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Inexact bosonic and fermionic modes are used to give a modular-invariant and holomorphic con-
struction of multiloop amplitudes for heterotic and type-II superstring amplitudes in the light-cone

gauge. Mapping methods are used to simplify this, and a short-string limit is deployed to replace
external interaction vertices by all but two of the Koba-Nielsen sources. Superstring Feynrnan dia-

gram rules are deduced to describe the resulting amplitudes. A further reduction at one loop is

shown to lead to the result already obtained by dual resonance methods.

I. INTRODUCTION

In order to answer the question as to whether or not
multiloop superstring amplitudes are finite it would seem
useful to construct them in a reasonably complete fashion.
The most satisfactory approach to such a construction
would be expected to be by covariant methods. Yet a
different, but more direct attack, may lead to explicit for-
mulas which, while not initially covariant, may later be
put into a covariant form. One such attack would be by
the light-cone (LC) gauge construction of the second-
quantized type-II superstring. ' This may be reduced to a
first-quantized version by methods developed for bosonic
strings, and so allow functional techniques, pioneered by
Mandelstam, to be used. These latter will lead to mul-
tiloop amplitudes expressed in terms of the various
functions —first and third Abelian differentials —and the
moduli of the closed Riemann surface X corresponding to
the string world sheet. The particular moduli will arise in
a very explicit form, being the interaction points and
string widths in the loops. The interaction points will be
those positions on X where the strings fuse. Such a pic-
ture describes the sole contribution to the g-loop ampli-
tude for a closed superstring when X has genus g. Exten-
sion may then be made to open superstrings by inclusion
of open or noncompact Riemann surfaces X; that will not
be considered here.

The multiloop amplitude that results from the above
LC gauge approach for type-II superstrings is very similar
in form to that of the bosonic string except for extra fac-
tors associated with the interaction points. These factors
were already present in the LC fermionic string, but their
multiloop implications have not apparently been investi-
gated. If the multiloop amplitudes for superstrings are to
be analyzed for their finiteness or to be used in physical
applications the extra factors must be evaluated somewhat
explicitly. This requires obtaining a detailed understand-
ing of the positions of the interaction points, especially in
their dependence on the positions of the external strings.
This may be achieved by means of a suitable limiting pro-
cess, the short-string limit, in which all but two external

strings have very small values of p+ (in LC notation). In
that limit the external interaction points, where the exter-
nal strings fuse, may be shown to be close to the external
strings when these are described by a suitable set of vari-
ables, the Koba-Nielsen variables. The short-string limit
will be used here to determine a more specific form for the
factors arising at the interaction points, especially the
external ones.

Before the short-string limit can be used it is necessary
to take complete account of both bosonic and fermionic
inexact modes on X. The former enter in the global
description of the first-quantized functional integral in or-
der to preserve the noninteraction of the left and right
modes, or to preserve the holomorphicity of the ampli-
tudes in the terminology used in covariant bosonic string
analyses. The fermionic inexact modes are apparently
essential in order to give nonzero amplitudes with g) 1.
The transformation under the modular group must be an-
alyzed carefully in order to show that modular invariance
is preserved. This is necessary since the second-quantized
field theory should not apparently have any description in
terms of a marking on the world sheet of the string.

Basic aspects of the construction of the multiloop am-
plitudes are considered in Sec. II. In the following sec-
tion mapping methods are considered for the amplitudes.
The short-string limit is then applied in Sec. IV to simpli-
fy the resulting expressions. The analysis of the tree kine-
matic factors is relegated to an appendix. The resulting
amplitude is then analyzed from its graphical aspect. The
relationship to known superstring tree and one-loop am-
plitudes is considered in Sec. V. Possible divergences of
the multiloop amplitudes are considered brieAy in Sec. VI,
as well as further questions raised by the results.

This paper may be considered as a consolidation and
extension of earlier papers on multiloop superstring am-
plitudes by the authors. '

II. FUNCTIONAL METHODS

In the LC gauge a bosonic string is described by the
transverse embedding vectors X(o) with (d —2) com-
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ponents (if the embedding space is d dimensional). The
formulation of string quantum theory guaranteeing uni-
tarity is that of the second-quantized form, in terms of a
quantum field P(X). The construction of the action and
of the generators of the symmetry groups in this formula-
tion described, for example, for the superstring in Ref. 1

or the bosonic string in Ref. 2, does not involve any
specification of a Riemann surface. The perturbation
analysis of string scattering amplitudes does bring in such
surfaces, by means of reducing the second-quantized am-
plitude to a first-quantized one. At a given loop order
the surface is a sphere with g handles, so of genus g. In-
tegration over surfaces of genus g arises, since this corre-
sponds to summing over different interaction times and
string widths in the loops. However such summation

must only be over conformally inequivalent surfaces, since
the original theory did not distinguish between them. The
first-quantized version can be written in a form which in-
volves only the moduli of the surface up to global trans-
formations (corresponding to the modular group). In or-
der to factor out this residual invariance it is necessary to
ensure that all amplitudes are modular invariant. Part of
the analysis in this section will be to guarantee such in-
variance for LC gauge amplitudes defined functionally.

The basic step in the reduction of the second-quantized
perturbation amplitudes to first quantized form is through
the identification of the second-quantized string vertex
with the first-quantized "sum over surfaces" by the for-
mula

3

+5(X3(o')—Xi(o'))5(X (o') —X (o))= lim f DXexp( —&q ) g &(X(o';,r;) —X;(o;)) .
w~O i =1

(2.1)

In (2.1) the surface X, is the two-string "fusion element"
of Fig. 1, which denotes the fusion of two strings 1 and 2,
with initial values X~ and X2, to string 3 with value X3
after a short time ~. The quantity Sq is the usual LC bo-

sonic string action for the element of area X, . The reality
of the phase in (2.1) denotes that continuation has already
been made to Euclidean time; string positions on the
world sheet will be denoted by p =~+i o. The string
widths are taken to be ap„+ =ma„ for the rth string, and
constancy of width in Fig. 1 corresponds to p+ conserva-
tion.

Decomposition of any LC strip diagram corresponding
to a global Riemann surface X may be achieved into two-
string fusion elements and rectangular strings. The above
result for the fusion elements and a similar result for the
propagator of a string on a rectangular strip may then be
used to rebuild the second-quantized perturbation ampli-
tude as a first-quantized amplitude. Using the rules of
Ref. 2 (and noting that an extra factor of a„enters for any
rectangular strip of width a, due to the difference between
the variable ~ entering the first- and second-quantized am-
plitudes in Ref. 2) leads to a string amplitude

N

Qa '~ g'f DX
r=1

&( exp — f f dX*dX+ f f XJdo dw

sion is possible it will not be attempted here. The source
term involving ~ is defined by integration over external
strings coupled at ~=+ oo. Only massless modes will be
considered here, so ~ only involves specification of mo-
menta and polarizations of such states. When fermions
are included external states will be included which specify
the helicities. How this is to be done will be specified
later. The bosonic action in (2.2) is written in a global
fashion by means of a closed one-form dX and its dual
'dX. Such a description appears necessary if the recon-
struction of the Riemann surface from its decomposition
into rectangular and fusion elements properly accounts
for the possible bosonic modes on the surface. In particu-
lar inexact modes appear to be handled suitably in that
manner, as will be seen shortly.

In the SU(4) && U(1) decomposition of d = 10 closed
superstrings' there are extra Grassmann-valued variables
8",0 and their associated momenta A, ~, A, ~ (the tilde
denoting opposite movement to the untilded and
1& 3 &4; type IIa corresponds to 8",8~,X,Xq). The
fermionic action for these variables is proportional to

(2.3)

where the constant of proportionality is unimportant.
The extra factors at each interaction point are factorizable
into left- and right-moving terms V, V with

(2.2)

Note the remaining factor at the front of (2.2) arising as
the remnant of the momentum-dependent vertex factors

i a; ' at each fusion point as in Fig. 1, after due
account has been taken of the above-mentioned factor a„.
The summation sign g' in (2.2) denotes summing over
internal loop momenta (widths), interaction times, and, if
so required, over the genus g (after inclusion of a suitable
coupling constant). Extension to open strings may be
achieved by summing also over windows on X or cross
caps (for nonorientable surfaces). While such an exten-

=T, V,

FIG. 1. Primitive interaction region for the fusion or splitting
of two strings 1 and 2 into the third 3. The time ~ of the in-

teraction tends to zero.
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v= v(&~ax, &~e),

V(Z, Y)=Z +' —Y Z'+Z 'sY4,

Y; =(p;)„ge"e

lim (~a —o)'~

(2.4)

In (2.4) BX is the (1,0) part of dX and ~a is the value of
the string width at the interaction point. The &e factor
must clearly be handled with care; its presence and re-
moval will be understood in the next section. Also
V= V(&ec7X, &ee). The total amplitude for the type-II
superstring is of the form, for given genus g,

f Q d f g d; f DXDA, DeDXDe
r =1 p i=1

X exp — ' f f dX*dX+ f f (Za, e+Xa,e)+ f f JX+ f f ge+ f f ge

X g V(&~ax, v'~e) V(v'~ax, v'Ee) . (2.5)

In (2.5) integration over the interaction positions wz has been explicitly included as well as over the internal string loop
momenta a;; that these are complex for the closed-string case as compared to real in the open case has been thoroughly
discussed in Ref. 8.

