (b,E) is just
(2vrfi) '9(b,E). This can be seen as follows. We are in-
terested in the expectation of the rate x at a given
configuration "x"—the sphaleron. Phase space gives a
measure of (2vrR) 'dp. But (2M) 'dpx is the same as
(2vrfi) 'dE by the Heisenberg equations of motion.

Equation (3.4) then gives us a factor of
(T/2m)exp( PE,&) in I wh—ereas (3.3) gave us co /2 in
ImF. Thus, we find

g exp[ P(n + —,
' )co,„—]

—~E., ~Zo g exp[ f3(n + —,
' )coo]—

(3.1)

One can reestablish the result (2.1), by working in the
quasiparticle picture. ' Consider the quantity Z,z /Zo.
This can be evaluated in the imaginary-time path-integral
formalism, as we have successfully done in the preceding
section, or in the quasiparticle formalism. In the latter
case we find that the partition function can be expressed
as that of harmonic modes about the sphaleron (see Ap-
pendix C):

ImF

as claimed.
To illustrate that this relation works, let us consider a

toy scenario in 0 + 1 dimensions analogous to elec-
tromagnetism in a plasma of charged particles. We have
a field 3 which corresponds to A in the Ao ——0 gauge.
Suppose interactions with the charged particles introduce
a screening term —,'~ A for the electric field in the
effective Lagrangian. That is, if we integrate out the
charged particles, we get

where the frequencies ~ are the real-time frequencies asso-
ciated with the poles of propagators. This is not a con-
venient formalism to approximate ImF because these fre-
quencies depend on more than just one parameter; as we
saw above, they depend on gT/2M~ as well as a3. It is,
however, convenient for determining the relation between
I and ImF.

Since passage over the sphaleron is a real-time motion
of the system, AfBeck's analysis should be carried out in
the real-time expansion (3.1). Consider the factor in the
numerator of (3.1) corresponding to the negative mode of
the sphaleron. We can rewrite it in the form

X,s ——,'(1+re )A —V(A) . (3.5)

Let us now follow Aleck's analysis for this effective sys-
tem as we did in Sec. I A. The effective Hamiltonian is

2

+ V(A), p =(1++ )3
2(1+~ )

(3.6)

Now suppose that V(A) has some barrier at Ab, and
define —6—:V"(Ab). Then the transition rate is given
by
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I.= &5(A —Ab)Ae(A)&
T

J dp dA exp —p + V(A) 5(A —Ab) 28(p)2(1+~ ) 1+~

J dp dA exp —P 2 + V(A)
2(1+~ )

( 1 +&2)—1/2
&

0cop pv

2' (3.7)

ImF, on the other hand, is given by

2

Im J dp dA exp —P ~ + Vo ——,'co
2(1+a )

ImF= T
2

dp dA exp —P ~ + —,'r00A
2(1+1~ )

~o -pv,
e

260 p
(3.8)

The relation between the two is then

2 —rn~ —~I =(1+re )
' IrnE . (3.9)

But (I+a )
'

co is precisely the real-time response fre-
quency obtained by solving the dispersion relation ob-
tained from (3.5) near the sphaleron:

( 1 +K )co = —co (3.10)

This example supports our contention that the relation
should use the real-time frequency. As in Sec. IA, add-
ing additional degrees of freedom does not change this re-
lation.

B. Estimate of damping

In this section we will estimate the effects of damping
on co,' we will not calculate exact numerical factors. %"e
are interested in temperatures much larger than the
effective 8' mass. Also, in the case A. -g that we have
analyzed, the temperature is much greater than the
neutral-Higgs-boson mass mH —&XU -Mrr .

To find co we must investigate the effective equations
of motion for fiuctuations in the plasma about the sphale-
ron background. First consider the gauge fields. At the
tree level the equations of motion for the classical fields A
and p are just

thermal bath. The corrections yield different behavior for
the longitudinal and transverse components:

k 5A„=(Q~)„(5A,5$)

+(Mr. Q„„+MrP„)(5A"+A,"„,) . (3.13)

In this equation ML and MT are longitudinal and trans-
verse masses which will be defined below. The tensors
Q"" and P" are longitudinal and transverse projection
operators,

k g k k k'k"
pA, Qgu~ g k~ , (3.14)

and P has only spatial vector components as

P =g
k'k~

(3.15)

and

Mr. (gT) A—— (3.16)

u is the unit timelike vector, with only a nonzero zeroth
component. We shall work in the high-temperature limit
where all masses are negligible. We shall a1so work in the
kinematic limit k l

