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I study a simple variation of the algorithm of Metropolis et al. for simulating statistical systems.
The trial changes in any given variable are taken from a region of phase space far from the old value
but involving only small changes in energy. This results in correlation times which are short com-
pared to the usual applications of the algorithm of Metropolis et al. Tests with SU(2) and SU(3) lat-
tice gauge theories indicate substantial possible savings in computation time relative to standard ap-
proaches.

Monte Carlo simulation has become the primary tool
for the study of nonperturbative phenomena in both quan-
tum field theory and statistical systems. Indeed, this ap-
proach has resulted in theoretical physicists becoming
rather avid users of computer time. Despite severe
difficulties with including anticommuting fermionic fields
in such simulations, the results have been impressive.
The technique has given rise to useful quantitative infor-
mation in statistical mechanics about critical phenomena
and in particle physics about the confining interquark po-
tential, glueball spectra, and the transition to a quark-
gluon plasma.

These simulations have generally used a version of the
old algorithm of Metropolis et al. ' A few years ago
Adler suggested extending overrelaxation techniques for
solving linear equations to Monte Carlo simulations. His
approach, which was further investigated by Whitmer,
was limited to theories where the action or energy func-
tion appearing in the Boltzmann weight is quadratic in
any single individual variable. This restriction to multi-
quadratic actions has prevented application to the more
complicated forms appearing in lattice gauge theory.

Motivated by overrelaxation ideas, I present in this pa-
per a simple variation of the algorithm of Metropolis
et al. This approach is applicable to any theory where
the variables are elements of a group larger than Z2. The
basic idea is to pick a trial change for a given variable in a
region of phase space which is as far as possible from the
old value while not paying a severe energy penalty. This
is done by approximately locating the locus of minimum
energy for the variable under consideration, and then
selecting the trial element on the "opposite" side of this
value.

I begin with a review of the standard algorithm of
Metropolis et al. Consider updating some variable g
whose value lies in a group G. While holding other vari-
ables fixed, write the Boltzmann weight for this variable
as

P,q(g) ~ exp[ PH(g)] . —
In this paper I will always consider variables as elements
of a group. This is quite natural in the standard formula-
tion of lattice gauge theory. This use of group elements is

for notational convenience and is not a practical restric-
tion; real variables can always be thought of as belonging
to the group of numbers under addition.

The procedure of Metropolis et al. considers a trial new
value g' to replace g. This is selected with some probabili-
ty distribution PT g(g'). Here the subscript g on P is to re-
mind us that the trial change can in general depend on
the old element g. The trial element g' is then accepted
with a conditional probability

PT,g'(g) exp[ pH (g )]-
P~ ——min 1,'

PT g (g ') exp[ —AH (g) ]
(2)

If this conditional probability is not met, then the change
is rejected and the old value of g is kept. This construc-
tion automatically satisfies the detailed balance condition

p( i) PH(g) p(—i
)

PH(g'(— (3)

PTg(g') =PTg (g) . (4)

This is convenient because the ratio of PT factors in Eq.
(2) is then unity and can be ignored. The conventional
approach contains an implicit parameter which represents
the average distance the element h lies from the identity.
If this distance is too large, the trial energies will likely be
large and the changes will rarely be accepted, while if h
always lies too close to unity, the changes will usually be
accepted, but their small size will make the exploration of
phase space rather slow. Lore is for a compromise with

where P(g~g') is the overall probability of taking ele-
ment g to g'. When g'&g, P(g~g')=PTg(g')Pq.
Equation (3) is sufficient to ensure that the equilibrium
distribution of Eq. (l) is invariant under the algorithm.
That in variance plus ergodicity are necessary and
sufficient conditions for a Monte Carlo algorithm to bring
any ensemble towards equilibrium.

As usually implemented, g' is found by multiplying g
by a group element h which is chosen with a probability
distribution peaked around the identity and with equal
probability for h and h '. For example, this can be done
by choosing h from a table which contains the inverse of
each of its elements. This particular method of choosirig
the trial change has the symmetry property
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an acceptance rate of order 50%.
The "heat bath" algorithm is a special case of this gen-

eralized approach of Metropolis et al. , wherein the trial
element is taken randomly from the entire group manifold
but with a weighting proportional to the Boltzmann factor
of Eq. (1). In this case the factors appearing in the accep-
tance criterion of Eq. (3) cancel and the trial element is al-
ways accepted. This method is equivalent to the limit of
taking a large number of repetitions, or "hits, " of any er-
godic algorithm to a single variable.