The heterotic string amplitude may be deduced from (2.5) by removal of the terms involving e and BX, and addition
of integration over a set 32 Neveu-Schwarz-Ramond (NSR) fermions P (1 &I & 32) with action f f +5 +do d~. Sum-

mation over spin structures must also be performed, as discussed in Ref. 10. The resulting amplitude is thus

N

+ a„'~ f gd a f gd a; f DXDXDeDQ
a r=1 p i=1

X exp — f f dX*dX+ f f Xa,e+ f f ga,p+ f f JX+ f f ge g V(V'&gX, V'&e) . (2.6)
P

Rea; = Im[p(y;P) —p(P)],
Ima; = Im[p(5;P) —p(P)] .

(2.7)

In (2.7) jy;, 5, j denote a canonical basis of the homology
group H~(X, Z) corresponding to a fixed dissection on the
surface. It can be seen that under the modular transfor-
mation"

B y 3 B y
C D P g' ' 5 C D 5 (2.8)

(where y, 5 are vectors with components y;, 5~ ) then
(Rea, Ima) forms a 2g-vector transforming under (2.8) by
the same matrix. This is because the complex quantities

The summation over spin-structure leading to the
O(16) )&O(16) model may also be performed in (2.6), with
a suitable signed factor giving opposite but equal contribu-
tions from the even and odd spin structures on X. It is
not necessary to include vertex factors for the NRS fer-
mions g since invariance in the compactified 16 dimen-
sions has not been broken.

Modular invariance of the expressions (2.5) and (2.6)
may be proved by a direct analysis of the eA'ect of a
modular transformation on the various factors. It will be
shown later, associated with discussion of the short-string
limit in Sec. IV, that the integration measure Q, , d a;
is invariant when

a; are obtained by finding the change of Imp around the
y; or 5; homology cycle. The transformation (2.8) relates
the new homology basis to a linear combination of the
old, so that (Rea, Ima) must transform in a similar
manner to the basis (y, 5). The same result will be shown
more explicitly in the next section by means of the short-
string limit. The invariance of the measure follows im-
mediately. It will also be shown in the next section, by
using mapping methods, that the interaction positions pz
are invariant under (2.8). Modular invariance of the fer-
mionic integration in the NSR sector for the heterotic am-
plitude (2.6) is guaranteed by the construction and ap-
propriate summation over spin structures. ' '

It is necessary to consider the transformation properties
of e and A. (and e and A. ) on the world sheet under coordi-
nate transformations. These properties are essential in or-
der to determine the Green's function for 0 and A, , and
also the exact nature of the spaces of functions on which
the operators B~,B- act in (2.3). These latter will deter-
mine the values of dethP, detB-, which will arise on per-
forming the functional integrations in (2.3), as we will see
later.

Before LC gauge fixing the functions H, A, were scalars
with respect to arbitrary coordinate transformations on
the world sheet. ' In the process of gauge fixing a factor
of p+=X+ has been absorbed into the action (2.3). The
manner in which this may be achieved is ambiguous, in
that a power (p+)' may be absorbed into e, (p+)' ' into
k, for any real number a. It is also relevant to note that
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although LC gauge fixing no -longer allows arbitrary coor-
dinate transformations on the world sheet the scale trans-
formation p~ap, aER is still allowed, and is a symme-
try of the bosonic action in (2.2) and the fermionic one of
(2.3) provided X are a set of scalars while

tail before the functional integration over X can be per-
formed. The closed one-form dX (dropping the vector la-
bel associated with the transverse modes) can be decom-
posed globally into an exact and an inexact part:

p~ap: 8~a '0, A~a' 'A, , p+~ap+, (2 8a) dX=dX,„+ g Z; V;+H. c. (2.9)

where a is any real number.
At the first-quantized superstring level the weight a ap-

pears to be arbitrary. This does not seem to be so when
the second-quantized action is considered, including the
vertex factor (2.4) in the interaction term. To see this we
note that the scaling transformation of the superstring
second-quantized field N, may be read off, for example,
from its equal-time commutator brackets [Eq. (3.7) of Ref.
1] to be

C&~ 'a 'Qa

where Q denotes the product along the length of string
X. Using this weight for P it follows that the weight of
the interaction term [(4.7) of Ref. 1 and including the in-
teraction vertices (2.4)] is a, as is necessary for a term
in the Hamiltonian. Furthermore this implies that the
vertex

~

V) of (4.11) of Ref. 1 must have scaling weight
a ', on use of Eq. (4.32) of Ref. 1. The unique solution
of the continuity equations for the X, A, , and 0 coordi-
nates gives the vertex

~

V) transforming as a ' provided
a = 1, as may be seen by direct inspection of Eqs.
(4.19)—(4.24) of Ref. 1. This fixes the scaling weights of 8
and A, to be —1 and 0, respectively, so that the space of
0's is that of vectors, the space of A. 's is that of scalars. In
particular Bz will act on (1,0) functions, i)- on (0, 1) func-
tions.

However as far as the Z plane is concerned, the
SU(4)XU(1) Grassmann variables A, and 8 are chosen to
be automorphic forms of weights (0,0) and (0,1), respec-
tively, with respect to the covering group of X acting on
the space of the Koba-Nielsen variables z. Thus if
p=F(z) is the automorphic mapping function the corre-
sponding variables O=F'0 and A, = A, are forms of weights
(1,0) and (0,0) under the group I of mappings, such that
X is conformally equivalent to [z j /1. For A, is clearly a
scalar under 1, while if @El and since p(z)=p(y(z)) by
the automorphic character of F, then 0() (z))
=y'(z)F'(z)&(z) =y'(z)&(z).

It may be helpful to remark here that although helicity
(in the 7-8 directions) does not appear to be satisfied by
the expression (2.5) due to the vertex factors V, V (each
with helicity —1) there is a compensating + 1 unit of hel-
icity from each of the 6 function of 0 and 0 conservation
at the interaction point. This latter can be shown directly
in mode form, or using contour-integration techniques in
the field-theory case, using

8(z)A, (co ) =—1 1

277 z —CO

Thus overall J conservation occurs in the functional
construction of (2.5), as it did in the original mode form
(or second-quantized version) of Green and Schwarz. '

It is necessary to analyze the bosonic action in more de-

f f dXh *dX= f f do drX, „AX,„

1——Z+ ImHZ . (2. 10)

There is an ambiguity in the second contribution on the
right-hand side (RHS) of (2.10) since it cannot be detected
on decomposition of X into rectangular and two-string
fusion elements. The coefficient in front of this term will
therefore be multiplied by a factor (1+a). It will be
shown in the next section that a may be chosen so that L
and R modes do not interact. With this modification

X;„(zi)X,"„(z2)= G(zi, z2)5'

AG = —2~6

Z' Z =sr(1+a) '(ImII);

(2. 1 1)

The integration over X and A, may now be performed in
(2.5) or (2.6). That over X leads, after translation of X by
G J, to the factor (detb, o), where b, o is the Laplacian
acting on scalars, together with contractions of factors X
in the vertex factors V or V. These factors involve BX or
BX, which is to be written, by (2.9), as

OX=OX„+Z;v;, OX=OX,„+Z;v;, (2.12)

with V; =U;dz, 8=i)/Bz, etc. The rules (2.11) are then to
be used for the expressions (2.12) in V or V. In the pro-
cess of integration over X a suitably modular invariant
measure must be used for the separate variables (2.9).
Under the modular transformation (2.8) it is necessary to
transform V to preserve the normalization V~ =6,&,

j
and H, as

V (A+BII) 'V,

11 (C+DII)(W+BII)
(2.13)

It is necessary to transform Z contragrediently to V to
preserve (2.9)

Z ~Z (2+BII) . (2.14)

The invariant measure related to (2.14) is

The inexact part in (2.9) has been expanded as a sum of
harmonic one-forms, with complex basis being taken as
the first Abelian differentials V; on X (1(i (g). Thus
besides the exact mode X,„, the usual embedding vector of
the world sheet of the string, inexact modes arise de-
scribed by g(d —2) complex coordinates. The first Abeli-
an differentials are taken to be normalized as usual:

f z. V&
——5;~, f VJ ——II;~ with II the period matrix of X,

with H = H, ImH ~ 0. The bosonic part of the string ac-
tion now becomes, with (2.9),
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P d Z;(detImII)
i=1

N

F(z)= g a„G(z,z„) . (3.1)

Thus the modular-invariant measure for X is

Dx,„gd Z;(det ImH)" (2.15)

On integration over the Z s the final factor in (2.15) is
eliminated by a similar but inverse factor arising from the
exponential of the last term in (2.10).

The integration over A. and A, leads to the factors
5 (a 8)5 (5&8). The integration over the NRS fer-

mions in 2.6 gives'. det Bz', where o. denotes the
spin structure involved and the suffix —,

' on 0 denotes that

Bz is acting on true spinors on the world sheet, i.e., on
( —,', 0) forms. Finally the translations of X by O'J pro-
duces the usual exponential factor exp( —,

' J I JG*J). The

translation BG*J or BG*J must also enter into the BX or
BX term in V or V at the interaction vertices.