~

k
~

&& 1 which we shall justify a pos-
teriori as appropriate to the calculation of co . The trans-
verse and longitudinal masses are then

DqF" =J (3.1 1)

Let us consider quadratic Auctuations about the sphaleron
background and rewrite (3.11) in the form

+ etc.
k 5A„=(Q)„(5A,5$)+higher order . (3.12)

The small-fluctuations operator Q is linear in 5A and 5$.
From our previous analysis, the operator Q is of order
(2M' ) .

Now let us consider one-loop corrections. These arise
from the temperature-dependent contributions of the dia-
grams in Fig. 5 and result from interactions with the

SP
A + etc.

SP

FIG. 5. Leading one-loop contributions to the equations of
motion.
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M z inB( T)2 k
(3.17)

+ etc.

In these equations A and B are numbers; B-2 for the
Weinberg-Salam model. ML comes from electric screen-
ing in the plasma. MT, in this limit, is due to Landau
damping —the absorption of the wave's energy by charged
particles in the plasma.

Note that, in units of our natural frequency 2Mw, these
masses are not mere a3 && 1 corrections to the propagator,
but enter as gT/2Mw as we previously claimed.

The magnitude of the sphaleron field is -2M' /g [see
(1.9) or (2.2)). The reader may therefore worry that we
have incorrectly ignored the graphs of Fig. 6, which are
the same order in g. For each insertion of the external
field, however, we pick up a factor of 2M~/gp;„& where

p;„,is the internal momentum of the loop. Since the loops
in Fig. 5 have p;„&—T, we get a reduction by at least
2Mii /g T. Thus, (3.13) is valid to leading order in
2M' /gT.

We must also consider diagrams with more loops. The
potentially most dangerous contribution is the generation
of a magnetic mass at the next higher order in perturba-
tion theory. ' This could in principle modify the disper-
sion relation for transverse oscillations. Such a transverse
mass is at most of magnitude pT -a T . In terms of our
natural scale 2Mw, these modifications are then of order
a3 . %'e may then, to good approximation, ignore this
effect so long as a3 &&1. For the temperatures of interest,
this condition is only marginally satisfied. Nevertheless,
we expect our analysis to be within an order of magnitude
of the full result.

Because the sphaleron field is static and purely trans-
verse, the A,„,term on the right-hand side of (3.13) is an-
nihilated and may be ignored.

The longitudinal part of A may be ignored in these
equations because of its large mass. Specifically, consider
the longitudinal piece of (3.13):

(Q )L, (5A, 5$)=(k ML, )5AL —(—gT) 5AL . (3.18)

So 5AI is small compared to 5Ar and 5$ by
-(2M'/gT) . Taking 5A to be approximately trans-
verse, (3.13) then becomes

(k —Mr )5A =(0 )(5A, 5$) . (3.19)

Ignoring 5$ for the moment, let us examine the conse-

quences of (3.19) for co if the negative mode were a fiuc-
tuation purely in 5A. Taking the Fourier transform of
(3.19) and considering the negative eigenmode of 0 gives
the dispersion relation

co —ski + B ——(2M' ), (3.20)

where
~
k

~
-2M'. The relevant solution is

2Mw

gT

2

i(2M' ) . (3.21)

Note that
~

co
~

&&
~

k [ as we assumed.
In this analysis we have ignored the real fluctuations

which oscillate with rea1 frequencies. Such fluctuations
can only occur if they are on the conventional branch of
the plasmon dispersion relation, that is co~gT. In this
case, the transverse and longitudinal masses take a
different form than in Eqs. (3.16) and (3.17) and are in
fact real. The peculiar feature about the decay of the
sphaleron is that it occurs for a range of frequencies
which is disallowed for undamped propagation of plasma
oscillations. The situation we are describing is the genera-
tion of a wave by the decay of the sphaleron in a region
which is Landau damped by the media.

