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We investigate in lattice QCD the U(1) problem that the r)' meson (960 MeV) is much heavier than
the m meson (140 MeV), taking Wilson fermions as quarks. We first derive the spectral representa-
tion of the quark propagator and investigate the Atiyah-Singer index theorem on a lattice. Then we

calculate the g propagators as well as the n. propagators for 10 configurations on an 8'&& 16 lattice
and show the following: The large splitting between the flavor-singlet pseudoscalar meson and the ~
meson is caused both by the existence of topologically nontrivial configurations and by the fact that
the u and d bare-quark masses are very small. We further obtain that the mass of
"g"=(uy5u +dy5d)/&2 and the mass of g, =syss are both about 750 MeV. This is in accord with

experiment, because if we assume the transition mass matrix between the two states is about 200
MeV, we obtain the correct masses for the g' and ri mesons and the mixing angle /=10' (rt'=t)~
Xcosg+rts sing). On the other hand there is no noticeable splitting between the p and to mesons.
We clarify the reason for the difference between the m.-g splitting and the p-co splitting. We point out
that if the U(1) problem should be resolved both for Wilson quarks and for Kogut-Susskind quarks,
the mechanisms would be completely different from each other. We also compare our results with

the prediction of 1/¹xpanded QCD.

I. INTRODUCTION

In continuum QCD, it is generally believed that an oc-
tet of pseudoscalar mesons (n., E, and g) would become
massless Nambu-Goldstone bosons due to the spontane-
ous symmetry breaking of the SU(3)-octet axial symmetry
in the limit of zero bare masses of u, d, and s quarks. In
the real world, vr, K, and g are only approximate
Nambu-Goldstone bosons because the u, d, and s quarks
possess small but nonzero bare masses. The U(1) current,
the SU(3)-singlet axial-vector current, is also conserved
naively in the limit of zero bare-quark masses. However,
there is no conserved U(1) quantum number and the rI'

mass (960 MeV) is too heavy for the ninth approximate
Nambu-Goldstone boson. This is the U(1) problem. '

Actually the U(1) current has the triangle anomaly in
quantum theory. 't Hooft pointed out that topologically
nontrivial gauge configurations such as instantons give the
anomaly nonzero values and suggested that this is the
resolution of the U(1) problem. However, there are no
definite ways to compute hadron masses such as the g
mass and the tr mass quantitatively in continuum QCD.
On the other hand, Witten and Veneziano derived in
I/¹xpanded QCD the relation

2

Xt =my' +myt —2m'
2Nf

where X, is the topological susceptibility, f is the pion
decay constant (f„=90 MeV), and Nf is the number of
flavors. X, should be (180 MeV) in order to give correct-
ly the masses of K, g, and g'. Recently there have been
several works computing the topological susceptibility on
a lattice, although not yet conclusive. Furthermore, the
relation itself is derived in the 1/N expansion and in the

chiral limit and therefore it is only an approximate rela-
tion for N, =3 and for a relatively large strange bare-
quark mass m, . Further discussion on 1/¹xpanded
QCD will be given in Sec. VIII.

The lattice formulation of QCD (Ref. 6) provides a
definite way to compute hadronic physical quantities such
as the ~ and g' masses by numerical methods. The pur-
pose of this paper is to calculate directly the mass of the
Aavor-singlet pseudoscalar meson and to clarify the mech-
anism for the splitting between the Aavor-singlet and
-nonsinglet pseudoscalar mesons. A brief report of some
results of the present paper has been given in Ref. 7. For
earlier attempts see Ref. 8.

Let us discuss a little more about the U(1) problem. To
account for the large mass of g', 960 MeV, the mass of
the pseudoscalar (uysu+dysd)/&2 should be heavier
than the rl meson (550 MeV) before the mixing with the
r), =syss. This is the U(l) problem in the world of two
Savors. (See the discussion given in Sec. VII.) Thus we
will deal with the pseudoscalar meson (uysu +dysd)/&2
with degenerate u and d bare masses and will call this
particle the g meson for simplicity in this paper.

The organization of this paper is as follows. In Sec. II
we introduce actions for quarks and gluons, in Sec. III we
list several properties of the quark propagator including
the spectral representation, and in Sec. IV we investigate
the Atiyah-Singer index theorem on a lattice. We present
the results of numerical calculations for the scalar and
pseudoscalar densities in Sec. V and those for hadron
propagators in Sec. VI. We describe in Sec. VII how to
obtain the realistic values of the g and g' masses. Section
VIII is devoted to discussion. In Appendix A we give the
proofs of the properties given in Sec. III and in Appendix
8 we describe a slightly modified version of algorithm to
solve the quark propagator.
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II. ACTIONS FOR QUARKS AND GLUONS

Sq ———g P(n)D(n, m;K)g(m),
n, m

with

(2.1)

D (n, m;K) =5„—K g [(1 y—„)U(n, p)5

+(1+@„)U '(m, p)5„+@].

We take Wilson fermions for quarks. (Some com-
ments on Kogut-Susskind fermions' will be given in Sec.
VIII.) The action is given by

regions: in one of them instantons are stable, while in the
other they are not stable. (ii) The boundary between the
two regions is close to the renormalized trajectory (RT) of
a RG defined in Ref. 13. This fact is in accord with the
idea that the RT represents effectively the long-distance
behavior of any lattice action. Therefore the RG-
improved action given by Eqs. (2.3) and (2.4) can take
into account properly the effects of topological excitations
such as instantons on a relatively small lattice at relatively
small correlation length. Thus we take the RG-improved
action for the study of the U(1) problem. We use periodic
boundary conditions for both gauge fields and quark fields
throughout this paper.

(2.2)

+c~g Tr(1)&2 rectangular loop), (2.3)

with

t."i ———0.331, co ——1 —8ci . (2.4)

The form of the action has been determined by a block-
spin RG study' and by an analysis of instantons on the
lattice. ' ' In fact, in Ref. 14 we have first verified the
existence of instantons by the following procedure. (i) By
cooling gauge configurations which are randomly generat-
ed, we have found stable nontrivial configurations. These
nontrivial configurations are the solutions for the lattice
equation of motion. (ii) The values of the action of these
nontrivial stable configurations are roughly integral multi-
ples of 8' . (iii) After proposing a definition for topologi-
cal charge we have checked that the topological charge
density is localized and that the relation

E=8~ /Q /

(2.5)

is satisfied. Here E is the value of the action and Q is the
topological charge. (iv) The existence of stable (not
quasistable) configurations for the cooling process depends
on the form of gauge action. Further in Ref. 15 we have
shown the following. (i) A parameter space, each point of
which corresponds to a lattice action, is divided into two

We set K„=Kd =K. One problem for Wilson fermions is
the explicit chiral breaking even for flavor-nonsinglet
axial-vector currents due to the Wilson term. In Ref. 11
we have given an argument that if we interpret the diver-
gence of the axial-vector current as the definition of an in-
terpolating field of ~, we can derive the celebrated rela-
tions such as the Adler-Weisberger relation of current
algebra. In Ref. 12 a stronger argument is given that the
partially conserved axial-vector current can be defined
nonperturbatively in the continuum limit. Anyway we
believe that there are no fundamental problems for Wilson
fermions concerning the chiral property in flavor-
nonsinglet channels. In this paper we will investigate the
chiral property in the flavor-singlet channel.