The algorithm proposed in this paper represents yet
another way to choose the trial change g'. Suppose I have
some simple way to find a group element go which ap-
proximately minimizes the energy H (g). Suppose further
that go is obtained with no direct use of the element g;
that is, go only has a dependence on the remaining lattice
variables. The essence of this paper is to propose selecting
the trial element for a Metropolis et al. updating to lie on
the "opposite side" of this element go from the old value
g. In particular I consider the trial element

g =gog go

Note that this construction also satisfies the symmetry re-
lation of Eq. (4). Thus, just as in the usual application of
the algorithm off Metropolis et al. , the acceptance or re-
jection of this element follows solely from the comparison
of a random number with the exponential of the resulting
energy change.

To be more specific about the selection of go, consider
the case where H (g) takes the form

H (g) =ED —Re Tr(gM),

where Eo includes contributions to the energy which do
not depend on g. In the case of lattice gauge theory with
the Wilson action, M is a matrix which represents the
sum of the three sided "staples" surrounding the link to
be updated. For a nearest-neighbor spin model with the
spins being matrices from the group G, M is the sum of
the group elements on sites neighboring g. With this form
for the energy, a natural choice for go is to use the inverse
of a group element obtained by projecting M onto G. As
the correctness of the algorithm does not depend on the
prescription for this projection onto the group, it is advan-
tageous to keep the procedure as computationally simple
as possible. In my tests with SU(N) lattice gauge theory, I
use a Gram-Schmidt orthogonalization process on the ma-
trix rows and then divide the last row by the determinant
of the resulting matrix.

Note that the algorithm cannot be used for variables in
the group Z2. Indeed, in this case Eq. (5) always gives
g'=g and no changes are proposed. This will also be the
case for any group when the system is totally ordered,
with g and go being the identity. Thus to start the algo-
rithm, some disorder must be initially present. This does
not mean that the algorithm will not be useful at low tem-
peratures; rather, the size of proposed changes automati-
cally decreases for cool systems.

In some cases, most notably with the groups SU(2) and
U(1), the matrix M is always proportional to a group ele-
ment. Projecting onto this particular element results in g'
having exactly the same energy as g. In this case the

prescription of Metropolis et al. will always accept the
change, and the algorithm is deterministic and micro-
canonical. This causes two minor complications. First,
the total energy of the system is fixed and thus will not re-
lax to any value other than where it is initially set.
Second, the algorithm is actually independent of the tem-
perature P '. Indeed, as with other microcanonical algo-
rithms, the temperature should be measured during the
simulation with some sort of thermometer, such as an
average kinetic energy, using an auxiliary variable with
simple dynamics, or from a dynamical equation involving
both the temperature and measurable correlation func-
tions.

This issue can be avoided if desired by putting a small
amount of randomness into go. For example, go could be
the product of a deterministic estimate of the element
minimizing H(g) with a random element h chosen near
the identity. If h has a small probability of lying any-
where in the group, this would also eliminate possible
worries about ergodicity. Nevertheless, I have done limit-
ed studies which suggest that correlation times tend to in-
crease with additional noise in go.

I now turn to some tests of the algorithm. Consider
standard four-dimensional SU(N) lattice gauge theory
with the Wilson action

where the sum runs over all elementary squares or pla-
quettes p on a simple hypercubic lattice. The fundamen-
tal variables are group elements associated with the links
of the lattice and the quantity gz represents the product of
such elements around the sides of the respective plaquette
p.

To simplify vectorization, all simulations presented here
used skew-periodic boundary conditions on a 7&7&(7&6
lattice. The links in any given direction were updated in a
checkerboard style, with all those emanating in a positive
direction from odd sites being updated before those from
even sites. The lattices were initially equilibrated with
100 iterations of a heat-bath algorithm for SU(2) and an
optimized 10-hit algorithm of Metropolis et al. for SU(3).
Where error bars are shown, they were obtained by re-
peating the respective experiments 5 or 20 times.

A simple measure of the correlation between two lat-
tices Uand Vwith corresponding links (gt)p and (g~)~ is

C(U, V)= +Re Tr[(g( ') p(gt)y],
1

(&)
n(X

where the sum is over all links l and n~ is the total num-
ber of links. This quantity is unity where U and V are the
same and vanishes for uncorrelated lattices. I will be con-
sidering lattice V obtained from U through a few applica-
tions of various Monte Carlo algorithms. The speed with
which this correlation drops to zero is then indicative of
the efFiciency of the algorithm.