Now consider the motion of 5$. At the tree level, the
equations of motion for the sma11 fluctuations may be
written in the form

k 5$=(Q )~(5A, 5$)+higher order . (3.22)

In the high-temperature limit, one-loop corrections do not
modify this equation [beyond the change (2.7) in the po-
tential, which we have already accounted for]. Let us
then ignore 5A for the moment and examine this equation
supposing the negative mode were purely 5$. Then

co —i(2M' ) . (3.23)

We shall now argue that the actual ~ lies within the
range of the values (3.21) and (3.23). Qualitatively we
shall argue the following: if there exists a pure 5$ fiuctua-
tion (i.e., 5A =0) which lowers the energy of the sphale-
ron, then the system will decay in this undamped direc-
tion with co given by (3.23); if any fiuctuation which
lowers the energy must involve 6A, then the decay will be
damped as given by (3.21).

To argue these c1aims we will work with a simplified
model of the equations of motion. Rather than treating
the full infinite-dimensional problem, let us pretend that
5A and 5$ each have one degree of freedom which we
shall call x and y, respectively. The potential energy near
the sphaleron, which gives us 0, will be an unstable,
quadratic potential in x and y. So let us consider the
problem of a particle moving in a two-dimensional poten-
tial:

A
sp Sp

v(x,y) = ——(x —y) + —(x +y)
2 2

FIG. 6. Possible contributions of order g to the equations of
motion.

where there is strong damping in the x direction. This
potential has two qualitatively different limits. If a &b,
then the potential has the form of Fig. 7(a) and there is no



590 PETER ARNOLD AND LARRY McLERRAN 36

pure y fluctuation which lowers the energy. If a &b, as
shown in Fig. 7(b), then a pure y fiuctuation will lower
the energy.

The equations of motion are

For a & b (can decay in the y direction), it is

0
co-i (a b—), x—1/2 (3.26)

x —Kx = —0 (x y—)+b (x +y)

y =a (x y)—+b (x +y) .
(3.24}

. 2 4ab
CO lC

b —a

b —a
b+a (3.25)

UNSTABLE
DIRECTION

UNSTABLE
DIRECTION

Here a and b are of order (2M' ) and the damping ~ is of
order (gT} . Let us rescale to dimensionless variables,
and henceforth take a, b —1 and ~—= 1/e where
e-2M~/gT. ~e will also assume that

i
a b

i

—is order
1. We now wish to find the solutions to leading order in
E.

Finding the leading-order behavior of the four solutions
is straightforward. We find exactly one exponentially
growing mode. For a &b (cannot decay in y direction), it
1S

We indeed find the behavior we claimed. If it can, the
system decays in the undamped y direction; otherwise, it
decays at the slower, damped rate.

In any case, the modification to co is not large enough
to prevent the dissipation of the baryon excess. In Fig. 8
we have plotted the rate dN&/NzdT using co as given by
(3.21) when (3.21) is smaller than 2M~. The rate exceeds
the expansion rate of the Universe by roughly 10' at the
peak and 10 at a3-0. 1.

IV. NEAR T, AND ABOVE

In this section we shall present a rough argument that
the rate may not vanish at temperatures near T, and
above. The turnover in our expression (2.19) would then
be an artifact of the breakdown of our approximations.
Specifically, we shall address the size of the sphaleron and
whether such transitions can compete with ordinary
thermal fluctuations.

Recall that the sphaleron is of interest because it is the
minimum energy barrier between vacua. One can pass
over the barrier through another configuration, say a
short-scale one, but it costs more energy to do so. The
situation is analogous to a particle on a saddle. One need
not pass near the stationary point to get from one side to
the other, but it takes the least energy to do so. On the
other hand, when the sphaleron's size is much bigger than
T ', it cannot compete with thermal fluctuations —a
short-scale configuration would do much better. So there
is a trade-off between energy and entropy.

Let us then consider the possibility of passing through
short-scale configurations rather than the sphaleron. For
definiteness (though the particular choice will not matter),
let us consider shrunken sphalerons given by

(a) A(g)(x) =—A, 'A, p(x/A, ), y(g)(x) =(5(x/A, ) . (4. 1)

UNSTABLE
DIRECTION

The size of the configuration is R -A, /M~. The 3 field
has been scaled by a normal scale transformation. We

ID5~10 I I I
I

(1 1 (
I

& I I 1
I

I ~ & I
I

I I l 1I I I

u =023
4 x iQ

)
I
—5 x1Q

UNSTABLE
DIRECTION

}02x ip

1 x1PIO

t

I

0.26 0.27 0.28 0.29
T (TeV)

I l

030 0 31 I 032

FICx. 7. Unstable quadratic potential in x and y for (a) a & b
and (b) b &a.