III. MAPPING METHODS

In order to perform the remaining integration over 0
and 8 in (2.5) or over 0 only in (2.6), as well as to be able
to use the short-string limit explicitly it is appropriate to
transform from the LC strip diagram, with variable p, to
the Koba-Nielsen variable z. The use of this mapping was
pioneered by Mandelstam to construct the open-bosonic-
string tree amplitude and extended to the one-loop level

by Arfaei both for the open and closed bosonic string. '
Mapping methods occur riaturally in the dual-resonance-
model (DRM) approach, and the open-bosonic-string am-
plitudes for arbitrary loops were directly derived in terms
of a Schottky uniformization in the z plane. ' More re-
cently Mandelstam' has used the z plane to give a func-
tional approach to construction of the multiloop bosonic
string amplitudes. Green and Schwarz' have also de-
rived tree and one-loop superstring amplitudes directly in
terms of such variables by DRM techniques.

For a general closed Riemann surface there are power-
ful theorems' which allow a uniformisation of X by a
domain D in the upper-half plane U. There will be a
Fuchsian group I, a subgroup of PSL(2, R), which is iso-
morphic to II

~ ( 2 ) and for which 2 is conformally
equivalent to U/I . It is also possible to give a Schottky
uniformisation of X in terms of a domain in the whole
complex plane C outside a set of nonintersecting Jordan
curves. This latter arose naturally in the DRM ap-
proach' through the work of Burnside. Other than not-
ing the lack of absolute convergence of the Burnside
Green's functions in certain regions of moduli space, ' it
is not necessary to choose a specific uniformisation. That
is preferable since the amplitude was originally defined on
X, so that only after achieving as much simplification as
possible explicit forms of the various functions on X need
to be used. Following Mandelstam the mapping p=F(z)
introduced in the previous section is taken to be

since this is invariant under (2.14) and the transformation
following from (2.13)

ImH (BII+3)+ ' ImII(BII+ 3)

a, , a,—G(z„z )= ——u;(z, )(ImH) ';u (z ) . (3.3)

For a = 1, (2.11) reduces to

z;zj ——(~/2)(lmH ');~ .

Then it follows from (2.12) that

a„X(z, )a, X(z, )=a„a, G(z„z, )+z, z, u, (z, )u, (z, )

=0. (3.4)

Equation (3.4) may be regarded as the LC version of holo-
morphicity in the internal variables discussed in the co-
variant string approach for the vacuum amplitudes. The
discussion in Ref. 6 is actually not directly related to the
above analysis for the type-II superstring since in the
latter case there is cancellation of the bosonic and fer-
mionic z plane part of the determinants. The above
analysis is thus only for the nondeterminantal part.

It is difficult to argue for a&0 when starting from the
second-quantized field theory. In that case, and for alI
a&1, there will be explicit interactions between L and R
movers, as given by the RHS of (3.3). In Sec. V it is
shown that such terms vanish at one loop, in agreement
with results obtained by DRM methods. The situation
for higher loops is unclear, but they could still vanish.
The natural choice for a would then be zero.

A similar question does not arise in the heterotic string,
since the inexact modes do not contribute as they have no
propagators, z;z~ =0, so the modes can be integrated
harmlessly away.

The interaction vertices p~ are defined by

p~ =F (z~ ), F'(z~ ) =0 .

For p near p~ it is possible to expand

(3.5)

The Green's function G in (3.1), with real part defined by
(2.11), may be constructed from the third Abelian
differential with complex normalization. This is the func-
tion g,b(z) for which dq, b has poles at a and b with resi-
dues —1 and +1, respectively, and for which the normal-
ization dg, b

——0; the notation of Lebowitz will be
r

used since it is most appropriate for discussion of the
finiteness properties of the resulting multiloop amplitudes.
It is also helpful to use that

f dr), b =2mi[u;(a) —u;(b)],

where u; are first Abelian integrals, du; = V;. The expres-
sion for G for which the real part is single valued on X (a
necessary criterion if 6 is the Green s function for 6 asso-
ciated with X) is then'

G,b =r),b+2miu;(ImH) ';J Im[uj(a) —ui(b)] . (3.2)

It is convenient to choose b=z~, so G(z, z, )=G, ,„(z).
Then r is summed only up to 1V' —1 in (3.1).

It is interesting to note how holomorphicity of the
type-II amplitude is achieved by the choice a =1 in
(2.11). From (3.2) it is seen that
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8/Bp —F'(z) '8/»
—[2(p —p )F"(z )] ' '&/» . (3.6)

There is therefore a vanishing factor e '~ in (3.6), where
&e is the same factor that was necessary in (2.4) to make
the vertex factors V and V well defined. The origin of
these &e factors is now clear; they arise due to the e
divergence character of derivatives BQ, BP' at the interac-
tion points. The effect of the transformation to the z
plane on the interaction vertices is to introduce a factor

i

F"(z~ )
~

' for the type-II superstring and a factor
F"(zz )

' for the heterotic string; BX then denotes
(0/»)X. There is still a &e factor multiplying the
Grassmann variables in (2.5) and (2.6). This is to be han-
dled by solution of the 5-function condition 0-0=0.

P
It is now appropriate to restrict the external sources

solely to the massless string modes. This is satisfactory as
far as low-energy problems are concerned, and since the
higher modes are most likely unstable is very likely
enough to describe the total theory. In any case the func-
tional techniques allow for the calculation of higher mode
amplitudes if they are stable in terms very similar to the
massless modes. The particularly interesting question of
finiteness of amplitudes ' will already be searchingly ana-
lyzed if only the massless modes are considered.

The external string states will now be described by mo-
menta p„, in the usual way, and by LC superfields

P„(0„,g„,u„). The variables g„are polarization vectors
with g„.p„=O; they, as well as the p„'s will be chosen to
be only six-component, with g

—' =p —' =0. Formulas
obtained using such a choice are to be expressed in terms
of the SO(6) invariants g„p„g„.g„p, .p„which may then
be extended to the full SO(1,9) invariants. The u„are hel-

icity states which will not be considered in detail.
The solution to the constraint 0-0=0 may now be writ-

P
ten down. The boundary conditions are that 0- 0r as
p-pr. These are both satisfied by

N —1

0= g a„BpG(p,p„)0„+ g 0;u; (3.7)

p p—p
—

—,'(z —z~ )'F"(zp )+0((z —z~ )') .

Near an interaction point the derivative 0/BP therefore be-
comes

so 0-0, . A similar argument also applies to the higher
modes as will be shown elsewhere. For them the con-
stants 0„ in (3.7) are replaced by the Fourier coefficients
H„„of 0(p„) and integration on the external string length
is performed.

The first term on the RHS of (3.7) then becomes

N —1

g a„ f dr)„BpG(p, p„) . . QH„„e
r =1 0 n

(3.7a)

where p„=r+ia„g„, 0&g„&m, and 00„=0„of(3.7). It
is to be noted that (3.7) and (3.7a) may be used to show
that the periodic boundary conditions on the external
strings are satisfied by (3.7) and (3.7a), since they repro-
duce the Fourier series for 0(p) as p-p„, as can be shown
by explicit calculation of the nth Fourier coe%cient

N —1

F'(z) — g a„
r =1

(z —z~ ),

so that

N —10- g a, 0„
N —1

g a„
r=l

This reduces to (3.8) using g„&a„=O. Furthermore
this latter condition ensures the invariance of (3.8) under
the global supersymmetry (SUSY) transformation 50„=e.
This global SUSY invariance is present in the original
theory and may be used to determine 0N, say, in terms of
the remaining H„s; the determination is by means of (3.8).
It is also useful to note that at an interaction point p~ the
value of 0 is expressible in terms of 0, 1

——0r —01, with

where 0(g„) is given by (3.7) and (3.7a). There is no fur-
ther boundary condition on 0 at an interaction vertex ex-
cept that of periodicity around the whole string, in con-
tradistinction to the case of the spinning string. However
the conformal weight of 0, discussed in the previous sec-
tion, is important to remove the vanishing factor e' at
the interaction vertex in (2.4), as will now be explained.

As p-pN then

a, G(z,z„)-(z —z )-',

provided that

N

g a„0„=0 . (3.8)

N —1

&e0(p~)=F"(z~) ' g a„B,G(z~, z„)0„~+ g 0;u;
r =2 i =1

(3.9)
That (3.7) satisfies 8-0=0 away from the sources is im-

P
mediate from the construction of Cx so that
B-B&G(p,p„)&0 if p&p„and the fact that the u; are holo-
morphic on X. It should be pointed out that, as in (3.1), r
is summed only up to (N —1) when b=z~ is chosen in
(3.2). Then as

p —p„(1& r & N —1), F'(z) ——a„(z —z„),
and

0,G(z, z„)——1/(z —z„),

This may be seen true since the coefficient of 0~ in (3.9)
reduces to a~8, G(z~, z~) with use of (3.5). Expression
(3.9) will be an important one in further determination of
the amplitude in the next section.