Figure 1 shows the falloff of this interlattice correlation
as a function of the number of Monte Carlo iterations
separating the lattices U and V. Here the gauge group is
SU(2) and P=2.3. The correlation is shown both for the
standard heat-bath algorithm and the overrelaxation algo-
rithm. As mentioned above, for SU(2) the latter approach
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FIG. 1. The correlation between two lattices as a function of
the number of simulation iterations separating them. The model
is SU(2) lattice gauge theory at P=2.3. The solid points are for
the heat-bath algorithm while the open triangles are for the over-
relaxation algorithm presented in the text.
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is both microcanonical and deterministic. In this figure
the heat-bath algorithm appears to give a simple monoton-
ic decrease of the correlation, while the overrelaxation ap-
proach decorrelates somewhat faster in an oscillatory
fashion.

Figure 2 shows the same correlation for the case of
SU(3) at P=6.0. I determine go

' from a Gram-Schmidt

orthogonalization process on the matrix M interacting
with the element being updated. Unlike for SU(2), the
overrelaxation algorithm is now neither deterministic nor
microcanonical. I find the acceptance rate for the trial
changes is 57%.

For comparison Fig. 2 also shows the correlation falloff
for a Metropolis et al. updating with the 10, 64, and 128
"hits" or trial changes for each element before moving to
update the neighbors. Of course, as the number of such
hits goes to infinity one should approach a heat-bath algo-
rithm. These standard runs used trial elements g' selected
by multiplying g with a matrix h chosen with probability
P (h) cc exp(k Re Trh). I chose k =2P because, at least for
this value of P, this empirically optimizes the correlation
decrease (independent of number of hits). For this value
of k and P, the acceptance per hit was 30%.

For all runs in Fig. 2 the correlation appears to be
monotonically decreasing, with the overrelaxation algo-
rithm decreasing the fastest. Indeed, noting the small
change in going from 64 to 128 hits, the figure suggests
that the new algorithm outperforms the heat bath. This is
true even with the naive method for projecting M onto the
group. Although the runs in this figure are consistent
with approaching exponentials, it might be dangerous to
assume that this continues. There could be hidden long-
time correlations which emerge upon further running.

One potential difficulty with this measure of correlation
is associated with the gauge invariance of the system.
Indeed, a random gauge transformation will give a new
lattice with zero expected correlation with the old one.
This is in spite of the fact that all gauge-invariant quanti-
ties are identical on the two lattices. All the algorithms I
will study here are based on updating single links at a
time and do not take any special advantage of the gauge
symmetries of the theory. Nevertheless, because of this
worry, consider the correlation between gauge-invariant
plaquette operators. In particular, define

0.5

c, (U, v)= g(w, —(w)), (w, —(w)), ,
1

p p

where

Wp
———Re Trgp

1

(9)

(10)

0.2

0I

0.03
0

I I I I I I I I I I I

4 6 8 IO I2
I T E RAT I 0 NS

14

FIG. 2. The decrease with Monte Carlo iterations of the
correlation between lattices with the gauge group SU(3) at
P=6.0. The open triangles represent the overrelaxation algo-
rithm. The solid points, the crosses, and the open circles
represent a standard algorithm of Metropolis et al. with 10, 64,
and 128 hits per link, respectively.

on the respective lattice, np is the total number of pla-
quettes, and the expectation value ( W) is the plaquette
averaged over the entire lattice. Because the plaquette has
an expectation value, this is subtracted to obtain a vanish-
ing correlation for independent lattices. One disadvantage
of using this gauge-invariant measure of correlation is
purely numerical; the corresponding numbers fall quite
rapidly and are more difficult to measure than the quanti-
ty in Eq. (8).

In Fig. 3 I show the quantity from Eq. (9) for the SU(2)
runs which gave rise to Fig. 1. Note that with this rnea-
sure the behavior of the new algorithm is somewhat
slower at decorrelating than the heat bath. There is also a
hint of an even-odd oscillation in the convergence. This
might be expected because for the new algorithm a double
hit on the same group element would result in no change
to the lattice. Figure 4 shows the corresponding quanti-
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bal correlation between plaquettes which appears to show
up in the local plaquette-plaquette correlation.