FIG. 8. de/NqdT where Landau damping has been includ-
ed.
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dXg
~(xw T

Xgdt
(4.3)

Clearly, this does not tend to zero in the high-temperature
limit.

Note that these smaller configurations take over the job
of the sphaleron when R —(awT) ' «R, ~

—(2Mw)
So the transition occurs when a3 —1, which is where our
previous analysis failed us and we found the turnover in
our expression for the rate. Note also that the discussion
on damping in Sec. III is relevant to these configurations
since R ' «gT.

Recall that the Higgs-boson fields were not relevant to
this discussion. If these arguments are correct, they may
then also have implications for QCD at finite temperature.

have treated the P field differently to keep
~ P ~

~v/&2 at
spatial infinity so that the energy will be finite.

How does the energy depend on k? The I', (DP), and
V(P) contributions scale as A, ', A, , and k, respectively.
We therefore see that the Higgs-boson field is unimpor-
tant for configurations much smaller than Mw ' and

1I3&~- R «Mw
aw(RT) '

Note that the effective baryon number Qz (1.12) does not
depend on A. .

Let us now consider the case of very large T
[specifically, T»2Mw(T)/aw]. A configuration of the
same size as thermal fluctuations, R —T ', would be very—1/a gsuppressed due to the Boltzmann factor e ~ -e
To avoid this suppression we must consider configurations
of size R —(a w T) '. These do not compete favorably
with thermal fluctuations, but previously we saw that this
suppression occurred in the prefactors and was algebraic
rather than exponential. So the suppression should be
some power of (RT) ' —aw. (In Appendix D, we ex-
pand on this argument by attempting estimates similar to
those presented earlier in this paper. ) We therefore expect
the rate to have the form

dependent upon g /X. The constant ~ is of order one. If
there is significant damping (3.21), the rate of sphaleron
decays per unit entropy is

2

a3 TN/S .
4m.

(5.2)

The rate of baryon-number-changing processes is

(&.3)
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APPENDIX A

Notice that the factor of (a w /4') accounts for a
suppression of about 10 of the rate relative to TN/V.

To get a more reliable estimate of the rate, a good com-
putation of ~ should be performed, since this is the largest
uncertainty in our computation. This analysis is difficult,
since the small fluctuations in the presence of the sphale-
ron do not seem to admit a simple angular momentum
decomposition. Such a computation might be performed
by Monte Carlo methods, but we have no plans to do so.

There are also corrections arising from a nonzero value
of the Weinberg angle. These contributions give only a
small correction to the classical energy of a sphaleron,
and we hope that these effects are small here. Again, the
computation of such effects is complicated by the lack of
spherical symmetry of the sphaleron for ew&0.

V. SUMMARY

The primary conclusion of our analysis is that, for a
certain range of temperature, there exists a well-defined
perturbation expansion which allows for the systematic
computation of the magnitude of sphaleron decay. Our
computations do include the region where the sphaleron
rate eventually becomes insignificant as far as cosmologi-
cal effects are concerned, T «T, . At temperatures very
near T„wecannot do a computation due to uncontroll-
able infrared divergences. If we naively extrapolate our
results to T, we find a vanishing rate for sphaleron-
induced processes, although this vanishing may be an ar-
tifact of the extrapolation.

The number of sphalerons per unit entropy may be es-
timated from our analysis as (see Appendix A)

'3

In this appendix we shall discuss the dilute sphaleron-
gas approximation and its validity. In general, an infinite
universe will be filled with an infinite number of sphale-
rons. So, to evaluate ImF, we need to sum over multiple-
sphaleron configurations. If the sphalerons are dilute
enough that they do not overlap, then we may express
multiple-sphaleron configurations as the superposition of
single-sphaleron ones. We shall justify this assumption a
posteriori.

Let us consider the path integral about two sphalerons:

(A 1)

Now divide space into two volumes V~ and V2, each con-
taining one of the sphalerons. Then we may approximate-
ly split the path integral into

iV/S— &w

4' a3 exp( —A, /a))10 a. .

In this equation, A, is a number between 1.52 and 2.7 exp — s&, A2
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where the factor of 1/2! avoids double counting. This
may be rewritten as

f [2)p] exp —f L,p
1

v exp —
sp

f [2)p]exp —f X,~
X

y, exp

1=ZQ—
2!