To give a complete evaluation of the 0 integration the
measure must be analyzed in a similar manner to that of
the X integration. The first step in this is to give an or-
thogonal decomposition with respect to the usual inner
product on one-forms f,g given by (f,g)= f f f hg.
Write
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0=0~+0t,
e, = (4~)-'a,G*a,e,

(3.10)
D05(a 0)-=DepD0, 5(0, )(deta-)

Using (3.7) for 0~ leads to

(3.1 1)

so that 8-0~ =0, and, for two one-forms,

(el 02) —(elp 02p )+ (elt 02t )

Changing variables from 8-0 to 0~, 0, in the 5 function
gives a Jacobian factor (deta-), and leads to

p

N —1

(e~~, eq~)=0~;(ImH)~eq, +const X g a„0~„02„. (3.12)

The constant factor in the second term on the RHS arises
by regularizing the inner product by removing small cir-
cles of radii 5 around the sources z„. The resulting mea-
sure may be taken as

N

D9= Q d 0; Q d 0;(detImH) Q d e„d 0„5 g a„0„5
i=1 i =1 r=1 r=1 r=1

(3.13)

The argument for modular invariance of the first three factors on the RHS of (3.13) is identical to that for the inexact
mode measure in (2.15) with 9=(0;) transforming as Z in (2.14). There appears to be a slight arbitrariness about the
powers of a„entering (3.13) associated with d e„d 0„, but it only seems possible to obtain a sensible short-string limit in

agreement with DRM results' ' if (3.13) is used.
It is to be noted that if the modular transformation is associated with p~p (p) then since F is defined on the surface,

independently of a marking, aF/a &=(aF/ap)(ap/ap'), and thence pz ——pz. This was used earlier in discussion of the

modular invariance of the amplitudes (2.5) and (2.6).
In summary the results of the functional integration over A, is to produce the constraint 8 0=0, since A, acts as a

P
Lagrange multiplier, while further integration over 0 then reduces to integration over analytic 0's with boundary values

0, at the external strings r and additional inexact holomorphic modes. Thus the integration over A, , 0 is not Gaussian, so
it does not lead to Green's functions joining all of the interacting vertex; only those functions joining an interacting ver-

tex and an external string can arise. The detailed form these lines take will be analyzed later.
The net result of the above discussion is that the amplitude for the scattering of N external massless states, described

by the superfields P„, takes the value from (2.5) for type-II superstrings

f Q a„' (detho) (detaz) (deta-)
r =1

N

X g d'p g d'~, exp[p, p, G(z„z, )] g d'e, d'0, $,(e„e„g„g„~,)

N

X Q d 0;d 0;(det ImH) 5 g a„0„5 g a„O„

N —1 N —1 g
X g V F ' a,X,„+ g aG(z, z„)p„,F ' g a„a,G(z, z„)0„,+ g 0;U;

r =2
V(, ). (3.14)

Terms involving the bosonic inexact modes have been dropped, so that there are no contractions in (3.14) between a, .X,„
and a,—X,„. A similar expression occurs for the heterotic string from (2.6), obtained by dropping all terms with a tilde in

z

(3.14) and modifications of the differential operators as specified at the end of Sec. II. This leads to (for nongauge parti-
cles)

N

J Q a„' (deta )
' Q d p~ Q d a; exp[p„p, G(z„,z, )]e(0

~

Hg I )

g
X + d 0„$„(e„,g„,u„) g d 0;(detImII) 5

N

g a„e,

N —1 N —1

X ~ V F (Z, )
'" a,X,„+ y , a(G, ,z-)z„7, F '" y ~„a,G(z, ,z-„)O„,+ y 0, U,

r=1 7 =2 i =1
(3.15)
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In (3.15) Bz operates on scalars in the p plane and
6(0

~

II I ) is the 6 function at zero for the matrix
HI, where I is the Cartan matrix of the even self-dual
lattice A for E8&&E8 or spin 32/Z2. This expression is
also explicitly modular invariant since Qg

&
d 0; trans-

forms as [det(CII+D)], the 6 function as
[det(CII+D)], and (detB&) ' as [det(CII+D)]
The net factor of

i
det(CII+D)

~

is exactly compensat-
ed for by the transformation of (detImII) . The total
expression may be extended straightforwardly to the case
of massless colored gauge vectors, with compactified mo-
menta p„and gauge indices [IJ], by including the factor

exp 2 g p„p, g(z„,z, ) 6(0
~

II)
f'(S

and replacing 6(0
~

III ).P„( ) by 6(u
~

IIS I )P( l( ),
with

It is convenient to denote G(z, zi) by L(z). Then there
will be (N —2) values of z~ arbitrarily close to an associat-
ed z„as the a„'s —0 (2 (r (N —1); the remaining 2g in-
teraction points will not be close to the z„s, and so will in
general satisfy

L'(z~) =0 . (4.2)

z, =z, +a,a, (1+b,„a„)+O(a, ) . (4.3)

For z, given by (4.3) the following estimates may be used:

The values of those zz's close to a z„will be called exter-
nal interaction points, to distinguish them from the solu-
tions of (4.2), which will be denoted internal interaction
points (living in the space of moduli of X and being unre-
lated to the external sources). The positions z„of the
external interaction points can be obtained by a perturba-
tion series in the small parameters a„(2&r &N —1). To
achieve this suppose

r m=1

and

16—I —1/2 (rj Ipr=2 g ttm em
m =1

with e a set of basis vectors of A.

G'(z„z„)=G'(z„z„)+O(a, ) (s&r),
G(z„z, ) = —ln(z, —z, ) +P(z„z,),
G'(z„z, ) = —(a,a, ) '(1 b,„a„)—+P'(z„z, )

+a,a, P"(z„z,)+O(a, ') .

(4.4)

IV. SHORT-STRING LIMIT

The short-string limit is a technique initially introduced
by Mandelstam ' and since used by other workers ' ' to
simplify calculations of string and superstring tree and
loop amplitudes. It is used to find the various functions
M; of the kinematic invariants (p;pi) in the expansion of
an amplitude M

M= +KM; .

The functions K; are invariant functions of the external
polarizations, helicity states, etc. Choice of a particular
kinematic configuration may enable M to be obtained, as
well as the functions K;. Assuming that these are all in-

dependent then the resulting functions M; can be calculat-
ed, and hence an explicitly covariant result be obtained
for M. This technique will be used here with the soluble
configuration being chosen as a„-0 (2 &r &N —1), so
that all but two of the strings are very narrow. The re-
sults we obtain by this technique will be ten-dimensionally
Lorentz covariant. The results obtained seem to depend
on the choice of nonshort strings chosen, but are known
not to for the tree level with N =4 (Ref. 7). This remains
true at all higher loops for N =4, as is shown by the ex-
plicit symmetry in (s, t, u) of the expression (5.23), so that
the same covariant amplitude will be obtained whichever
of the initial and final strings are taken short. A similar
result should be valid for higher N; this will be discussed
elsewhere. "

It is proposed to determine solutions of (3.5) with (3.1).
For b =zN the resulting equation reduces to

The estimates in (4.4) may be inserted into (4.1) and terms
of a given order in a„equated. To O(a„),

a, =[aiL'(z, )]

b,„=—a, [(1—5„,)G'(z„z„)

+5„[P'(z„z,) +a,a iL "(z, )] )

(4.5)

N —1

G'(z„z„)p„=— g G'(z„z„)p„
r =1 2 f+S

+[A, —(a,a, )
—']p, +O(a„)

'

(4.6)

with A, =P'(z„z, ) + (a,a, ) 'b,„a„,

N —1

g a„O„,G'(z„z„)= g a„O„,G'(z„z„)
l =2

+[A,a, —(a, ) ']8,&+O(a„~),

(4.7)

F"(z, )=(a, a, ) '+O(1) . (4.8)

The higher-order terms may be calculated in (4.3), if so
desired. It will be seen later that the O(a„) term in (4.3)
does not enter the short-string limit for the closed super-
string amplitudes under consideration.

It is now necessary to estimate the leading order in n„
in the various expressions in (3.14) or (3.15). This results
in

N —1

g a„G'(z~, z„)+aiG'(z~, z|)=0 .
p' =2

(4.1) The relevant vertex factors from the external interaction
vertices (EIV's) are
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N —1

28, X'+"+ 28, X+ A„p„+ gp, G'(z„,z, ) —(a„a„) 'p„

Xa„a„—a„'0„~+A„a„0„~+g a„0,~G„', +0;v;(z„) 'r
s~r'

+28, X ' a„a„—a„'0„~+A„a„0„~+g a, 0, ~G„', +0;u;(z„) (4.9a)
s~r

and from the internal interaction vertices (IIV's) are

28, X'+'+ 28, X+ gp„G'(-, z„) 0, , (- )+ y G(- )0,

+25, X " 0;u;(z )+ ga„G'(z, z, )0„~ (4.9b)

The next step in the analysis is to consider the vertex factors V in (4.9). The product (4.9b) over the internal interaction
vertices (IIV s) may be expanded in increasing powers of a„. The lowest-order term, —1, involves a product of two or
four 0; for each IIV, there being 2g of the latter. If the quadratic Grassmann factors at the IIV's are considered first, the
overall product is therefore over 4g factors of the 0;. Berezhin integration will thus set the 0; to zero in all of the EIV
factors. The integration over 0 s from the IIV factors can now be performed explicitly and will lead to an overall factor

2~aT(z)= J IId 0;II y0;v;(z )
a=1

(4.10)

where j=(J&, . . . , Jzg), z=(z&, . . . , z&g). The notation is 0 ~=0 p'zz, with normalization J d 00 '0 ~=5'~. When

g= 1

T;(z)=[u(zi)v(zq)] 5,„, (4. 1 1)

while for g=2

T;(z)= g u) (z))v) (zp)vp (z3)uq (z4)5' '5'' —4u~(z~)uq(z~)v~(zq)uq(zq)u~ (z3)vp (z4)Tr(p'p'p'p')
1,2, 3,4

4
FGH '1+16 II vt(z )vz(z')& + pAEpBFpcGpDH

j=1
(4.12)

Each IIV will contribute a further factor [F"(z )] . This is to be multiplied by the term O(II„z' a„) arising from

the other factors in (3.14).
The crucial factor under discussion is, for general N, and to within inessential factors

N —1 2. N . N —1 '& N —1M"'= J II d'0. 0. "II &.
" r .0. II ( ~ .'")

s=1 r =2

r =2 s+r

N —1

X II a„' 2B, X+ g p, G„,—(a„a„) 'p„'" ' -2—a„'8„.+ g a, 0,~G„,
s+r

X II [F"(z )] 2B, X+ g p„G'(z, z„)]
r=1

T, (z) . (4.13)

Contractions may arise in (4.13) between X's at IIV's and
EIV's; the number of these EIV-IIV Feynman lines will
be denoted by r. There can then be contractions between
s IIV's alone and between t EIV's alone. The resulting
contribution to M~ of order II„z'a„r will be denoted
by MN""", so that M~' ——Y M' """" In particular
the case MN" ""was evaluated as a function of the co-
variant scalar products of g„'s and p„'s in the first paper
of Ref. 7 in some detail. The other cases with r&0 can be
evaluated in a similar manner. They are discussed in de-
tail for N =4 in the Appendix.