For gluons we take a renormalization-group- (RG-) im-
proved SU(3) gauge action

1
Sg —— cog Tr(simple plaquette loop)

III. SPECTRAL REPRESENTATION OF D

Let us consider the eigenvalue problems

D (K)P; =A, ;P; (3.1)

ysD(K)X;=p;X; . (3.2)

Then we can prove the following paragraphs (Fl)—(F9)
below. (The proofs of these facts are given in Appendix
A. ) The (F4) paragraph is not proven in the general case
and therefore is a conjecture which has been checked nu-
merically for various cases. Our main results are orthogo-
nal relations (F6), and the spectral representation of D
(F7).

(Fl). The eigenfunction P; is K independent and the ei-
genvalue A.; is given by

A, ; =1—K/p;, (3.3)

DP; =A.,*P; . (3.4)

(F3). If A.; is an eigenvalue and P; is the corresponding
eigenfunction:

(D)KP;=A, ;P;, A.;=1—K jp;,
then

(3.5)

D (K)P,' =k,'P,',
A, ,' = 1+K/p;,

Pl(n)=( —1) ' ' ' 'P;(n) .

(3.6)

Here n;
to n.

(F4).
modes.

(F5).

are the coordinates of the site which corresponds

For one zero mode, there are 15 associated zero
They are reminiscent of species doubling.
If P; is an eigenfunction with eigenvalue A, ;, then

4'rsD =~*4 vs . (3.7)

where p; is K independent. If A,; is real, X;=0 at K =p;.
Thus a real eigenvalue becomes a zero eigenvalue at some
K, —=p;. In this case we call the eigenfunction a zero
mode. On the other hand, p; and 7; depend on K in
complicated ways.

(F2). If A.; is complex, A, ,
* is also an eigenvalue. We

denote the corresponding eigenfunction by P;:
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(F6). Orthogonal relations are given by

(P;rsvp, )=0 for A, ,*~A) . (3.8)

a ~0 when a gauge configuration is smooth in the sense
that we can choose a gauge where the vector field A„(n)
defined by

Here we have introduced an abbreviated symbol U(n, p) =exp[iagA„(n)] (4.5)

(P;rsvp, )= gP;(n)rsvp, (n) .

(F7). The spectral representation of D ' is given by

P;(n)P;(m)ys
D '(n, m)= g

(4 rsvp )
(3.9)

(F8). The spectral representation of (ysD) ' is given

(ysD) '(n, m)= g X;(n)X;(m) .
1

PI
(3.10)

(F9). The following relations between the eigenvalues
and eigenfunctions of D and y5D are satisfied: As E—+p;
(complex in general),

p;=A. ; t +O(A, ; ),

is a smooth function of n:

lim Aq(n)~ Aq(x),
a~O

(4.6)

where x =na and A&(x) is difFerentiable.
For the SU(3) group which we are working with we use

the method proposed by Parisi and Rapuano: we
decompose an SU(3) group element into a product of an
SU(2) group element and an Ss element and then apply
Woit's definition of topological charge to the SU(2) group.
We choose nine ways of embedding an SU(2) subgroup
into an SU(3) group which are described in Eq. (10) of
Ref. 20. Seven or eight choices give identical values for
smooth gauge configurations, while one or two give
difFerent ones. This is due to the fact that some decompo-
sitions are singular. We use the majority rule.

Let us consider the eigenvalue equation on a lattice:

(3.1 1) D(K)P; =A,;P;, (4.7)

X; =({);+O(A,;) .

IV. TOPOLOGICAL CHARGE AND ZERO MODES

The Atiyah-Singer theorem' holds in the continuum
theory

Q =n+ —n

Here Q is the topological charge defined by

(4 1)

Q = J d x F„' (x)F „' (x),
32

(4.2)

and n+ (n ) is the number of zero modes of the quark
field with positive (negative) chirality for the eigenvalue
equation

y„(d„igA„)/=A—,Q .

The chirality is defined by the eigenvalue of y5..

rsP=+0.

(4.3)

(4.4)

In this section we investigate how relation (4.1) is
modified and how it is realized on a lattice.

In general, the concept of topology has no intrinsic
meaning on a lattice. Only when the field configuration
changes smoothly it has an intrinsic meaning. As men-
tioned earlier a few years ago we proposed' a definition
for SU(2) topological charge. (Note that at that time only
the Liischer's' definition had been known. ) At that
time, similar but slightly diff'erent definitions for SU(2) to-
pological charge were proposed by Polonyi' and Woit, '

independently. We found that the definition by Woit is
better than ours and Polonyi's because the latter definition
depends on the choice of the boundaries, and checked that
relation (2.5) is well satisfied for the nontrivial solutions
we found with Woit's definition. Any of these definitions
reduces to the continuum one (4.2) in the continuum limit

where D(K) is given by Eq. (2.2). In the lattice theory
with Wilson fermion action, the Wilson term violates
chiral symmetry. Hence, zero modes of the eigenvalue
equation (4.7) are not eigenfunctions of chirality but ap-
proximately eigenfunctions:

rs(t =+0 . (4.8)

p=k(P rsvp)+O(A, ) . (4.10)

For the Wilson quark at finite P, it is not obvious which

Therefore we define the chirality 7 of a zero mode by the
sign of (P rsvp):

&=sgn(0'rsvp) . (4.9)

In the continuum limit [a~0 and K~K, (P= ~ )= —,']
the eigenvalue equation (4.7) reduces to the continuum
one (4.3) except for the normalization factor —'( =2K, ), if
the gauge configuration is smooth in the sense defined
above. In this case, zero modes are eigenstates of chirality
defined by Eq. (4.4) and therefore the chirality defined by
the sign of ((t rsvp) also reduces to the continuum one.

To obtain the number of zero modes for a given
configuration, we have investigated eigenvalues of Hermi-
tian matrix y5D by Lanczos method. If a real eigenvalue
of D is zero at E„the corresponding eigenvalue of y 5D is
also zero at E, . The eigenvalue of Hermite operator yqD
is real and changes its sign when E crosses E, . It may be
worthwhile to emphasize that the sign change implies the
existence of the exact zero eigenvalue. On the other hand,
the eigenvalues of yqD which correspond to complex ei-
genvalues of D cannot become zero for any real K. See
Fig. 1 for some typical examples. Furthermore we can
determine the chirality of a zero mode from the slope of
the eigenvalue of y5D at K„because the eigenvalue A, of
D and the eigenvalue p of y5D are related with the factor
(P rsvp) at K =K, [see (F9) in Sec. III]:
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FIG. l. Eigenvalues p, of y5D ( —0. 1 &p, &0.1) vs K for various configurations at p= oo on an 8 X 16 lattice.

CC 'jj CC jj CC~ jj
Il + —n (4.11)

holds when P is large by the following reason. Here
"n +

" ("n ") is the number of zero modes around
K,'"" b"(1/K & 4) with positive (negative) "chirality"
defined by the sign of (1)(1ty5(t1), and "Q" is the topological

K corresponds to the massless quark. Related with this,
although the K,'"" " where the pion mass vanishes on
the ensemble average is unique, K, for each configuration
scatters around K;"" ". For example, at p=2.4 on an
8 X 16 lattice, 0.157-K, -0.159. [Note that K,'"" " is
about 0.1569(2) which has been obtained from the hadron
spectrum calculation on a 16 )&48 lattice. ' We expect
that the K, for each configuration is larger than this
value. All the K, 's roughly satisfy this condition. How-
ever, some of them are slightly less than this. We inter-
pret this as a finite-size effect. ] If there are more than two
K, 's around K,'"" " for a configuration, they do not in
general coincide. As mentioned above, in the continuum
limit (a~0) K, for a smooth gauge configuration should
approach —,'.