Zsp

ZQ

(A3)

2Z $p 1 Zsp 1 Zsp
Zp+Zp +Zp — +Zp—

0 2» Q 0

3

+ ~ ~ ~

In general, summing all the X-sphaleron configurations,
we get

ing (A9), we find that the dilute-gas approximation is also
breaking down at the peak of Fig. 3 where (N/V)' R is
about 1. At a3 ——0. 1, however, it is about 0.04.

APPENDIX B

In this appendix we discuss the normalization and
volume factors JV and V obtained from integrating the
spatial zero modes of the sphaleron using the method of
collective coordinates. For each symmetry group under
which the sphaleron is not invariant, we obtain a set of
zero modes 54 corresponding to infinitesimal transforma-
tions of the fields. The zero-mode integration gives

1/2

(81)

Zsp=exp lnZp+
ZQ

The imaginary part of the free energy is then

Z $pImF =T Im
ZQ

(A4)

(A5)

where V is the volume of the group of symmetries (ap-
propriately normalized with respect to the 5@).

First, let us discuss global gauge rotations of the sphale-
ron and of the vacuum. At spatial infinity, the sphaleron
and vacuum fields approach

as claimed.
To find the sphaleron density, we wish to find what

number of sphalerons contributes most to the ImE. If we
replace (A4) by

Ayah 0 y

U

vac =
&2

A~ —»0, P~—» —r.o. ,v'2
(82)

Z$p
Zp+e~ZQ

0

1 Zsp+e ~ Zo
2! Zp

2

+e ~—Zo3 1 Zsp

3! Zp

3

Zsp=exp lnZQ+ e ~

Zo
(A6)

then [d(pIniF)/dy]~ 0 will give the average number.
We find

iV =Im Z$p

ZQ
(A7)

2' ZspX—I —Im
Q) Zp

(A8)

Another, more physical, way to derive this answer is to
say that the number should be the total rate of transitions
multiplied by the time of a single transition:

Global gauge rotations change P at infinity in both cases.
We can therefore ignore the rotations of these fields if we
fix the boundary condition of our path integrals so that
the fields must have the asymptotic behavior (82). Fixing
the boundary condition is not necessarily enough. Con-
ceivably, there could be configurations which look like a
(global) gauge-rotated sphaleron out to some large dis-
tance R and then, in the region R (r & ao return to the
boundary conditions (82) at an infinitesimal cost in ener-

gy by closely approximating a pure gauge there. This
cannot occur in our gauge fixing 2, =0 because the only
pure gauges are independent of r. We shall henceforth ig-
nore global gauge rotations except to note that any other
zero mode we consider must preserve the boundary condi-
tions (82).

For translations, working with the dimensionless fields
(2.2),

From Eq. (2.14) we can pull out the Im(Z, ~/Zo), which
gives

5A=(e V) A.~+DA, 5$=(e V)P, +iAP,
where the gauge transformation given by

(83)

1 3——JV„(JVV)„, a3 e
—PE (A9) A= r.eXcr, k(g)—:g f"dg'k( ) ( ')

(84)

The average spacing between sphalerons must be com-
pared to the radius of the sphaleron. For the dilute-gas
approximation to be valid, we need (N/V)'~ R && l. Us-

puts 5/~0 at infinity so that it preserves the boundary
condition. Inserting the sphaleron solution (1.9) above
then yields

f dg ~ [(f+k —2fk) +(f —k gf') ]+[h (1 —k)~+ —,'(gh'—)~]
1/2

(85)
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5A= [e(r.o)—2r(r e)(r o)+o(r e)],

5/=0 .
(B6)

The volume of SO(3) in this normalization is 8m . We
then find

(B7)

For the case A, =g, this gives (IVV)„t——5.3 X 10 .
As mentioned in the main body of the paper, global

SU(2)~ does not give a new zero mode; its action on the
sphaleron is equivalent to rotations.