It should be added that in considering solely the quad-
ratic Grassmann factors in (4.9b) terms containing factors

~7+i 8g ~7+i 8
zr Z

have been dropped. This can be justified since each such
term must have an associated quartic Grassmann factor
a, [0,~+0;u;(z, )] . Since it is of O(a„) the correspond-
ing external wave function Grassmann factors must be
0, 01, so that the above Grassmann factor must contrib-
ute 0, i[0;u;(z, )] ~. Since 2g IIV's already contribute 4g
factors of 0;, this term gives no contribution.

The same result follows for terms with factors

a X7+"O X7+"
Z za

which will arise from quartic Grassmann factors in (4.9b).
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Such a term is zero if there is an unsaturated internal
B~ X +'; another factor

~7+ i8g ~7—i8
Za zp

with associated Grassmann factor [0;v;(zfi)) . It is there-
fore necessary to replace the last two factors in (4.13) by

Iz I, I pairs z &,z ~
)a P

N —1

2a, X+ y G (z„,z„)p„
r=1

pairs (a,P )

8B,B, G(z ),zp) ) T,'(z)
a P

(4.14)

with

T,'(z)= f Pd 0; g [0;v;(z )] '[0;v;(z )]',
i =1 Izg)

(4.15)

~7+i8g ~7+i 8
S ~P

is necessary. But then the Grassmann factors are
[0;v;(z )] [0,i+0;v;(z, )] 0, 0i, and this is to be multi-
plied by 4(g —1) factors 0i', the result on Berezhin in-
tegration must be zero. If there is no unsaturated internal
B~ X +' then there will be 4g+2 factors 0]., and again
zero results.

There can be nonzero contribution from internally con-
tracted factors

where the set of points [zs I U [pairs z i,z&~ ) compromise
all of the IIV's.

We may interpret (4.13) as arising from a set of bosonic
lines from each IV or source. Between IV's or sources
z~, z~ the bosonic line factor is 4B,„B, G(z~, zs ). Instead
of such bosonic lines at any IV or source, zq there is also
sum of external bosonic line contributions
Q„B,„G(z~,z„)p„, where r&A if zq is a source. The
modification introduced by (4. 14) is that a set of pairs of
IIV's may only have the internal bosonic lines between
them, without the external bosonic line contributions.

There are also terms of O(G.'„),O(a„a, ), . . . ,
O( g„z' a„) from the quadratic fermionic IIV factors,
which are to be multiplied by the terms of complementary
order in the remaining contribution from (4.9) to give
terms of O( g„2'n„). These are discussed in detail in
the case of N =4 in the Appendix.

A general analysis of these higher-order terms may be
performed by introducing the concept of fermionic Feyn-
man lines. The quadratic Grassmann factors at the IIV's
will be considered first. The O(a„), . . . , terms in the
IIV factors can only arise by replacing some of the fac-

2J 2J
tors: [0;v;(z )) '

by either [0„i0,v;(z )) 'G'(z, z„)
2Ja

or by [0„,0„] "'G'(z,z„)G'(z,z, ).
Each of the factors G'(z, z„) arising in this way will ber

denoted a fermionic line. Either one or two fermionic
lines can arise, respectively, from a given IIV from the
above IIV quadratic factors which are the Grassmann
variables. The factor generalizing T, (z) of (4.15), associ-
ated with single fermionic lines from z to z~ and z

Im

will be

T[A„I[ji Ij(z)= j pd'0;+[0; v, (z, )] '+[0; v; (z, )] "Q[0v(z)) '0v, (z )
i =1

(4.16)

corresponding to the extra fermionic lines

Q G'(z, z„)g G'(z, ,z, )G'(z, ,z ) .

The manner in which the external source factors combine
with (4.16) are given in detail for the case N =4 in the
Appendix. In the case of higher N up to four fermionic
lines can be drawn from a given IIV to diferent EIV's,
and it is expected that, as for the case of N =4 discussed
in the Appendix, there is an exclusion principle prevent-
ing both bosonic and fermionic lines. This has been
checked in specific cases, where similar factors to those in
(A16) arise, which vanish if a fermionic and bosonic line
go from an IIV to an EIV. The general Feynman rules
that go into the construction of the L and R factors sepa-
rately are the following.

(a) There is 1 bosonic Feynman line going from each
IIV z . This either goes to another IIV z~, when the line
has value 20, B,&G(z,zii) or to an EIV z„, when the line

has value 8 G(z,z„)p„or 2B, 8, G(z,z„).
a r

(b) Fermionic Feynman lines may also occur from

IIV's to EIV's, there being a maximum of four such lines
from each IIV z and one to each EIV z„(2 & r & N —1);
the contribution from such a line is 3,— G(z, z„).

(c) There is the "exclusion principle" that there is nev-
er both a bosonic and a fermionic line from an IIV to an
EIV. This principle will turn out to be of crucial impor-
tance in the analysis of divergences.

(d) There is an overall tensor-spinor vertex function
Ti(z;z) associated with the vectorial indices j and posi-
tions z of the IIV's and of the EIV's z, which have fer-
mionic lines going to them.

(e) There are similar contributions to (a) —(d) from
right-moving vertex factors described earlier.

(f) An overall factor

(det ImII) exp[p„p, G(z„,z, )] Q ~

F"(z )
IIV's

(g) Integration is performed over EIV's, IIV's, loop
widths, and twists.

Further restrictions are also necessary to exclude dia-
grams apparently allowed by the above rules but not in-
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Ct1
—6g —2(N —2) +4

N —1

=2

from the interaction vertices. Further factors of u arise
from transformation of variables. It is natural to rescale
the internal values of pr and a; by

eluded in the short-string limit of the amplitudes (3.14) or
(3.15). Before the final amplitude can be written down it
is necessary to discuss the powers of the a„'s arising from
the above considerations; only the type-II case will be dis-
cussed in detail. From each EIV there will be a net factor
of a1 a, and a further factor of 0. 1 from each IIV,
since a1 is the factor of proportionality times L in the
mapping function F of (3.1). There is a further factor of
e1 in the elimination of the integration over ON, and a
factor of a, from each external state by its normaliza-
tion. ' The net factor of a's is therefore

No choice of b could cancel a power of factors a, unless
the factor is Q„,a„. There is thus the strong consisten-
cy check on the short-string limit (SSL), that it leads to
the leading-order amplitudes with such factors of a, that
they can be canceled by A. That is so if

a=O, b= —1. (4.20)

from l to N for r, instead of the range 2 to N —1, is im-
portant. Any other order of vanishing in the a„'s of the
factors in (3.14) would not lead to the range of r in this
first factor of (4. 18). The ratio of determinants
6=(b,o/detB&B-) can only have contributions from the
singular points of the metric on the string world sheet, so
that

b

(4.19)

Pr=o'1Pr u; =+1 u;

and the Jacobian for the transformation from p„ to z, is

N —1

(4.17)
r =2

The net Jacobian is

The value of a in (4.19) may be evaluated from the con-
formal anomaly in two dimensions for manifolds with

boundary; the particularly relevant boundary is a set of
small contours encircling the sources and the interaction
points, following the analysis of Mandelstam. ' The
di8'erential operator 0 is denoted by V'

1 acting on the
space J ', in the notation of Alvarez, so that (in that
notation)

J=B(p„,P,a; )/B(z„,p, a; )

N —1

6g+2(N —2) —2 ~ IL~ I
2

r ~

The total combination of J and the net factor of a's at the
IV's is therefore

(4.18)

The fact that the product of the factors a„ in (4.17) is now

b, =(detV", b,o)/det'(V', V' ~) .

Since detV'0 ——(detV', )*, detV,'=(detV' &)* then the con-
formal anomaly terms cancel exactly in the evaluation of
lnb, . However there are constant (o.-independent) terms
which are to be chosen to ensure the Lorentz invariance
of the resulting amplitude. From the values (4.20) it is
necessary to choose the overall constant to agree with
(4.20). The covariant amplitude for the type-II super-
string that results can be written as

N —1 2g g
amplitude= d z„d p d a; detImH exp, p, G zr, z,

r =2 cx = 2

X g Ag'"""(u, g,p, G) g Ag'"""'(u, g,p, Cx (4.21)
(f, r, s, t) (g, u, V, IV)

where Ag'""" denotes the coeKcient of +„z'a„a„' in
Mg'""" and f, g denote the number of fermionic lines. It
is to be noted that the factors a„ in (4.13) are canceled by
the second factor of J in (4.18) The explicit dependence
of 2' ""on the first Abelian di6'erentials or the a s has
also not been shown. The form of (4.21) shows clearly
the holomorphic nature of the amplitude.

