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Critical surfaces and flat directions in a finite theory
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We discuss the phase structure of an O(N))&O(lV)-symmetric model with scalar fields in three-
dimensional space-time. The effective potential of the theory is calculated in the large-N limit and
stability conditions for the model are given. Spontaneous breaking of scale invariance due to the
breakdown of the internal symmetry or to nonperturbative mass generation is observed on a critical
surface, in connection with the appearance of flat directions in the effective potential. The ground-
state energy of the model remains unchanged under the transition from the scale-invariant phase to
the various phases, where scale invariance is spontaneously broken. The critical surface allows for
arbitrary ratios between the scales associated with breaking of the internal and scale symmetries.

I. MOTIVATION

In a globally scale-invariant theory, spontaneous sym-
metry breaking may occur' due to the formation of flat
directions in the effective potential. The broken phase is
characterized by certain fields gaining expectation values;
because of the scale symmetry, the vacuum energy in the
broken phase is identical with that obtained for zero ex-

pectation value of the fields. In a globally supersym-

metric, finite theory, a spontaneous breaking of supersym-

metry is thus forbidden, as long as Lorentz invariance is

maintained. ' A symmetry can preserve a particular
value of the vacuum energy, even if that symmetry is
spontaneously broken.

This property will survive, even if other scales arise in
the problem. Assume, in particular, that some internal
symmetry is broken, but at a much lower scale P, . It may
seem, that the vacuum energy will now be proportional to

By studying a three-dimensional model, in which
scale invariance as well as some internal symmetry are
broken, we show that the vacuum energy Eo remains
fixed and does not depend on P, . We also demonstrate
that any ratio of the scales of spontaneous symmetry
breaking to that of scale-invariance breaking is admissible.
Various ratios correspond to different couplings on a criti-
cal surface.

Spontaneous breaking of scale invariance due to non-
perturbative generation of a mass scale was shown to
occur in models with an internal O(N) symmetry in three
dimensions. In that model, the interna1 symmetry
remains intact.

By enlarging this theory to an O(N) )&O(N)-symmetric
model, we obtain a variety of symmetry-breaking pat-
terns, which will produce two scales, whose ratio could
adopt all possible values.

In Sec. II we study the stable and unstable regions of
the model. We then describe in detail the properties of
the critical surface, which separates the stable region from
the unstable one, and trace the various symmetry-breaking
patterns associated with different parts of the critical sur-
face. In Sec. III the particle content of each phase is
analyzed, with emphasis on the Goldstone boson connect-
ed to spontaneous breaking of scale invariance —the dila-
ton.

II. THE MODEL AND ITS EFFECTIVE POTENTIAL

We shall analyze a model described by the following
O(N) )&O(N)-symmetric action (here written in Euclidean
space):

~E = I d'x
z (~Pi) + 2 (~42) + 2 ~i4i + 2 ~242 + li i(4i ) +vzki 42 +iu3(kz ) ]4N

16+ 2 [hi(pi ) +h2(pi ) p2 +h3pi (p2 ) +h4($2 ) ]
6N

where Pi, P2 are in the vector representation of O(N). The theory can be treated with variational methods or, alterna-
tively, by means of functional integration. We follow here the functional methods methods of Ref. 5 in order to calcu-
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late the effective potential in the large-N limit. The result is (we have changed the overall sign of W when passing from
Euclidean space to Minkowski space-time)

W(~'i, Mi, @z,M2)=Mi +My +hi(C'i —Mi) +h2(@i—Mi) (4'2 —M2)
16m2N

+h3(4 i
—Mi )(N2 —M2) +h4(@~—M2)