Let us discuss the problem related with species dou-
bling. If there is one zero mode with chirality P around
K;"" ' (1/K&4), there exist 15 associated zero modes in
the "unphysical region" (1/K &4): four (with —X) for
2 & 1/K & 4, six (with + X ) for —2 & 1/K & 2, four (with
—X) for —4 & 1/K & —2, and one (with + X) for
1/K & —4. This is reminiscent of species doubling. We
have checked numerically the existence of these zero
modes for several configurations. We list in Table I, as an
example, 15 zero modes associated with one K, for a
gauge configuration on a 6 lattice at p=2.4.

From the above analysis we may expect that an analo-
gue of the Atiyah-Singer index theorem

charge on a lattice. As mentioned earlier, the topological
charge "Q" and the eigenvalue equation on a lattice
reduce to the continuum ones in the continuum limit if a
gauge configuration is smooth. If p is large, smooth
gauge configurations will dominate the gauge ensemble,
and therefore for almost all configurations the index
theorem on a lattice will be satisfied.

We have first examined the relation between the topo-
logical charge and the number of the zero modes on an
8 &&16 lattice for 16 gauge configurations which have
been generated at p=2.4 and have been cooled down to
P= oo by 100 iterations as explained in Ref. 14. Because
these configurations are smooth, topological charges are

Region

1/K &4

4&1/K) 2

2) 1/K) 0

0) 1/K ) —2

—2& 1/K ) —4

—4& 1/K

0.156 828
0.301 447
0.308 929
0.313 510
0.319829
8.073 44

14.990 82
74.554 2

—74.554 2
—14.990 82
—8.073 44
—0.319829
—0.313 510
—0.308 929
—0.301 447
—0.156 828

Chirality

TABLE I. 15 zero modes associated with one K, for a gauge
configuration on a 6~ lattice at p=2.4.
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definitely calculated. We have also measured the chirality
of the zero modes in the physical hopping-parameter re-
gion (I/X&4) for the same gauge configurations. We
present these results in Table II. We find that the topo-
logical charge agrees with the number of the zero modes
with positive chirality minus that with negative chirality
for each configuration. Thus we confirm that the Atiyah-
Singer theorem holds on a lattice at least at p= ao. (Note
that we have found a gauge configuration with n+ ——1 and
N =1 after cooling by IOO iterations. However, when
the configuration has been cooled down completely it has
reduced to the trivial configuration. Thus we find no ex-
act solutions such that instantons and anti-instantons
coexist on a lattice. )

The relation between the topological charge and the
number of the zero modes becomes more subtle at finite p
than at p= ae. The configurations at p=2.4 are not
smooth enough for unambiguous determination of the to-
pological charge by the Parisi-Rapuano-Woit definition.
Therefore we have measured the topological charge of
gauge configurations after cooling the configurations. In
this case, about one-half of 50 configurations satisfy the
relation (4.11) with this "topological charge" (see below
for more details). Because it is not guaranteed that the
cooling process preserves the topological property of a
gauge configuration, this disagreement does not imply that
the relation (4.11) is not satisfied for finite p. If we were
able to use other definitions which can determine
definitely the topological charge for any configuration
without cooling, the index theorem would be satisfied for
more gauge configurations at p=2.4.

Here we rather propose to define the topological charge
of a gauge configuration on a lattice by the number of the
zero modes with positive chirality minus that with nega-
tive chirality in the physical hopping-parameter region:

Im (Kc)

0+'
Re(Kc)

Im (Kq) (b)

We have also investigated the eigenfunctions of D. By
making use of power method of D ', we obtain the eigen-
function for the smallest eigenvalue of D. If a real eigen-
value of D is smaller than the absolute magnitudes of
complex eigenvalues at K which we choose to apply
power method, as shown in Fig. 2(a), it is not difficult to
obtain a real eigenvalue and the corresponding eigenfunc-

4C 0% CCn+ (4.12)

We use this definition in the following. Note that in Ref.
22 the Atiyah-Singer theorem for Wilson fermions is in-
vestigated from a different viewpoint.

TABLE II. Topological charge and the number of the zero
modes for 16 gauge configurations on an 8' X 16 lattice at P = oo. 0+'

Re (Kc)
No.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

CC

—2
1

3
2
3
2
1

1

—1

—3
—1

0
0
0
0
0

CC n +
iC

2
0
0
0
0
0
0
0
1

3
1

1

0
0
0
0

FIG. 2. Schematic graph for the eigenvalues of D. Solid cir-
cles indicate poles of D ' in K. The open circle indicates the
hopping parameter which is chosen in D for the power method.
The distance between the open circle and a solid circle represent
the absolute magnitude of the corresponding eigenvalue: The
real eigenvalue is the smallest eigenvalue in absolute magnitude
for (a), while a pair of complex eigenvalues are for (b).
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tion by a power method. If not, as shown in Fig. 2(b), it
is difficult. [We have checked that the case in Fig. 2(b)
really happens. ] We have tried to obtain the eigenfunc-
tions up to the second smallest eigen values, using
Schmidt's orthogonalization, for 50 configurations at
p=2.4. The third smallest ones have not been searched
for. With these limitations, we have just compared the
number of zero modes with the "topological charge" mea-
sured as explained above. Then we find that about one-
half of 50 configurations satisfy the index theorem, as
mentioned earlier. Therefore we may say that more than
one-half of them satisfy the index theorem with this "to-
pological charge. " Of course, K, 's and the chiralities of
the zero modes obtained by power method agree with
those obtained by the Lanczos method.

We have searched for topologically trivial
configurations (n+ ——n =0). We have found only one
trivial configuration. Thus topologically nontrivial
configurations dominate 50 configurations. This is natu-
ral because the entropy of topologically nontrivial
configurations [for example, that due to the position in
space and the orientation in SU(3) gauge group of topo-
logical excitations] is large.

In order to see how the zero modes are approximately
eigenstates of chirality, we have calculated the value

t
X/: (4.13)

pseudoscalar density become large and diverge at K =K, .
[Note that the magnitude of the pseudoscalar density
tti(n)y5$(n) becomes eventually larger than the scalar den-
sity g(n)g(n), because P (n)iti(n)& ~P (n)y&P(n) ~. ] The
contribution of other terms in the spectral representation
are approximately constants around E, . Therefore, we
predict the E dependence of the scalar density and the
pseudoscalar density around K =K, as

g(n)P(n) = +b, ,
C

(5.6)

llew(n)y5$(n)= +b~ .
C

(5.7)

We have checked numerically this prediction for vari-
ous configurations. We present the results of a typical
configuration (Q= 1 on a 6 lattice) in Fig. 3. The scalar
and pseudoscalar densities at n=0 which are obtained
from the quark propagator by Eqs. (5.1) and (5.2) are
plotted versus the inverse eigenvalue (1 IC/—K, ) '. They
are remarkably linear and we obtain

tt (0)g(0)=0.000 302(1 E /K, )
—'+—10.9, (5.8)

Q(0)@sf(0)=0.000 423(1 —K /K, )
' —0.0339, (5.9)

by the fit to the form of Eqs. (5.6) and (5.7), respectively.
On the other hand, from the eigenfunction we have

gi
~

=0.92—0.97 at P= oo and
~
Xi =0.5 —0.7 at

p=2.4. We see that as p becomes large, the zero modes
approach exact eigenstates of chirality as expected.