In order to calculate the heterotic amplitude (3.15) it is
necessary to evaluate the conformal anomaly contribution
to the factor (detb, o) . This may be obtained by a simi-
lar manner to that associated with the type-II superstring
discussed above. From the calculation of Mandelstam,
the conformal anomaly factor in (detb, o) is'

(4.22)

In the SSL this reduces to

N—g —t'X —2)/2 —1

' r=1

r =2

—1/2

—1/2

(4.23)

When combined with the factors arising from the vertex
factors, the external state normalizations and the Jacobian
J, a net factor in the a's of e1 g+' ' +, remains. It is
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therefore necessary to choose the constant factor

(d tg )
—6 —2g —(x —2)/2+2 (4.24a)

N

(detg )

r=1
a„/ (4.24b)

in order that the SSL be well defined and nonzero. The
value of (detb, o),,„„in (4.24) is to be compared to that re-
sulting for the closed bosonic string by a similar ap-
proach, for which

from the formula for the determinants:

where

detH =(detho) (detV~—iiz) (detV~ &)~,

det~ = (detho)

~

detii
~

=(detho)
~

detV~ i
~

Use of the Quillen formula'

(4.25)

(4.26)

It is possible to use (4.24b) as a definition of (detb, o),,„'„,
again to within an arbitrary constant factor. The ratio be-
tween the square of (4.24a) and (4.23b) is (Q„& ~

a„~ )

which is equal to the constant factor for the type-II super-
string given by (4.20). Such a relation between the
heterotic, bosonic, and type-II constant factors follows

~

detV'~ iraq
~

=(det'bo) 'X(known functions) (4.27)

immediately leads to (4.25), and hence to the relation be-
tween the integration constants discovered above. The to-
tal heterotic amplitude which results, including the
remaining factors of (4.23) in (3.15), is then

N —1

amplitude= d z„L „' L,'
I' =2

X Q d p ff d a;exp[p„p, G(z„,z, )](detImII)
(x =2

2g

X g 8[[@](0 II)]' [P(X)] g [L"]
' g Af'"""(u,j,p, G), (4.28)

a=1 (f, r, $, t)

where P(X) is the partition function (det'8), ' of the left-moving bosons evaluated in the z plane, with the nonholo-
morphic factor (det ImII) extracted. The wave functions for the external states have not been specified above, but may
be taken as the set [(t~(x,u, g, O), Pl(x, u, g, 8), P~, (x, u, g, O) I. The superfield P~ is the d = 10 supergravity multiplet, while

Pl and P~, are the "neutral" and charged super Yang-Mills sectors, where pl =2 with pl belonging to the even self-dual

root lattice of E8& E8 or spin 32/Z2.
The above expressions (4.28) may be described in terms of a set of "string" Feynman rules. The Feynman lines are of

two types: (a) joining either EIV's or IIV's, but not both EIV's, with value 2B&B&G(A,B) (A here is the point or its
uniformisation in the z plane); (b) from an EIV or IIV with value g„&'BzG (A,z„)p„. There is a factor [F"(z )]
associated with each IIV; there is also the joint factor T( [z I ) for all of the IIV's. Then there can be r lines of type (a)
joining EIV's to IIV's, s lines of type (a) joining IIV's to each other, t lines of type (b) to IIV's, and u lines of type (b) to
EIV's. The associated factor generalizing A'""" of (4.4) and (4.22) will then be

Ja 2$

(4.29)

In (4.29), A„denotes the set of paired EIV's and IIV's
(z„,z ) for type (a) lines, and A, the set of IIV's zz for

type (b) lines. The remaining factor L„has been dis-
cussed in detail in the Appendix; it is a function only of
the external source points z„ to which the (b) lines are at-
tached and of their polarization vectors g„". These latter
occur either in scalar products with each other or with the
external momenta of other EIV's. The method used in
this paper answers the question as to whether or not there
can be a global choice of light-cone gauge condition
X =x + +p +~ on a surface of higher genus. The
method starts from a quantum field theory of strings in
the LC gauge which is well defined. The reduction to a
first-quantized version of str&ng theory then proceeds to

I

calculate a matrix element for a particular process in two
steps. The first of these is a local decomposition on the
associated set of Riemann surfaces and specifies the in-
tegration measure over the conformally inequivalent
classes by obtaining it from the second-quantized string
field theory. In the second step the phase factor entering
with each surface is defined in a global manner on the
surface by means of the additional inexact modes. The
contribution from these latter are completely specified by
requiring holomorphicity (or no L Rinteractions) and the-
measure associated with them is determined by modular
invariance. The resulting expression is a global realiza-
tion of the first-quantized string theory in the LC gauge.
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V. THE FINAL REDUCTION FOR THE ONE-LOOP
AMPLITUDE

We are going to show in this section that the multiloop
amplitude (4.21) reduces in the one-loop case to the
Green-Schwarz expression. The reduction program we
are going to follow has been pioneered by Mandelstam'
for the explicit evaluation of multiloop amplitudes, for the
bosonic string. The expression (4.21) involves Feynman
lines which explicitly contain nonanalytic terms in the ~
variable, that is 1/Im~ factors, which have to be eliminat-
ed before the final reduction can be performed. Having
done that elimination we use analyticity in the ~ variable
to show that the only dependence of the integrand on that
variable is through the F,(r) factor of Green and
Schwarz. Finally by performing an explicit evaluation in
a particular configuration, we obtain the reduced form of
the amplitude. The expression for the one-loop amplitude
for the scattering of four external massless multiplets is
(4.21) for N =4, which can be written as

f dPqdP2dP3dai dI31 (Imr) exp[p„p, G(z„,z, )]

x (a,- 'F( )a,— 'F( ) [

X ~a„G(z„,)a,,G( „,)
~

'&, , (5.1)

where p+=p(z+ ) —p(z ) and XF is the contribution of
the fermionic and bosonic lines which we give explicitly in
the Appendix. A typical term is, for example,

[a, u(z, )a, u(z )['

f =J,z, ~a, 'F( ,-)a, F(- )~-'

x
(
a„G( „,)a„G( „,) (

-'

x ia, u(z )a,-u(z )[ (5.6)

All the a/az derivatives in fq may be replaced by a/au
derivatives by using all the B,u factors. A typical term is
then of the form (left)x(right), where the (left) term has
the structure

a„,G(z„z, )a„,G(z„z, )a„a„G(z,z )

a„'Fa„'Z (5.7)

7 ~V 7

u (z)~u (z)+h +mr (n and m integers) .

It is also invariant under modular transformations

a~+6
7 ~ Q~

cw+d c~+d

(5.8)

(5.9)

In fact, f ~
and f2 are both invariants under those trans-

formations.
Following Mandelstam' one may show that f~ =1. To

show that fq is the kinematic factor K~234 of Green and
Schwarz it is necessary to remove all traces of Im~ in

f2. This may be done by introducing variables a„, P, by

and a similar expression for the (right) one but in terms of
u * derivatives. The expression (5.7) is then manifestly in-
variant under projective transformations on the z plane
under which

X
~
a, ,G(z, z )a,,G(z,z, )a, ,G(z, z ) u„=a„r+/3„(r =2,3) (5.10)

Xa, a, G(z, ) ~'. (5.2) with the Jacobian

It is convenient to change variables p, ~u, = u (z, ),
r =2, 3, and (p+, ai. ,PL, )~(u i, r), u i =u(zi). We have

a(p2, p3)
'a(u21 u3 )

a,,G(z2, zi)a, ,G(z3 z/)

a,u(z, )a,u(z, )

and we also denote

a(Reu„, imu„)/a(a„, P„)=(Imr) .

4

fz ——g (Imr) "f2" (r,a„P„)
t=O

(5.1 1)

In all terms in f2 except the factors
a„a„G(z,z ),a„a„G(z+,z„) (r =2, 3) it is possib e

to replace the nonanalytic expressions (Imu„/Imr) by a„.
In the former factors the sole nonanalyticity arises from
factor (Imr) '. Thus fq can be expressed as

a(p+, al. ,pi. )

a(ui, r)

We may now rewrite (5.1) as

d ~d u )d u2d u3 Im~ 'exp „p 6 z„,z,

(5.3)

(5.4)

with 1 & r & 3 and f'2" analytic in r in the upper half plane
and at least infinitely differentiable in the a, 13 variables.

The first step in proving independence of f2 on r is to
show the vanishing of the functions f("', r &0. It will be
shown shortly that fq is bounded as Imr~ oo for given
a„, P„provided 0&a„&1 (r =1,2, 3), We note that this
condition on the a, 's corresponds to the fundamental
domain 0&Imv„&Imz in v, . From the modular invari-
ance of fq,

where

fi ——ImrJ2
~

a„F(z )a„F(z )
~

and

(5.5)

a~+ b
f2(r, a„f3, ) =f2 ,aa„+bP„,ca„+dP„

c~+d

ad —bc =1, a, b, c,d EZ,
(5.12a)
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it follows by taking the inversion a =d =0, c =1=—b,
limim, pf2(r, a„,P„) is finite for a given a„, P„, and Rer.
f2 is also finite for any r in the upper half plane and fixed
a„, P„since there is no degeneration of the sources or in-
teraction points. The analyticity off~z"' in r then indicates
that the RHS of (5.11) can only be finite as Imr~O pro-
vided f~2"'=—0 for r ~0; otherwise the inverse powers of
Imr on the RHS of (5.11) could not be canceled by any
terms involving Rer in the r dependence of f~z"'. Such
cancellation could be achieved at isolated singularities of
f~z"' for s &r; since this would still only allow f~2"I to be
nonzero at a set of isolated points then smoothness of f~q"'

guarantees its vanishing. Thus f2 =f2(r, a„,P„) depends
analytically on r in the upper half plane for fixed a„,/3„.