where @i——(Pi, i )/N, @2——(i}}}q,i )/N, Mi ——m i/(4m),
Mq m——2/(4') m. i and m2 are the masses of the quan-
tum fields i}}}i and P2, and Pi, i, $2,i are their respective
classical expectation values. To simplify the study, the re-
normalized couplings k,". , p; were set to zero from the on-
set. The couplings h; remain unrenormalized in perturba-
tion theory. An overall constant, which is independent of
the variables h;, is subtracted from the effective potential.
The ground-state energy is determined by minimizing 8'
with respect to the non-negative parameters M &,M2,
Pi, i, Pz, i [k being an O(N) index]. W, the effective poten-
tial of a truly scale-invariant system, is a homogeneous
function of the variables M&,M2, +&,+2. Euler's theorem
for homogeneous functions ensures that the ground state,
if it exists, has zero energy. This simple property of the
effective potential is sufficient to prove our statement
that, whatever symmetry-breaking pattern will occur, the
vacuum (ground-state) energy will not be shifted away
from its value in the phase with unbroken scale invari-
ance.

For any number A., 8 obeys the relation

W(xei)AMiyk, e2)AM2)=A, W(e„Mi, e2,M2) .

In order to obtain a stable ground state, we require, there-
fore, that

phase, the theory is O(N) XO(N) symmetric, scale invari-
ant, and contains only massless particles. In Fig. 1(a) this
region is contained inside the closed curve carrying in-
dices a —e. In Fig. 1(b), it is the region contained inside
the closed surface (of which only a two-dimensional cut is
shown).

(ii) A region of instability, where one of the constraints
(2a)—(2f) is violated. Inside of it, the effective potential is
unbounded from below. This is the region outside of the
closed curve a —e in Fig. 1(a), or outside of the closed sur-
face in Fig. 1(b).

(iii) A compact critical surface, which separates the
stable from the unstable region. A one- (two-) dimension-
al section of the critical surface is shown in Fig. 1(a) [Fig.
l(b)]. Various subsectors of this surface correspond to

hl

1.0

(a}

h ~=h ~=0. 5

W(~ 1~ 1~~ 2~M2) + ~ ~@1&@2~M1~M2+

This constraint on the effective potential implies con-
straints on the couplings h;. The stability of the effective
potential according to (1) is ensured by imposing simul-
taneously the following six constraints on the coupling
constants:

(27h4 hi+2h3 —9h2h3h4) )4(h3 —3h2h4)

(2a) with h4 replaced by 1 —h4, h2 by —h2,

(2a) with hi replaced by 1 —hi, h3 by —h3,
(2a) with h i 4 replaced by 1 —h i 4, h2 3 by —h2 3

0&h& &1,
0&64 & 1

(2a)

(2b)

(2c)

(2d)

(2e)

(2

(b)

h4

These constraints divide the four-dimensional space of
coupling constants into three subsectors [see Figs. 1(a) and
l(b)].

(i) A bounded region of stable configurations, where all
six constraints hold simultaneously as exact inequalities.
Inside of it, the potential has a unique zero-energy
minimum at the point N& ——Nz ——M& ——M2 ——0. In this

FICs. 1. (a) One-dimensional section of the critical surface in
coupling space. (b) Two-dimensional section of the critical sur-
face for h3 ——0.5.
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different symmetry-breaking patterns. They are obtained
by enforcing an equality in one of the above constraints,
while satisfying all the others. The various phases are
symmetric under O(N —1)XO(N —1) [lines a, b in Fig.
1(a)], O(N —1)XO(N) (line c), O(N) XO(N —1) (line e)
and O(N) XO(N) (line d) [the equality taken in (2a)—(2d),
respectively]. A remaining O(N) factor implies nonper-
turbative mass generation for the respective quantum
field, such that scale invariance is always broken on the
critical surface. For every quadruple of couplings h

& 4
taken from this surface, the effective potential has a flat
direction and is stable according to Eq. (1).

The "corner points" of the closed curve in Fig. 1(a) are
points where phase transitions occur [except the intersec-
tion of lines a and b, which both represent the
O(N —1)XO(N —1)-symmetry-breaking pattern]. The
effective potential has, at these points, two flat directions
and two different degenerate ground states. The "sharp
edges" of the closed surface in Fig. 1(b) are lines of phase
transitions.

In order that the flat direction will be contained in the
shape of non-negative parameters 4& 2,M~ 2, additional
conditions are necessary. In Table I we write down the
symmetry-breaking patterns for particular combinations
of signs of h2 3, which are not available. Because the flat
direction will have only the origin ( M

&

——M2 ——4
&

——4z
=0) in common with the region of non-negative parame-
ters N;, M;, no nonzero scale can be created and all sym-
metries are preserved.