$(0)$(0)=0.000279 9,
P(0)ysi))(0) =0.000 1999,
(P y5i))) =0.661 28,

(5.10)

(5.11)

(5.12)

V. SCALAR DENSITY AND PSEUDOSCALAR DENSITY

and

g(n)i'(n) =Tr[D '(n, n)] (5.1)

g(n)y5tti(n) =Tr[D '(n, n)y&], (5.2)

The contributions from each configuration to the expec-
tation values of the scalar density and the pseudoscalar
density are given by

with the normalization (P P)=1.0. Thus, the factors for
(1 —K/K, )

' determined numerically from Fig. 3 in the
both cases of the scalar and pseudoscalar densities, as
given in Eqs. (5.8) and (5.9), are in remarkable agreement
with those calculated from Eqs. (5.10)—(5.12) with the use
of Eqs. (5.4) and (5.5).

We also show the scalar density and the pseudoscalar
density at n =0 versus the hopping parameter for a wide
range in Fig. 4 (see also Fig. 5 with a different horizontal

respectively. Here, the summation over n is not taken.
Let us consider the quark propagator on a topologically

nontrivial gauge configuration. Let us assume that a real
eigenvalue becomes zero at K =K, . Then, as K~K„

n) (m)ys
D '(n, m)— (5.3)

1 —K/K,

150 -'

100

50

~ ~
l

I I I ~
1

~ I I ~
1

~ I I ~

where P is the corresponding eigenfunction. From Eqs.
(5.1)—(5.3) we have -50

P(n)P(n)—
C

(t (n)@gal(n)

1 i' (n)P(n)
1 X/rC, —

(5.4)

(5.5)

-100—

-150 —,
-1 x105 0 K -& 1x 105

(1 ——)
Kc

2 x 105
~ I t ~ I ~ I ~ ~ ~ ~ I a i ~ I ~ ~ ~ ~ I a ~ ~

As mentioned in Sec. IV, any zero mode is also approxi-
mately an eigenfunction of y5. P (n)ysP(n) =+/ (n)P(n).
Thus as K approaches E„both the scalar density and the

FICx. 3. The scalar density g(0)it(0) and the pseudoscalar
density g(0)y&1(~(0) vs (1—K/It, )

' for a gauge configuration
with Q= 1 on a 6~ lattice at P=2.4.



36 U(1) PROBLEM AND TOPOLOGICAL EXCITATIONS ON A LATTICE 533

100—

1

4(0) 4(ol
Ca)

100—

k[o] ftoj

50— 50—

0- ~ 0 ~ ~
—----------!--------- 0----

-50—

—100—

-150 —,
0.140 0.145 0.150

Kc
a s & I » s ~ I

0.155 0.160
K

I

0.165

-50—

-100—

-150—
I

0.15681

Kc

0,15682 0, 15683
K

0.1 5684 0.15685

150 - '-
: Aoj l, k[o) (b)

- fto]r k[o]

100—

(b)-

50— 50—

0-- 0 ~ '„

-50—

-100—

—150 — .

0.140
I

0.145

Kc

0.150 0.155
K

I

0.160 0.165

-100—

-150,— I I 1 I

0.15681 0.15682 0.15683 015684 0.15685

FIG. 4. The same as Fig. 3 except for the horizontal scale be-
ing replaced with K: (a) The scalar density; (b) the pseudoscalar
density.

FIG. 5. The same as Fig. 4. The hopping-parameter region is
narrower than that in Fig. 4. The solid curves represent the fits
given in Eqs. (5.8) and (5.9).

scale from that of Fig. 4). The hopping-parameter region
where we have extensively calculated the hadron spectrum
is" ' 0.14&K (0.154. In this region, the pseudoscalar
density is much smaller than the scalar density which is
of order 10. In the very narrow region around K, „ the
pseudoscalar density rapidly becomes large together with
the scalar density. Note that the densities change their
signs due to the factor (1 K/K, )

' when K—crosses K, .
We have obtained similar results for many topologically
nontrivia1 configurations on various lattices (4, 6, 8,
and 8 &&16).

For a topologically trivial gauge configuration we can-
not expect that the pseudoscalar density becomes compa-
rable to the scalar density because there are no poles in
D ' for real K. We represent the result for a topological-
ly trivial configuration on a 6 lattice in Fig. 6. The
spikes observed for the case of the topologically nontrivial
configuration do not appear in this case. For the whole
region of K, even above K;"" " (-0.1569), where the
quark propagators are calculated, the pseudoscalar density
is of order 10 and the scalar density is of order 10. For
a topologically trivial configuration there is no term which
dominates in the spectral representation of the propagator.
In fact, we have found four pairs of complex eigenvalues
around Re(K, ) =0.157—0.158, which are shown in Fig. 7.
Even if we take into account these eight terms the spectral
representation of the propagator does not approximate the
behavior of D ' around K,'"" "". This is quite different

from the situation for the Q=1 configuration where one
pole dominates the propagator at K -K, .

From the above we conclude as follows: Only for the
topologically nontrivial gauge configurations and only
when K is very close to K,'"" ", the pseudoscalar density
becomes comparable to the scalar density.

VI. HADRON PROPAGATORS

The propagators of the q meson and the w meson are
given by

and

G„(O,n)=G (O, n) —Xf6 (O, n) (6.1)

G (O, n)=G (O, n),
where

G (O, n)=(Tr[D '(O, n)@AD '(n, O)yg])

(6.2)

(6.3)

G (O, n)=(Tr[D '(0, 0)yq]Tr[D '(n, n)yq]) . (6.4)

Here Xf is the number of flavors with degenerate small
quark mass. In our case Xf——2. The fact that m„»m
means that there is a large cancellation between 6 and6, because the ~ propagator is a slowing decaying func-
tion of n, while the g propagator is a rapidly decaying
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FIG. 6. The scalar density (a) and the pseudoscalar density
(bj vs K for a topologically trivial gauge configuration on a 6
lattice at P=2.4.

FIG. 7. Poles of D ' around Re(K, )=0.157—0.158 for the
same configuration as in Fig. 6. We represent only the complex
poles for which the real part is positive.

function. However, the disconnected part G (0,0) is
much smaller than the connected part G (0,0) by a factor
of 10 —10 in the hopping region where the hadron
spectrum was calculated.

The disconnected part G is the correlation function
of the pseudoscalar density. Therefore when the pseudo-
scalar density is large, G will become large. Hence, the
contribution to G from a topologically nontrivial
configuration will become large as E~K, and will

diverge at K =K, . The leading terms of G and G for
such a configuration are double-pole terms and identical.
Thus G becomes comparable to G, as K~K, . Be-
cause topologically nontrivial configurations dominate the
ensemble, this will be the resolution of the U(1) problem.