The next step proves independence of f2 on r by using
the periodicity in each a„,P„ independent of that for the
other a„P„as can be seen by direct inspection of fq

From this periodicity

Hence A„(r) is independent of r provided one of n or
m~O. A similar argument can be deduced for App(T)
since it is modular invariant. Thus

App(rp) = App(rp, l ) = App( —I /(rp+ I) ) (5.18)

A l n—Apl u1

From the independence of the functions e '" + ~' the
contribution to fi in (5.12) with P dependence e '~ may
be discussed independently of the other function e "'"~.
This term's contribution to fz is

and letting l~ oo in (5.18) leads to the independence of
Aoo on ~.

The third step is to prove the independence of
f2(a„P„) on a„,P„. This uses the relation (5.13), where

is now independent of r. Equation (5.13) implies
that

P ) y A ( )
27ri(tt a+m Ii)

n, m

(5.12b)
2~i/3 ~ 277.in+ 2~iPg (5.19)

a~+b
c~+d

= Amb+nd ma n+c( )r (5.13)

The subgroup of modular transformation s for which
mb +nd =n, ma +nc= m is given by

a= 1+nmh, b=n I, c= —m 3,
d = —nml+1, l&Z .

Then if m =0, (5.13) and (5.14) lead to

(5.14)

where a=(a~, az, a3), P=(f3~,P2, P3), and n, m are two
three-vectors with components EZ. The discussion will
now be given explicitly for one of these components, and
can trivially be extended to the three-vector case.

The functions A„(r) will therefore satisfy the modular
property

The continuity of fq in a implies that (5.19) must vanish,
so a~ ——0. A similar proof can be given for the coefficient
of any function e ' ~, with

—ln(z —z, )+In(z —z~)+a„u if
l

a —a„
l

& 1 . (5.20)

= Ap =a (say)

with resulting contribution to f2 being a e ' ~5
Similarly a must be zero by continuity of this function
in a. It was earlier shown that any 3, can be reduced
to an Ap . Thus only the term App is allowed in (5.12b).
Hence f2 is also independent of a„,l3, .

The penultimate step is to obtain the value of fq in any
suitable configuration of values for r,a„,f3„This wil. l be
taken as Im~~ ao, where at the end of the calculation we
take o.„~a, all r. In the limit Imz~~ it is possible to
approximate Ci(z, z„) by the tree value

A„p(r+n l)=A„p(r) . (5.15) Then the interaction points are at z+ =z
~ (1+ e+), with

By inversion z+ —z~a~(1+a~) ', z =zv(1+a~ ') . (5.21)

1
A„p ——= Ap„(r) .

7
(5.16)

For a given rpEupper half plane, then (5.15) and (5.16)
result in

A, p(~0)= Ap„[ —(rp+n'l) '] . (5.17)

Taking 1~ ao then A„p(rp) becomes independent of rp, so
therefore does Ap„(rp) with A p„= A„p. The argument of
Siegel" may then be used. The transformations

Provided
l
a~ —a„&1,

l
a~ —a~

l
& 1 the approxima-

tion leads to a finite value for all of the terms in f2 when
is calculated from the various diagrams of Fig. 2.

This justifies the earlier claim that fi is finite for fixed
a„,l3„as Imr~ ~.

The final step is to use the special configuration n„~0,
r =1,2, 3 with u„«o.~ &&1. Then all the expressions in

f2 given by the diagrams of Fig. 2 may be calculated ex-
plicitly, using the values of Cs and z+ given in (5.20) and
(5.21) and that

T+: (n, m)~(n+m, m), —

T' :(n, )~m(n, m+n—)

F"(z+ )F"(zp)-a~, a„G(z+,z„)-a~,
a„G(z,z„)-a„, a„a„G(z,z ) —0

(5.22)

generate SL(2,Z)/Z2. Defining ll(n, m) II
=

I

n
l
+

I

m
and nm&0 then

min[llT —(n, m)ll, llT' +—(n, m)ll] & ll(n, m)ll .

By repeated application of the transformations generated
by T—,T'— it is always possible to reduce n or m to zero.

(where all derivations from now on are now with respect
to the u variables). Direct analysis may be performed of
the various contributions to the diagrams of Fig. 2 (which
are given analytically in the Appendix). All of them are
zero in this limit except for (c). The result in this case has
the same coefficients of the various kinematic invariants as
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(cx)

~X&& 1
3

oc o~g

or out

FIG. 2. Diagrammatic representation of the various superstring Feynman diagrams for four external strings (N =4) at one loop

(g =1). Crosses denote interaction points. A wiggly line joining two IV's z&,zs is a "bosonic" line and denotes 8, 8, G(zz, zs), while

such a line with one one end at an IV to an external source z, denotes 3, G(z~, z, )p, . The dashed lines are "fermionic" lines from an

IV z& to a source z„and denote B,„G(z&,z„); the symbol "or out" denotes either the wiggly line joining the two IV's (as shown) or

two single wiggly lines, one to each of the IIV's z, zp, each going out to the external sources though not so as to transgress the "ex-
clusion" rules discussed in the text. (a) M' "of Eq. (A6) (with s =0). (b) M" ' of Eq. (AS) (with s =0). (c) M' "of Eq. (A11) (with

s =0 or 1). (d) Representation of Eq. (A16). (e) Representation of Eq. (A17a). (f) Representation of Eq. (A17b).

the tree-level contributions to within the vertex factors
arising from the loop interaction points [see Eq. (All) of
the Appendix].

It is simplest to consider the coefficient of, say, the in-
variant (g~, gq)(g3, g4), where the g s are the polarization
vectors of the external massless states. The associated
coefficient is then

Y[$3/ —(L 2L 3 +2L 2G 3p
—2L 3623 )tF23 (5.23)

where F23 arises from the loop vertex factors as given in
the Appendix. Integration by parts, using the exponential
factor exp[ ——,'(sG~2+tG23+uG~3)] leads to a reexpres-
sion of Y~234 of (5.23) in the form

2uL2L3F23+2L&(a, , —t), )F23 (5.24)

+(2~3) . (5.25)

The last term in (5.24) contributes O(a&) to f2, so it is
dropped. The value of the contribution of the first term
to f2 reduces, after inclusion of a further factor of t (aris-
ing from F/3) to
utF"t(tz )F"(z )L 'L '

t)„- G(z, z )8„- G(z, z )

The value of (5.25) in the limiting configuration above is
unity. Thus using (5.4) and that f~

= l, f2 = ut,
(gf g2)(g3 g4) results in the known DRM value. A similar
reduction of the one-loop heterotic amplitude to the DRM
form given in Refs. 9 and 26 can be obtained from the LC
constrained functional version of Ref. 24; the relation of
this to the NRS version presented here will be considered
elsewhere.

VI. DISCUSSION

In this final section it is appropriate to summarize the
results obtained in the paper before commenting on their
possible implications, extensions, and applications. The
paper commences with deduction of the basic structure of
the functional-integral expression of any multiloop super-
string amplitude from the second-quantized field theory in
the light-cone gauge. The functional integrations are then
performed to produce a somewhat primitive version of the
amplitude. This is simplified by considering only massless
states. This primitive form is'then made more compact
by use of the short-string limit, and leads to a set of
"raw" amplitudes. These are described in terms of the
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Feynrnan-diagram language of field theory. A set of
Feynman rules are deduced which allow these superstring
diagrams to be written down. At the tree level the raw
amplitude has elsewhere been shown to agree with results
already obtained by dual-resonance-model techniques. At.
one loop the superstring Feynman diagram contributions
are already far more numerous than those obtained by
DRM methods. In the previous section reduction of the
raw amplitudes was shown to agree with the DRM value
for four external strings.

It might be questioned as to how these equalities at tree
and one loop between DRM amplitude and those ob-
tained above by functional techniques can really be valid
due to the presence of G" factors arising from the bosonic
Feynmann lines at the world sheet following the super-
string Feynman rules of Sec. IV. No such factors appear
in the DRM amplitudes. This has already been discussed
at the tree level in the third paper of Ref. 7, where in-
tegration by parts was used to replace the G" terms by
those involving G' alone. Such partial integration can be
done at the arbitrary loop level, and was a crucial step in

the proof of finiteness of the type-II massless ampli-

tudes. Thus the apparent discrepancy between the func-

tional and DRM versions of superstring amplitudes can

be removed by partial integration, and no true discrepan-

cy occurs.
The results summarized above are clearly only the first

step in a number of ones to be taken before multiloop am-

plitudes are to be regarded as expressed in their final,

most concise form. Thus the next step is to extend the re-

sults of the previous section to the case g )2.
The technique of the last section appears difficult to ex-

tend directly. The initial step taken there was remove the

nonanalytic terms involving Im~. It proved possible to do
that by introducing the variables a„,P„as v, =a„r+P„
Such a transformation removed all of the terms involving

(Imr) ' in the Green's functions in the superstring Feyn-
man diagram factors. At the same time the regions of in-

tegration in the new external variables did not depend on

Imw. An extension of this to g & 1 would need to remove

factors of (ImII),
&

' in Green's functions as well as the

dependence of the fundamental region on the elements of
ImH. This dependence is expected to be of the form that
the boundary of a fundamental domain is given by

u;(z)=II,~ ni+m; . (1&i, j&g), where m and n are g-

component vectors with components being integers.
However it appears difficult to introduce an independent

set of variables u;(z„) for each external variable r and

1 &i (g; the dependent variables may produce further

nonanalyticity in Tiechmiiller space. Thus it is not possi-

ble to see if the conjecture of Belavin and Knizhnik that

superstring amplitudes may be written in a holomorphic

form in Tiechmiiller space is valid. It does appear likely

to be able to show that it is valid for X =2, however, and

even that these self-energy diagrams are zero for all g & 1.
Further analysis may indicate how such difficulties may

be overcome for higher X and the important conjecture
proved or disproven; alternatively it may turn out more

appropriate to start from the covariant string approach in

terms of which holomorphicity of the bosonic amplitudes

was proven.