Therefore, in Fig. 1(a) the lines a and b represent absent
symmetry-breaking patterns. The end points of the seg-
ment a U b are points of symmetry breaking (belonging
to the phases c and e, respectively), such that the critical
surface remains a compact object.

Minimizing the effective potential 8' with respect to
the components P&,&, Pq, ~

leads to the gap equations

M, P"„,=0, k=1, . . . , N,
M2 pq, (

——0, k=1, . . . , N .

The four sets of parameters satisfying these equations are

3h ) c'] +h 3C 2 +2h 2+)@2——0,
he@( +3h4@2 +2h3+]@p——0 .

The solution is nontrivial, provided that

B =4AC,

where B=9h ~h4 —h2h3, A =h3 —3hqh4,—3h2h ~. In this case, P~,~
and $2,~

are related by

(3)

C=hp

2/y 2 (g /C)1/2

This is a phase, in which the O(N)XO(N) symmetry is
broken down to O(N —1)XO(N —1). The expression
(2/C)' can be shown to adopt arbitrary positive values
with varying couplings h;. By choosing the couplings
properly, we might thus create any arbitrary separation
between the two scales N& and @z.

III. THE PARTICLE CONTENT OF THE VARIOUS
BROKEN-SYMMETRY PHASES

A. The phase with O(N) XO( N) broken down
to O(N —1)XO(N —1)

We use the following Lagrangian in Minkowski space-
time

~=
2 (~p4i)'+ ~ (~~4z)' —I'(4i' 42'» (4a)

V(pi, p2 )=(g/6N )(a p~ +f2 )(b p~ —p2 )

is divided into the subsections mentioned above; on each
such subsection, the potential minima are situated along a
flat direction. In each subsection, however, a definite re-
lation holds between some pair of the effective potential's
variables, while the others vanish.

Let us take, as an example, the subspace defined by
M

&

——Mz ——0; the remaining equations

a~yaM, =0, a~yaM, =0
read

M) ——0,
k

MI =0,
k

M2 ——0,
k

k

Mp ——0,

Mq ——0, P~,~, P2, ~
arbitrary,

M&,M2 arbitrary,

P &,~,M2 arbitrary,

M&, gz, &
arbitrary .

(4b)

Condition (2a) or, equivalently, (3) are automatically satis-
fied for this choice of couplings, regardless of the values
of g,a, b. We define shifted fields o ~, o2 by

In the stable region, all four variables are zero at the
minimum of the effective potential. The critical surface

TABLE I. Absent symmetry-breaking patterns. The
symmetry-breaking pattern marked in a certain cell is unavail-
able for this particular combination of signs of the couplings
hp 3.

h3 h2

1,2

1,2

'l, 2

O(N —1)xO(N —1)
0(N) x O(N —1)

O(N —1)x O(N)
O(N) xO(N)

FICx. 2. Self-energy graphs for the massive field ~ in the
O(N —1)XO(N —1)-symmetric phase. (A wavy line denotes a
factor of f.)
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4 1'=~1'+(~1+f)'

P2 ~2 +(~2,+bf )'

(Sa)

(sb)

of this phase. There are 2(N —1) massless Goldstone bo-
sons (the fields n. 1,m2). The field

X[8b f o +4~2bf o (b n1 m2 )—

+f (b m1 m2 )—], (6a)

cr =(bo1 cr2—)/v 2 . (6b)

From the expressions (6), we deduce the particle content

I

where b =(b )'~ &0.
We obtain, for the potential V in the large-N limit

(keeping g finite as N~ oo),

q(a +b )

6N

0+ =0 )+602 (6c)