It should be noted that the argument given above does
not depend on how a gauge configuration is generated: in
the quenched approximation or in the unquenched calcu-
lation. (See below for more discussion. ) Thus, in order to
confirm the above conjecture we have investigated the g
propagators as well as the ~ propagators on an 8 X 16 lat-
tice at P=2.4 for ten gauge configurations which are gen-
erated by a Cabibbo-Marinari algorithm slightly modified
for vector processors in the quenched approximation,
separated by 500 sweeps after thermalization. Only one
of them is topologically trivial (n+ ——n =0) and the oth-
ers are topologically nontrivial. We have calculated
G (0,0;O, t) and G (0,0;O, t) without taking Fourier
transformation, because it would be very time consuming
to make Fourier transformation and it is possible to deter-
mine the ground-state mass from the long-distance behav-

ior of the propagator e 'It . We have calculated 16
quark propagators, taking the origin at different points in
the temporal direction with spatial coordinates fixed. We
have used a slightly modified version of the conjugate re-
sidual method with an incomplete (LU) (lower and upper
triangular matrices) decomposition which is described in
Appendix B to solve the quark propagator. Then we take
the average of 16 G (O, n) and G (O, n) which are ob-
tained from the quark propagators. In this way we obtain
the G (0,n ) and the G (0,n ) with spatial coordinates
fixed for a gauge configuration, as the averages of 16
G (O, n) and G (O, n). Finally we take the ensemble
average of the results thus obtained for 10 configurations.
To estimate the statistical errors we treat the average for
each configuration as statistically independent. We have
calculated the propagators for all of 10 configurations at
K=0.14, 0.145. 0.15, 0.1525, 0.154, 0.156, and 0.1564.

We show in Fig. 8 the G and G at some selected
hopping parameters (because seven of them would be too
much) which are obtained as the ensemble average for 10
configurations. From the figure we are really able to
confirm that the G (O, n) becomes comparable to the
G (O, n) at 4 ( t ( 12 when K approaches K;"" "".

Let us next calculate the g propagator. The problem
we have to be concerned with is the validity of the
quenched approximation for the calculation of the flavor-
singlet meson mass. Generally speaking, the effect of
quark loops is crucial for the g-m. splitting. Therefore the
issue is how much we can absorb the effect of quark loops
by renormalizing P. We here assume as a working hy-
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FIG. 8. The G (O, t;Oj and G (O, t;0) for the ensemble average at several selected hopping parameters.

pothesis that the behavior G —C ~ e and
G —C2e +C3e " is valid even in the quenched
approximation by renormalizing /3, although the constants
C~, C2, and C3 are different from those in the un-
quenched calculation. This assumption can be checked a
posteriori (Further discu. ssion about this assumption will
also be given elsewhere. ) Then the g propagator is
given by Eq. (6.1) only by replacing the constant Nf with
g=C~/C2. The constants C~, C2, and C3 and therefore
the constant g should be determined for the ensemble
average. We see from Fig. 8 that the assumption on the
behavior of the G and the G is well satisfied for these
propagators when E is close to E,"" "; the G for
5 & t & 11 is similar to the G except for the normalization

constant. Therefore we determine the g by simply equat-
ing (=G (t =8)/G (t=8), because at t=8 the g prop-
agator should be very small. (For small hopping parame-
ters such that g ~ 2.0 we set /=2. 0.)

In Fig. 9 we display the q propagators determined in
this way together with the ~ propagators at the selected
hopping parameters. (Note that the G„at t=8 is missing
because of the method of the determination of g. Of
course, we can make a fine-tuning of g in such a way that
the G„ looks smooth even at t =8. For example, at
%=0.1564, if we change from / =0.735 53 to
/=0. 73383, we obtain the G„shown in Fig. 10.) We
also show in Fig. 11 the p and co propagators at
%=0.1564 which have been obtained by a similar method
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FICx. 9. The g and ~ propagators without Fourier transformation for the ensemble average at the same hopping parameters as in

Fig. 8.

with the same g. We would like to emphasize that the rl
propagators thus obtained are well behaved: If our work-
ing hypothesis is not valid, they will not look like propa-
gators. Thus this a posteriori justifies our assumption.
We notice the following. (i) The rl propagator clearly
starts to deviate from the ~ propagator as K~K,""
and is approximately identical to the p propagator at
E=0.1564 which is nearly equal to %ply according to the
calculation of the hadron spectrum on a 16 X48 lattice '

(K~h„ is the hopping-parameter value where mz/m takes
the physical value). It is interesting to note that the i)
propagators do not change noticeably even if we change
the hopping parameter from 0.154 to 0.1564. This means
that the mass of the q is almost constant from K=0.154

to 0.1564, while the mass of the m' decreases very fast. (ii)
There are no noticeable differences between the p and co

propagators up to %=0.1564. At %=0.1564 ( Kphy),
mz (m ) is several times larger than m: This can be
seen from Figs. 9 and 11. Thus we conclude that m„ is
comparable to mz and is several times m

Next, let us discuss how large the contribution from
each configuration to the G is. To do so we show in
Fig. 12 the contributions to the G from a topologically
nontrivial configuration (Q= 1) and from the topologically
trivial one at K=0.1564. We see the contribution from
the topologically trivial one is much smaller than that
from the Q= 1 configuration. The contributions from the
other topologically nontrivial ones are similar to that from
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FIG. 12. The contribution to the G from a topologically
nontrivial configuration ( Q = 1) and a topologi cally trivial

configuration ( Q =0).

10

K = 0.1564
~ = Gp

the Q= 1 configuration.
Thus we conclude that the large splitting between the g

mass and the m mass is caused both by the existence of to-
pologically nontrivial configurations and by the fact that
Kphy is very close to K,'""

Let us make two comments. (i) In addition to the
seven hopping parameters mentioned above, we have cal-
culated the propagators for each configuration at several
other hopping parameters which are very close to the K,
of each configuration. (Of course, we have not calculated
the propagators for the other configurations at the hop-

ping parameter which is very close to the K„because the
K, for each configuration differs from each other as men-
tioned earlier. ) For a Q = 1 configuration (K,
=0.156757), we have calculated G and G at 14 J(.'s

up to the point where the smallest eigenvalue becomes
10 . When the smallest eigenvalue is greater than 10
the 6 is negligible compared with the 6 . As K ap-
proaches toward K„ the 6 becomes larger and compa-
rable to the G, and when K-Kc, the 6 is almost
identical with the G, as conjectured. See Fig. 13 and
Table III. The results for other topologically nontrivial
configurations are essentially identical. (ii) Because the IC,
for each configuration slightly differs from each other, the
6 fluctuates considerably. Nevertheless, the 6 and
6 for the ensemble average look similar to those for
each configuration.

10

10 '-

10

TABLE III The eigenvalues of D vs the hopping parameters
for a topologically nontrivial configuration (Q= 1) with

E, =0. 156 757 (more precisely K, =0. 156 756 75).
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FICx. 11. The p and cu propagators without Fourier transfor-
mation at %=0.1564.

0.14
0.145
0.15
0.152 5
0.154
0.156
0.156 4
0.156 6
0.156 7
0.156 72
0.156 74
0.156 745
0.156 754
0.156 755

0.106 897
0.075 000
0.043 103
0.027 155
0.017 586
0.004 828
0.002 276
0.001 000
0.000 362
0.000 234
0.000 107
0.000 075
0.000 020
0.000 010
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VII. THE MASSES OF THE q AND g' MESONS

In order to obtain the realistic value of the g' mass, we
have to consider the mixing between our "g"=(uysu
+ dy5d)//2 and g, =syrus. We are able to obtain a very

precise value for the mass of q, including only the G

term, from the hadron-spectrum calculation on a 16 )&48
lattice. ' The hopping-parameter value which corre-
sponds to the strange-quark mass is E, =0.154 which has
been determined from the P meson mass. The g, mass
turned out to be 700 MeV. Even if we include the effect
of the G term, the value only becomes slightly larger.
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We estimate that the "g" mass and the g, mass are
roughly identical and about 750 MeV, because the propa-
gators of the "g" (K=0.1564) and g, (K=0.154) mesons
are almost identical with those of the p and cu mesons at
K =K~i,„, as mentioned in Sec. VI. (The lattice size
8 )& 16 is not large enough to reduce completely finite-size
effects and to determine the mass from the asymptotic be-
havior of the propagator. However, assuming the effects
of finite-size effects are common to all of them and input-
ting the physical p mass 770 MeV, we obtain the estimat-
ed values for the "g" and g, inasses. ) These values for
the masses are in accord with the real world, because if
we assume the transition mass matrix between the two
states is about 200 MeV, we obtain the correct masses for
the g' and g mesons and the mixing angle P = 10'
(g =r)icosP+r)ssinP) which is consistent with that ob-
tained by phenomenological analyses. (See, for example,
Ref. 26.) Note that we use neither the quadratic nor the
linear Gell-Mann —Okubo mass formulas and neither of
them agree with our results [m("i)")=m(q, ) =750 MeV].