APPENDIX C

For the case k=g, this gives JV„,„,=26.
For rotations 6r=e)&r we must again also make a

gauge rotation to preserve boundary conditions. We find
that

Z ~ [det(p +m )]

Zsp

Z.
—PE P +~0

det
p 2++4

1/2

(Cl)

For interacting field theories, one can to good approxima-
tion generalize this result to

Z ~ [det(p +X*)]
where X' is the proper self-energy. ' This relation holds
so long as the excitations of the system are well approxi-
mated as noninteracting particles together with nonin-
teracting collective excitations. In the analysis of the de-
cay of the sphaleron, we use the dispersion relation for
such excitations extracted from the weak-boson propaga-
tor. The important excitation was a damped plasma oscil-
lation, which should be properly resolved within a pseu-
doparticle approximation. So, in the case of the sphale-
ron,

In this appendix we derive the quasiparticle representa-
tion of Z,p/ZQ from the imaginary-time path integral.
The imaginary-time path integral for a free theory gives

where X* is calculated in the appropriate background.
(We will consider just the case of boson fields here. ) We
may rewrite this as

Zsp =e
ZQ

'~ exp —,
' g tr&ln

Vn 5 + SP

=e '~ exp
—pz, p 1 de

trp ln
2 2mi c q~~ —l

co —P —XQ
2 2

co —p ~sp
2 2

(C2)

where have used the standard trick of turning the summation into a contour integration. The contour C is shown in Fig.
9. Integrating by parts in co,

r

Zsp PE=e '~ exp — dc' ln(1 —e ~")tr&
ZQ 2 2mi c

2@7 2')
co —p —Xp co —p

2 2 4 2 2
(C3)

Now, deforming the contour to pick up the poles of the propagator (C' in Fig. 9), we find

Zp
=e ' expgtrz[ln(1 —e )+ln(1 —e ) —ln(1 —e " ) —ln(1+e " )]I

sinh(Peso/2)

sinh(Pco, ~/2)
(C4)

Here, the frequencies co are the real-trme response fre-
quencies of the system. We can treat the system as har-
monic oscillators having these real-time frequencies by
rewriting this in the familiar form for the partition func-
tion:

C'

g exp[ p(n + —,
' )co,—p]

Zsp —PEs n=e
Zo g exp[ P(n + —,

' )c—oo]
(C5)

c

C

APPENDIX D

In this appendix we shall examine in more detail the ar-
gument of Sec. IV that, at very high T, the suppression of
the rate is algebraic rather than exponential. Our argu-
ment here is not rigorous, and is meant only to be sugges-

FICi. 9. The integration contours for deriving the pseudoparti-
cle formula.
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tive and to clarify the more general discussion of Sec. IV
by making the algebra more explicit.

For a given size R, let us loosely consider the lowest-
energy configuration of that size which "sits on the edge"
between the two vacua. That is, one fluctuation will cause
it to fall into one vacuum, the opposite fluctuation into
the other. (For example, consider all the points along the
ridge of a saddle. ) Except for the sphaleron, these will

not be static solutions to the equations of motion.
We shall focus on R «M~ '. As we saw in Sec. IV

the Higgs-boson fields are then irrelevant and we may
concentrate on the gauge fields. By scaling R out of the
coordinates we then find the action at high temperature
becomes

S3 —
2 f d'gz3[ A (g)]

g (RT)

This is the analog of (2.4) where now

(D 1)

g3a3—= =cttt (RT) .—
4~

(D2)

So we expect

E(R):Ea3 '-—a3 (D3)

Note that a3 «1 when R «(ct~T)
We shall now attempt to evaluate the rate at which the

barrier is crossed by methods similar to those of Sec. II.
But we will explicitly integrate over R while we treat
everything else as Gaussians or zero modes. The calcula-
tion proceeds the same as before, but now we have one

more power of g3
' in (2.13) because we have not per-

formed a Gaussian integration for the R direction. Treat-
ing R as a collective coordinate and normalizing appropri-
ately gives —f dR/R. So

-Mw ' R 2K
(D4)

—T (A'V)'
V 4m

(D5)

The upper cutoff of the x integration is -M~/a~T. In
the limit T»M~/a~, we get

(D6)

If we were to use sphaleron values for E and JV„(JVV)„„
we would get (2X 10 )T . The exact numerical value is
not to be taken seriously; the point is to see that it need
not be vanishingly small.

One should note that the most important part of the x
integration (D5) is where our approximations break down
because o.3 —1. So, at best, this approach could be used to
set a lower bound on the rate by restricting the integration
to a3 «1.

It would be interesting to expand on this argument by
identifying the configuration (or set of configurations)
A (x) which do the job. We have not done so.

This time, V~=R V. For simplicity let us consider the
undamped case co -R '. Then, using x =1/a3,
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