(which is the coordinate along the flat direction of the ef-
fective potential) does not appear in V. Its self-energy is,
therefore, zero in leading order of N. 0.+ is interpreted as
the massless dilaton, the product of spontaneous break-
down of scale invariance due to the generation of the
scales C&1, &bz. Unlike in the model for a single O(N) vec-
tor field, the dilaton is in our case a O(N —1) singlet and
not a O(N) singlet. The field o (the coordinate orthogo-
nal to the flat direction) is the only massive particle in this
phase. Its self-energy, in the leading-N approximation, is
given by the graphs in Fig. 2. The induced two-, three-,
and four-point couplings can be read from Eq. (6a). We
find, for the inverse propagator of the 0. particle,

[b'(b'+ l)(q')' '+(g'/144)(a +b')'(b' —l)(b + I)'f0 ]
( D —I( 2)l 2( 2+b2)2b2 2

q'+(ri /144)(a'+b')'(b + I )'f0

2 q Iq —(87)/3)(a +b )f0 [b —(g/384)(a +b )(b +1) ]]Re[iD '(q )]=
q +(ri /144)(a +b ) (b +1) f0

(7a)

(7b)

where we have kept f0 f /N' finite——as N~ oo. The inverse propagator has a zero at q =0. For

ri &r), =384b /[(b +1) (a +b )]

an additional resonance bound state appears.

B. The phase with unbroken 0( N) &(O(N) symmetry and broken scale invariance

We expect, in this phase, the spontaneous generation of masses m1 and m2 for the quantum fields $1,pz, respectively.
There will be 2N massive fields $1,pz, k =1, . . . , N, and a massless O(N) scalar: the dilaton. The calculations in this
paragraph are performed in Euclidean space. We use the Lagrangian

W=
2 (V/1) + —,

'
(V/2) +(16m /6N )[h1($1 ) +hq($1 ) p2 +h3$1 (p2 ) +h4($2 ) ] .

Nonzero masses can be created, provided that the couplings satisfy the relation

[9(1—h4)(1 —h1) —hqh3] =4[h3 +3h2(1 —h4)][h2 +3h3(1 —h1)] .

The parameters m
&

and mz will be related by

[9(1—h4)(l —h1) —h2h3]m1 ——2[h3 +3h2(1 —h4)]m2 .

(8)

We look for the dilaton as a zero pole in the four-point amplitude shown in Fig. 3. We find for the Euclidean O(N)
singlet amplitude in the limit of low external momenta:

192~ m1 mq[h3m1 —3(1—h4)m2]r"'(q') sq 0.
Nq' (h2+h, )m1m2 —3(1—h, )m1' —3(1—h4)m2'

The dilaton appears as a massless, O(N)-singlet bound state of the P, fields, as it did in the single-O(N) case.

C. The phase with O(N) &O(N) broken down to O(N —1))&O(N)

In this phase, the field p1 adopts a nonzero expectation value

( 4'1 ~ (( 1 1

and a nonzero mass mz is generated for the field P2. We consider the Lagrangian in Minkowski space-time,

W= —,'(B„P,) + —,'(B„P ) —(16m. /6N )[h, ($, ) +h (P ) Q +h P (f ) +h (f ) ]
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IV. CONCLUSIONS

.el1'. I)ABP'~~&-
fiI~ )Plh(BI(((jiff)

ImljmIfIP, ~i)N, IIII

FIG. 3. Four-point amplitude for the dilaton pole in the
O(N) )& 0( N)-symmetric phase with broken scale invariance.

and shift the field P&,

4i'=~i'+(~i+f )'

with f=v N fo, where fo is kept finite as N~ co.
The two scales fo and m 2 are related by

(m2/4m)[h2h3+9h)(1 —h4)] =2(h2 —3h, h3)fo

(9)

This holds, provided that the couplings h; satisfy the rela-
tion

[9h)(1—hq)+h2h3] =4(h2 —3h(h3)[h3 +3h2(1 —h4)] .

We have the following particle content in this phase:
There are N massive fields $2, k = 1, . . . , N, and N —1

massless Goldstone bosons vr&, k =1, . . . , N —1. In addi-
tion, we find a massive particle cr~ [see Eq. (9)] and a
massless 0(N)-singlet state: the dilaton. For details of
the calculation, see the Appendix.