Of course, in order to determine precisely the g' mass,
we have to calculate the G and G including the effects
of dynamical quark loops on a larger lattice with high
statistics. This is the problem to be investigated in the fu-
ture.

VIII. DISCUSSION

A. The dift'erence between 0 and 1 mesons

A natural question that arises is why is there a large
splitting between m and mz, while there is no noticeable
splitting between mz and m . Let us first note that the
contribution of a zero mode to G (o,n) is proportional
to

B. Flavor-singlet mesons in various channels

In this paper we are mainly interested in the flavor-
singlet mesons in the pseudoscalar and vector channels.
However, we have also calculated the propagators of the
flavor-singlet rnesons in the other channels. For the sca-
lar (0++) meson, the G is given by

(Tr[D '(0,0)]Tr[D '(n, n)]) —(Tr[D '(0,0)])
(8.4)

The first term is nearly independent of n and is identical
with the second term up to 4 or 5 digits. Therefore there
is a large cancellation between them. This is comparable
to the precision of our calculation. Thus, we are unable
to obtain meaningful propagators for the flavor-singlet
0++ meson. Except for the 0++ meson, the second term
should be zero and this has been numerically checked.
For the 1++ and 1+ mesons, it seems that there are no
noticeable splittings between the flavor-singlet and -non-
singlet mesons, although the data around t=8 are not
good compared with the 0 + and 1 channels. See
Figs. 14 and 15.

The smallness of the 6 for the 1+ meson
[g(n)o,jg(n)] cannot be understood from the fact that the
zero mode is the eigenstate of chirality. However, it can
be understood as follows. In the continuum QCD, if we
average over the position in space and the orientation in
gauge space of an instanton (anti-instanton), we have

P(x)P(x) —1+y5,

where P is the zero mode. Therefore

P(x)o.;JP(x)-Tr[(1+r q)o;J ]=0 .

We may expect the same thing in the continuum limit of
lattice QCD.

P (0)P(0)P (n)P(n ),
for the g meson, while it is proportional to

(8.1)
C. Contribution of zero modes to hadron propagators

y'(0)r r, y(0)y'(n)r r y(n) (8.2)

for the co meson. If the zero mode P is an eigenstate of
chirality,

P (n) qr;r((n()=0 .

Therefore the zero mode does not contribute to G„. Ac-
tually rqP =+/. Thus the contribution of zero modes to
G is small compared with G„. This is the solution for
the difFerence between g and co.

It was already suggested by Isgur and De Rujula,
Georgi, and Glashow that the existence of the quark-
antiquark annihilation diagram for flavor-singlet mesons
which corresponds to the 6 is the origin of the q'-m

splitting. However, it was not clear why there is no split-
ting between p and co. One argument which is based on
perturbation theory was that the difference between ~ and

g originates from the fact that two-gluon states can con-
tribute for the pseud oscalar meson, while three-gluon
states contribute for the vector meson. However, pertur-
bative theory cannot be applied. Now the reason becomes
clear.

This term definitely contributes to the propagator and is
the most dominant contribution at K-Kc. On the other
hand, for the p meson the most singular term

4'(0)r r 4(0)4'( )r r 0(0)
(4~r~0)'

(8.6)

vanishes if P is the eigenstate of chirality. On a lattice at
finite P, zero modes are only approximate eigenstates of
chirality and therefore the most singular terms contribute
to the p propagator but only randomly, because they
should not contribute much on the ensemble average.
Thus the noise-to-signal ratio at E -K,'"" " is very large

Let us discuss how zero modes contribute to the propa-
gators of flavor-nonsinglet hadrons. Let us expand the
propagators in terms of the eigenfunctions of D for each
configuration. Let us consider the contribution of a zero
mode P with eigenvalue 1 —K/K, . For the n meson, the
most singular term with coefficient (1 K/K, ) is—

P (0)P(0)P (n)P(n)
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FIG. 15. The same as Fig. 14 except for the 1+ channel.

for the p propagator compared with the ~ propagator.
The propagators of baryons are composed of the sum of

the product of three quark propagators. After some alge-
bra, we can show that the most singular terms which are
composed of three pairs of zero modes do not contribute
to the baryon (N and 6) propagators.

Thus, the most singular terms contribute to the m prop-
agator, while they do not contribute to the p, N, and 6
propagators. As K~K„only for the m propagator, one
term P (0)P(0)P (n)P(n) dominates. This implies that the
m propagator decays slowly, because P (n)P(n)P (0)P(0) is
a slowly decaying function of n. Thus the pion mass de-

creases more rapidly compared with the p, N, and
masses. This will be related with that m„ is a linear
function of 1/II, while m&, m~, and mq are linear func-
tions of 1/K, when E is very close to E,'""

D. Nature of topological excitations

When /3 = oo, topologically nontrivial configurations
can be identified with instantons as mentioned in Sec. II.
Is it possible to identify topologically nontrivial
configurations at P=2.4 with thermal fluctuations around
instantons? We believe the answer is "yes" by the follow-
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ing analysis. When we plot the (() (n)P(n) versus n for the
zero mode P(n) associated with a topologically nontrivial
configuration, it has a peak. (For a Q=2 configuration,
there are two zero modes each of which has a peak at
different points. ) See Fig. 16 for a Q= 1 case; the peak is
around n = (3,6,5,8). This behavior is similar to that of
the zero mode for an instanton in the continuum QCD,
although the behavior of P (n)P(n) versus n for cooled in-
stantons is smoother than that for thermally excited ones.

(See Fig. 17.) We interpret the position of the peak as the
position of a thermally excited instanton. [Note that al-
though P (n)((i(n) has a peak at some point n o=( no, t o),

P (n)P(n)P (0)P(0) is a slowing decaying function of n

compared with the other propagators as mentioned in Sec.
VIII C because (i) when we fix the spacial coordinate n,
the probability that n=no is negligibly small (1/8 ) and
(ii) even for the case n=no, when we make the average
over the temporal coordinates, the effect of the peak is
smoothed down. )

(0)
gati'(n) f(n): T =4

Z=1

Z=5

Z=2 Z=3

Z=7

Z= 4

2=8

E. Comparison with 1/N expanded QCD

Let us now compare our results with the prediction of
1/N expanded QCD by Witten3 and Veneziano. They
derived the relation (1.1). In particular, Veneziano in his
derivation has used the relation

1 1

q'+ nst' q'+ines +(NI/N, )A,„'

1—1

+m~s 2 2 ~~+
q +mes N,

(b)
4 (n) (ti(n) : T = 8

Z=1 Z=2 Z=3 Z=4

(8.7)

and identified each term with a diagram with increasing
number of quark loops. (nil and m~s are the llavor-
singlet and -nonsinglet masses, respectively. N, is the
number of color. ) If this is valid, the G (one loop) and
the G (two loop) are related by

and

G (0,n ) = 3 I e 'i'"d ~p
1

p +mes
(8.8)