In a sense the overrelaxation following from Eq. (5) is
the maximum that one would intuitively expect to be use-
ful. It might be interesting to consider something less ex-
treme and choose the trial element somewhere between g
and g'. Indeed, the stochastic Langevin equation can be
thought of as an underrelaxed algorithm of this type
wherein the trail element is chosen by multiplying the old
element by a driving force towards go and then introduc-
ing a noise with width selected to make the acceptance in
Eq. (2) unity to lowest order in the step size.

For an intermediate case, I have also considered pick-
ing the trial element by multiplying go by a random ele-
ment h near the identity

g =go~ .
I
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FIG. 3. The correlation between plaquettes vs iterations for
the SU(2) lattices used in Fig. 1. The solid points represent
heat-bath updating and the open triangles are for the overrelaxa-
tion algorithm.

The elements h were selected with distribution

P(h) cc exp(k Re Trh) . (12)

This distribution was obtained via a separate Monte Carlo
simulation. In Fig. 5 I show the acceptance rate for the

ties for the SU(3) runs. Here the overrelaxation approach
with one hit appears to be slightly worse at decorrelating
plaquettes than the 10-hit standard algorithm of Metropo-
lis et al.

That the new algorithm performs less well at decorre-
lating plaquettes than links might be expected from the
fact that the SU(2) algorithm is microcanonical and the
SU(3) case approximately so. Thus there is a built-in glo-
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FICx. 4. The plaquette correlation for the SP(3) runs in Fig. 2.
The open triangles are for the overrelaxation algorithm, while the
solid points and crosses are for standard Metropolis et al. up-

dating with 10 and 64 hits per link, respectively.

FIG. 5. (a) The acceptance rate for trial links chosen using
Eq. (11) as a function of the parameter k appearing in Fq. (12).
The model is SU(3) lattice gauge theory at @=6.0. (b) The
correlation between lattices separated by 10 iterations as a func-
tion of k, where the trial changes are selected as in (a).
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trial changes as well as the correlation between two lat-
tices separated by 10 sweeps as a function of the parame-
ter k. The gauge group is SU(3) and f3=6 0 . H. ere only
one trial change was considered for each variable before
moving on to the next. Note that for a narrow region of
the parameter k, the decorrelation rate is quite reasonable;
indeed, it is better than the standard 10-hit approach as
shown in Fig. 2. This approach does not satisfy the sym-
metry relation of Eq. (3), so the extra ratio of trial proba-
bilities enters nontrivially into the acceptance criterion.
This is somewhat of a disadvantage because systematic er-
rors could be introduced if the matrices h are not chosen
independently with the correct distribution. At large k
the acceptance becomes low because the ratio of probabili-
ties P~ becomes small, while at small k acceptance suffers
because most changes result in large energies.

To summarize I have presented a variation of the
scheme of Metropolis et al. for Monte Carlo simulation.
The approach is motivated by overrelaxation ideas; that is,
I consider trial changes which lie beyond the minimum of
the energy from the old value of a variable being updated.
There are two intuitive arguments in favor of this idea.
The simplest is that the trial element is placed rather far
from the old value without exacting a large energy penal-
ty. Thus one might expect a rather rapid flow through
phase space. A second argument is based on the overre-
laxation idea as used in minimization schemes such as
used in solving linear equations. The position of

minimum energy for a given variable is indirectly
influenced by the variable itself. When the neighbors
were updated, they assumed values which tended to ac-
commodate the position of the current variable. If, how-
ever, that variable were allowed to float, they would in
general move away and one might expect that the best
value for the variable being updated might lie somewhat
further away than the position of lowest energy with the
neighbors held fixed.

Perhaps the greatest advantage of this algorithm is its
computational speed due to simplicity. For both SU(2)
and SU(3) I obtained decorrelations per iteration compa-
rable to a heat bath. Although a heat bath is rather easily
implemented for SU(2), this is not the case for SU(3) and
thus most lattice gauge simulations have been done with a
procedure of Metropolis et al. using of order 10 trial
changes on any link before proceeding. The present algo-
rithm performs best with but a single hit; indeed, further
attempts to change a given variable will just return to ear-
lier trials. Furthermore, the construction of the trial ele-
ment takes only minimally more computation than a sin-
gle hit in a standard application of Metropolis et al. This
advantage may be even greater for spin systems where
there is substantially less overhead involved in calculating
the interacting neighborhood of a variable being updated.

Note added. This algorithm and other variations of
overrelaxation are discussed in a recent report of Brown
and Woch.
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