We have studied a scale-invariant theory, which is ex-
actly solvable in the large-N limit. Spontaneous break-
down of scale invariance occurs on a compact critical sur-
face. It manifests itself in various phases, in some of
which it is a consequence of internal-symmetry breaking.
The ground-state energy Eo is fixed, regardless of the spe-
cial pattern of symmetry breaking or of symmetry break-
ing occurring at all. This is an example of a theory where
symmetries are used to determine the cosmological con-
stant; its value is preserved, whether the symmetry is
preserved or spontaneously broken. The fact that this can
even occur when there are large ratios of scales may be
relevant to combined solutions of the hierarchy problem
and the cosmological constant problem.
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APPENDIX

In the phase where 0( N) X0( N) is broken down to
0( N —1 ) X0( N), we look for the dilaton in the four-
point amplitude for the fields Pz, which is analogous to
Fig. 3. The Euclidean 0(N)-singlet amplitude in the limit
of low external momenta is

48ge M 4q(3h&M2 —h3fo )+geMz(3h ufo —h2Mz)r"'(q) =
Nq 4(3h4M2 —hzfo )q +g,M2(3h&fo —h2M2)q+48g, M2 [h3fo ++3(1 h4)M2]—2 2 2 2 2

with g, =16~', M, =m, /4~, q=(q')' '.
The dilaton pole of the form 1/q is mixed with the

branch cut due to the Goldstone fields, and is exposed
only, when we take the limit of a single 0(N) vector field
by setting h] ——h2 ——h3 ——0, h4 ——1.

We would also like to calculate the propagator of the
massive o.

&
particle in Minkowski space-time. The in-

duced coupings relevant in the large-N limit are indicated
in Fig. 4. For the sake of simplicity, we specify the
theory to the case

h ~

——h2 H, h3 h4 —1= H, ——fo—— m2/4m—=M2 . ——
The stability conditions (2) impose, furthermore, the con-
straint

0&H &0.75 .

We obtain the following results for the inverse propagator
of the o.

&
particle.

Case 1. The external momentum q satisfies the rela-
tion a =q /m2 (4. The inverse propagator is then

Of (P
2

FIG. 4. Induced couplings for the massive o.
&

particle in the

0( N —1)X0( N)-symmetric phase.
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(21'—4HF)(3co+4HF)a ,—g,—H cu

Re[iD '(u )]=mz u —, H-
(3co+4HF) u + ~g,H co

(Al)

22H2~2~
Itn[iD '(u )]=

(3co+4HF) u + ,g, H—co

with g, = 16m, co =ro(u) =1—2F(u), F(u) =(1/u)arcsinh[u(4 —u )
' ].

The asymptotic behavior is

Re[iD '(a )]~ , H—mz as u ~0.
Case 2. a—:q /m2 )4. The inverse propagator is

(A2)

[(2lro 4HG—)u g, H/—8]A —„g,u (2H—ro+2H+21)B
Re[iD '(u )]=mz u H—

3(A +—„g,uB )
(A4a)

z z
[16H(co +co+2G)u +g,H]muH

Im[iD '(u )]=mz (A4b)

with

g, =16', A =(3co+4HG)u + —,g,H,
B=2Hco+2H —3, co =1—2G,
G =G(u) = (1/u )arccosh[u(u —4) '~ ] .

The asymptotic behavior is

Re[X(u )]~—', Hmz as u ~0

with the tree mass being exactly —,Hm2 . A numerical in-

vestigation of these expressions gives the following results.
For the allowed values of H, only expression (Al) [not

(A4a)] has zeros. For H =0, the inverse propagator is ob-

viously

iD '(u ) =mz u =q

and we have, in the zero-coupling limit, a zero of the in-
verse propagator only at q =0 (a free, massless particle).
For growing H, we find two different zeros for every
value of H, corresponding to resonance bound states.
These two poles of the propagator merge to form a single
one again, when H reaches a critical value H,
=0.0417. . . . For H )H„ there are no poles in the prop-
agator. The two-point function of the o.

&
particle shows,

thus, resonance bound states in a limited domain of the
coupling K.
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