Z=7 Z=8 G (0 n)=A f g~ e'i' d4p
p +mQs Nc p +m~s

(8.9)

Here X~=N, =3. Denoting m~q simply by m, we obtain,
for n =(O, t),

(c)
4'(n) 4(nj: T = 12

Z= 1 Z-2 Z=3 Z=4 36'(n) $(nj: T = 8
Z=1 Z=2 Z=3 Z=4

s V
t

Z=5 Z=6 Z=7 Z=8 Z=5 Z=7 Z= 8

FIG. 16. The scalar density of the zero mode P (n)P(n) vs n
for a topologically nontrivial configuration (Q= 1) at P= 2.4. FKJ. 17. The same as Fig. 16 except for P= ao.
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and

G (O, n)=4m. A —K~(mt) (8.10) worthwhile to emphasize that if the assumption (8.13) is
valid, the g propagators obtained would behave as

[(T/2t) ~ —(T/2t)'~ ](e +e ), (8.18)

G (0, n) =2~ A A.„KD(mt), (8.1 1)

(8.12)

where KI and K0 are modified Bessel functions. On a lat-
tice the integration ranges over p are limited and therefore
the results are slightly different. However, we have
checked the difference is not noticeable in the following
analyses.

Fitting the G (O, n) to

where T=16. On the other hand, the g propagators ob-
tained decays certainly more rapidly than e and are
consistent with e "/t with m„&&m at K=0.156
and 0.1564. We understand this as an indication that our
assumption is valid. At any rate, it would be simple to
judge if we could have the data on a larger lattice.

Let us now discuss the magnitude of A,„.Our numeri-
cal results differ from the prediction of 1/N expanded

for 6 ( t ( 10, we determine A and m. ( T= 16.) Then us-
ing. the same 3 and m, we fit the G (O, n) to

(8.13)

at t=8 and determine A,„.We show in Figs. 18 and 19
the results at K=0.1540 and K=0.1564, respectively.
We obtain A,„,inputting a ' = 1810 MeV (Ref. 21), as

10'

10

10

10

K = 0.1540 gC

and

X„=0.28 GeV at K =0.154 (8.14) 10

10

A,„=0.11 GeV at K =0.1564 .

On the other hand, in I/cV expanded QCD,

A~ =m„+m~ —2m~ ——0.724 GeV

(8.15)

(8.16)

GDc(n)[—=G Dc( On)]=A~ g G (m)G (n —m) . (8.17)

Since we have not calculated the right-hand side, we can-
not compare the relation with numerical results. We hope
we can do it in the near future. At K=0.154 (and also
other K's up to K=0.154), the G for t (5 and t) 11 is
smaller than the fitted curve. If we consider the contribu-
tion from excited states, this behavior is inconceivable.
Therefore we think the assumption is not valid up to
K= 0.154.

If the assumption (8.9) is valid, G —e /t and
6 -e "/t' . On the other hand, our assumption is
G —g /t

First we have to check whether the assumption that the
one-loop diagram and the two-loop diagram are related by
Eqs. (8.8) and (8.9) is satisfied. Because the fitted region
for the G is already small, it is dificult to judge from the
Figure whether G is well fitted to the form (8.9). If we
could calculate both G and G on a larger lattice such
as 12 )& 24, we think it would be possible to judge the va-
lidity of the assumption. Furthermore, because
should be a momentum-independent constant, we can
derive a more general relation between G and G

10

10

10 '-

10
0

10

101

10

10

10

10

10

10

10 '-

10

2 4 6 8 10 12 14 16
TIME

K = 0.1540
6DC

4 6 8 10 12 14 16

TIME
When we compare the results of our assumption (Fig. 9)
with the fits to Eq. (8.13) (Figs. 18 and 19), it is di(flcult
to judge which assumption is valid. However, it may be

FIG. 18. (a) The G together with the fit to Eq. (8.12); (b) the
G together with the fit to Eq. (8.13); at @=0.154.
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QCD by a factor 6 at %=0.1564. There are several possi-
ble reasons for this discrepancy. (i) Our lattice size is not
large enough. Therefore the discrepancy is due to finite-
size effects. (ii) The basic assumption for G, Eq. (8.9),
is not valid. (iii) Because the relation is derived in 1/N
expanded QCD and in the chiral limit, the relation is only
an approximate one for N, =3 and for a relatively large
strange-quark mass.

Let us finally in this section show the result for the to-
pological susceptibility in our case. We have obtained 7,
=[230(13) MeV] . This is based on the measurement of
the topological charge for 50 configurations after cooling
as mentioned in Sec. IV. Our result agrees with other re-
sults. However, we are rather suspicious of the use of
the relation (1.1) as a rigorous relation for the real world,
because of the reasons given above.

10'

A =y5tg, (8.19)

where y5 acts on spinor indices, while t5 acts on flavor in-
dices:

DA= —AD.
Therefore we can prove that

Tr[D '(yqcgiI)]=0,

because

(8.20)

(8.21)

F. Comment on Kogut-Susskind fermions

Let us make a comment for Kogut-Susskind fermions.
We consider the case of four flavors [q„'(n): i =1—4]
with degenerate mass m, since this is the most natural
case for Kogut-Susskind quarks. Let the quark action be
qDq with spinor and flavor indices suppressed. When the
quark mass equals zero, the quark matrix D anticom-
mutes with

10

10

C Tr[D '(yqI)]=Tr[D '(yqI3II)A ]

= —Tr[ AD '(y gI) A]

Tr[D '—(ygI)] . (8.22)
10

10—

10

The disconnected part of the propagators of the flavor-
singlet pseudoscalar meson for Kogut-Susskind quarks is
given by

G (O, n)= (Tr[D '(0,0)(yqI)]

10

10

10

Therefore

lim lim G
V~ oo m~o

XTr[D '(n, n)(yqI)]) . (8.23)

(8.24)

10 I

8
TIME

I 1 I

10 12 14 16

The only possible way for nonzero G is

lim lim G &0 .
m~O V~ co

(8.25)

10

101

100

p I

10

10

10

10 6-

10

K = 0.1564 GDC

L
T ~ ~ T

(b)

This should be related with the spontaneous breakdown of
the symmetry associated by the generator A. Thus even
if the U(1) problem would be resolved both for Wilson
quarks and Kogut-Susskind quarks, the mechanisms are
quite different: For Wilson quarks Tr[D '(n, n)y5]
diverges at K =K, -K,'"" ", while for Kogut-Susskind
quarks it is zero when m=0 on a finite lattice. This im-
plies the inequivalence of Wilson fermions and Kogut-
Susskind fermions even for the case of four flavor with de-
generate mass. We have also checked that the minimum
(in the magnitude) eigenvalue of D for a topologically
nontrivial configuration (Q= 1) on a 6 lattice is of order
0.05, instead of exact zero as in the case for Wilson
quarks. (See Ref. 30 for a discussion of the index theorem
for Kogut-Susskind fermions. )

Note added in proof. After submitting this paper we
noticed that some related works have been done by J.
Smit and J. C. Vink. See Ref. 32 and references cited
there.

6 8 10 12 14 16
TIME

FIG. 19. The same as Fig. 18 except for K=0.1564.
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Therefore

Ptys(ti =0 if A, ,*&A,i . (A 1 1)

and

I'„; =(P;(n)/((t;rsvp;)' ' (A12)

'=P;( )ys/(P;y P;)' ' .

Then the matrices P and P ' satisfy

(A13)

(P7). Let assume that eigenvalues are not degenerate.
Let

APPENDIX A: PROOFS OF SEVERAL
PROPERTIES FOR THE FERMION MATRIX

and

P 'P =I (A14)

We give sketches of the proofs of paragraphs (Fl)—(F9)
which are given in Sec. III. Paragraphs (Pl) —(P9) corre-
spond to (Fl)—(F9), respectively.

(Pl). The D may be written as

P 'DP =

Thus we obtain

0
(A15)

(A 1)

where I is the identity and K is the hopping parameter.
is K independent. Let

D(n, m)= g A. ;
P;(n)P;(m)ys

Similarly

(A16)

pi
(A2) P; n)P;(m)ys

(A17)

then p; and P; are K independent. Therefore

D(P; =(1—K/p;)P; .

(P5). If

DP; =X;P;,
then

ysDysr s(t; =~ r s4 .

(A3)

(A4)

(A5)

If the matrix D is diagonalizable, we can easily generalize
the above proof. The link variables are random numbers.
Therefore for the generic case the eigenvalues are nonde-
generate and consequently we can assume the spectral
representation for D

(P8). Because (ysD) ' is a Hermite operator, it is trivi-
al to prove (F8).

(P9). At K=p;

Therefore we have

D rsvp =~ rs4-
which is equivalent to

0 rsD=~ 0 ys

(P2). Let us consider the secular equation for (A7):

(A6)

0=DO =rsDA .

Hence for K -p;, J; is written in the form

X;=P;+0(&;) .

Substituting Eq. (A19) into Eq. (3.2), we obtain

ysD(IC)[$;+O(A, ;)]=@;[P;+O(A,;)] .

(A18)

(A19)

(A20)

det(D —A, *I)=0 . (A8)

The eigenvalue k; is the solution of (A8). This, in turn,
implies k,* is also an eigenvalue of D.

(P3). The A defined in (Al) connects only the nearest
neighbors. Therefore the sign change of E is equivalent to
the alternative sign change of eigenfunctions.

(P4). This can be proved for the free case. For the
general case it is a conjecture. For a numerical check see
Sec. IV.

(P6). From (A7) we have

Taking the inner product (A20) with P;, we obtain

k;(P;rsvp;)=p;(P;P;)+O(A. ; ),
because p; is of order k;.

(A21)

Dx =b, (B1)

APPENDIX 8: MODIFICATION OF ALGORITHM
FOR SOLVING THE QUARK PROPAGATOR

Let us consider the linear equation

4 rsDAi=7 0 rsPg .

Similarly we have

0 rsDWg ~g0 rsvp'J .

(A9)

(A 10)

for a topologically nontrivial configuration. When E ap-
proaches K„ it becomes difficult to solve the linear Eq.
(Bl), even if we use the conjugate residual method with an
incomplete LU decomposition (ILUCR) which is de-
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scribed in Refs. 11 and 31. This is caused by the fact that
the zero mode dominates the solution x and the corre-
sponding eigenvalue becomes very small. Therefore we
separate the contribution of the zero mode Po from the ex-
act solution:

tion y, we can solve this equation by the standard ILUCR
method. We can obtain the solution x from Eq. (B2).

Another way of modification is the modification of the
initial approximation of the solution. Let x be an ap-
proximation of the solution and let

ap
x = Po+y

AQ
(B&)

r =D (x —x') =b Dx—' . (B5)

Then we make an improvement of the approximation by
with

4or»
CXQ =

ttor stto
(B3)

Dy =b —~o4o . (B4)

Because the zero mode Po does not contribute to the solu-

Thus instead of Eq. (B1) we solve the linear equation for y

t r
Xp=X +

XQ

Note that the zero mode in the solution is exactly given
by that in xp.

Both modifications work well. The former works
slightly better than the latter with respect to the CPU
time. On the other hand, the latter is more eKcient than
the former with respect to the memory size.

~S. Weinberg, Phys. Rev. D 11, 3583 (1975).
G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).
E. Witten, Nucl. Phys. B156, 269 (1979).

4G. Veneziano, Nucl. Phys. B159, 213 (1979).
5J. Hock, M. Teper, and J. Waterhouse, Phys. Lett. 180B, 112

(1986); M. Gockeler, A. S. Kronfeld, M. L. Laursen, G.
Schierholz, and U.-J. Wiese, Report No. DESY-86-107 (un-
published); Y. Arian and P. Woit, Phys. Lett. 183B, 341
(1987)~

K. G. Wilson, Phys. Rev. D 14, 2445 (1974).
7S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Lett. 184B, 375

(1987).
~H. Hamber and G. Parisi, Phys. Rev. D 27, 208 (1983); M.

Fukugita, T. Kaneko, and A. Ukawa, Phys. Lett. 145B, 93
(1984).

K. G. Wilson, in New Phenomena in Subnuclear Physics, Erice,
1975, edited by A. Zichichi (Plenum, New York, 1977).

L. Susskind, Phys. Rev. D 16, 3931 (1977).
'S. Itoh, Y. Iwasaki, Y. Oyanagi, and T. Yoshie, Nucl. Phys.

B274, 33 (1986).
M. Bochicchio, L. Maiani, G. Martinelli, G. Rossi, and M.
Testa, Nucl. Phys. B262, 331 (1985).
Y. Iwasaki, Nucl. Phys. B258, 141 (1985); Report No.
UTHEP-118 (unpublished).
Y. Iwasaki and T. Yoshie, Phys. Lett. 131B, 159 (1983).
S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Lett. 147B, 141
(1984).

M. Atiyah and I. Singer, Ann. Math. 87, 484 (1968).
M. Luscher, Commun. Math. Phys. 85, 39 (1982).

' J. Polonyi, Phys. Rev. D 29, 716 (1984).
P. Woit, Phys. Rev. Lett. 51, 638 (1983).
G. Parisi and F. Rapuano, Phys. Lett. 152B, 218 (1985).
S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Lett. 183B, 351
(1987).
F. Karsh, E. Seiler, and I. O. Stamatescu, Nucl. Phys. B271,
349 (1986).
S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Lett. 167B, 443
(1986).

~4S. Itoh, Y. Iwasaki, and T. Yoshie, Phys. Rev. D 33, 1806
(1986).
Y. Iwasaki, Report No. UTHEP-164 (unpublished).

26J. L. Rosner, in Proceedings of the 1985 International Symposi
um on Lepton and Photon Interactions at High Energies, Kyo-
to, Japan, 1985, edited by M. Konuma and K. Takahashi
(Research Institute for Fundamental Physics, Kyoto Universi-

ty, Kyoto, 1986).
27N. Isgur, Phys. Rev. D 13, 122 (1976).

A. De Rujula, H. Georgi, and S. L. Glashow, Phys. Rev. D
12, 47 (1975).

H. Kluberg, A. Morel, O. Napoly, and B. Petersson, Nucl.
Phys. B220 [FS8j, 447 (1983).
E.-M. Ilgenfritz, M. L. Laursen, M. Muller-Preussker, G.
Schierholz, and H. Schiller, Nucl. Phys. B268, 693 (1986); I.
Barbour and M. Teper, Phys. Lett. 175B, 445 (1986).
Y. Oyanagi, Report No. ISE-TR-86-57, 1986 (unpublished).
J. Smit and J. C. Vink, Report No. ITFA-86-24, 1986 (unpub-
lished).