Another step that needs to be taken is to extend the
construction of amplitudes to massive states. This may be
done directly in a similar manner to that for the tree-level
analysis for the bosonic string. ' For massive states (3.9)
is extended by adding to the RHS the expression

—[F"(z,)]'" g g p,+H„(z, ,z„)e'„"',
n&0 r

(6.1a)

where

H„(z,z„)= f dz'[F„(z')]"8,8,G,„(z,z'), (6.1b)

F„(z)=[expF(z)] ", and 8'„' is the nth Fourier mode of
0 on the rth external string. Similar expression can be

given for the bosonic contributions, so generalizing the

tree-level analyses of Refs. 8 and 28. A complete expres-

sion for the amplitude can then be constructed extending

(3.14} in a straightforward fashion. This will allow direct

analysis of self-energy and other eff'ects to be given for the

massive modes instead of deducing such features by uni-

tarity from the amplitudes solely for massless external

states. It is interesting to note that since

H„(z,z' }—(z —z') " ' the expression (6.1) corresponds

to the function 0 having an essential singularity at z =z„.
A similar result also holds for the bosonic contribution
6*J. This is to be expected since the totality of variables

on a string can only be described by the set of residues a
functiori has with poles of arbitrary high order at the

puncture z„. This seems to present an interesting problem
for a totally stringy approach to physics, and one which

calls for appropriate discussion in purely Riemann surface
constructions of string theory. The details of this and

finiteness aspects for amplitudes for massive modes will be

given elsewhere.
It was remarked at the end of the previous section that

the heterotic string amplitudes of Eq. (3.15) require fur-

ther analysis in order to be reduced, at one loop, to the
known DRM result. In order to fully justify the alterna-

tive construction which does lead directly to the known

one-loop result, it would be useful to develop a second-

quantized field theory for the constrainted LC approach.
That would also be valuable to help in developing a co-
variant string field theory of the heterotic string.

Another step yet to be made is that of obtaining expres-

sions for open superstring amplitudes. That may be done

using the techniques developed here, and leads to very

similar formulas for the amplitudes as those in (3.14); that
will be reported elsewhere.

One important application of the results described here

is the analysis of the divergences of the amplitudes. A re-

port on such an analysis has been given in brief ' and

more complete form elsewhere, using the raw ampli-

tudes. Both closed type-II and heterotic massless ampli-

tudes were shown to be finite at all loops. Proof of the
above results may be considerably simplified if further
reduction were possible of the multiloop amplitudes, along
the lines discussed above. Such analysis seems valuable

since the massless amplitudes are finite and undoubtedly
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deserve further consideration. Divergence analysis has
still to be performed for massive amplitudes, but can now
proceed for the raw amplitudes obtained in Ref. 22.

The final step is to apply the above results to the physi-
cal world. In order to do so string perturbation theory
may be unsuitable, and nonperturbative techniques would
be preferable. Such features are outside the realm of the
present analysis; development of a covariant field theory
of superstrings would appear to be a useful preliminary
step before such a program can be realized.
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g7+i8 7+is () ( 1 4)

a2, a3-0, (g„p„)=0 .

The external superfields are

tr tr Ar Br
(().=g."p~„a„8."8.'

(A 1)

The amplitude (2.5) of the text becomes in this case pro-
portional to (without integration over the moduli or
inessential factors)

APPENDIX: THE SHORT-STRING LIMIT
FOR N =4

In this appendix the details of the calculation of the
short-string limit of the multiloop amplitude are given for
the holomorphic part, for N =4, and for solely bosonic
external states. Simplification is obtained by the choices.

M = f g d 8; g d 8„8„

4
lr tr 2 A4B4 1/2X g g„"pz ~ (a~8~+a282+a383) a2a3(a2a3}

r =1

X V [2d X+ ~2p2+p3G23+p G2

—(a,a, ) 'p„a2/a2[ —a2 '82~+ &2a282~+a383~Gz3+;;( 2)1I

X V I 28, ,X+ A,p, +p, G32+plG31

—(a3a3) 'p3, a3+a3[ —a3 '83'+ &3a383i+a282iG32+8 U«z3)jl

2g N —1

X / [1."(z }] '~2V 28, X+ y G'(z, z„)p„,l-"(z )

r =1

N —1

X g a„8,&G'(z~, z„)+8;U;(z~)
r =2

(A2)

In (A2}, 8 " =8 8, and the 6 function 5( g„&a„8„)has been used to eliminate 84. The leading term in a2, a3 in (A2)
is 0 (a2 a3 ), since the terms 0 (a2'~ a3' ), 0 (a2 ~ a3'~ ), 0 (a2' a3 ~

) may all be shown by inspection to contain
factors (g„p„) which vanish. It is therefore necessary to obtain terms —1, O(a2), O(a3), and O(a2a3) from the vertex
factors V in (A.2). In this evaluation it is useful to note that

X'+'(z, )X'+'(z ) =X'—'(z, )X'—'(z, ) =0,

so that each contraction between two X's is quartic in the Grassmann variables. Moreover the contributions from the
2A484

vertex factors must be combined with suitable orders in a2 and a3 from (a~8~+a282+a283) to produce terms of
0 (a2a3).

As argued in the text in Sec. IV, we may modify the contributions from the purely quadratic Csrassmann factors in the
IIV factors at —1 in a straightforward manner to obtain the quartic Grassmann factor contributions as we wi11 see later.

The former of these will be considered first, and the change in T&(z) given by (4.15) will be specified later to include

the quartic terms. The next step is to consider the term M4'0' in (A2) arising from the —1 term in the IIV factors. It is

convenient to use the tensor T&(z) defined in Eq. (4.10). The expression for M4' ' in (A2) now takes the more compact
form
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M4 d ~ ~ ~11+&2~2+~33 2~ ++P3623+P1G21 a2&2 P2 a2~2

2Jz
&&( —az '0~~+a303tG23) '[2B,,X+p~G32+p&G4 —(a3(x3) p3] 'a3(x3

(A3)X( 3 03]+ 0/G32) 'Q[L"( )] 2B,— X+ gG'(, „)p„'T().
@=1 r=1

The opposite sign in (A3) for the a' terms compared to that of Ref. 7 arises due to the opposite sign for the residues in
the third Abelian diff'erentials; the end result will be independent of such a choice. The term of O(a2a3) in (A3) may be
evaluated by expanding the vertex factors at z2 and z3 as terms of —1, O(a'), O(a3), and O(a2a3) and multiplying by
the appropriate terms in the expansion of (a'0'+ a'0q+a303) in powers of a„s. The various contributions may also be
classified by the number r of contractions between the X's at the EIV's and the IIV's as well as by s, the number of such
contractions between the IIV's; 0(s &g —1 —(r l2). Then the O(a~a3) contribution to M4' of (A3) may be expressed
as

2 g —1

r =Os=0
(A4)

For r =2 the relevant factor from z2 and z3 is

4a2a a, X a, X O21 031
Jp J3 2J2 2j (A5)

The relevant term from (a&0~+ a~0q+a30~) is solely a, 0&', which combines with the term 0~
' in (A3) to set 0~ to zero

in all other factors. Upon performing all the Grassmann integrations over 0, , 02, 03 on the relevant terms in (A3)

M' 'I=a a +48, 8, G(z, z )B,,Bz G(z, z~) Q 48, 8, G(Z-, ,z )6
1 i i a.

I

Nxg g G'(, „)p„
Jy 2g

T;( )(g,g)P P'/[L"( )] (A6)

The unmarked summation in (A6) is over all distinct pairs (a, /3), (a&, a', ), . . . , (a„a,') from (1,2g) and the unmarked
product is over all y unequal to such values.

In a similar manner the terms in M4 for r = 1 are O(a') and O(a'a3), being

2a, X'[a,~,(p, G,', +p, G'„)"—~,L ~' ]0„'"0»'" (A7)

When combined with the relevant factors in the remaining part of (A3) and integration over 0„0z, and 03 is performed
there results (powers of a& being dropped)

MI"'=a a g2B, 8, G(z, ,z ) +48, 8,— G(z-, ,z-, )5,. ,
1

N —1

&& Q QG'(-;, , )p, [(0 4)[0 V»G'+p G'»] —2L'(04ka»]
r=1

2g

XP T( ) Q[L"( )] '", (A8)

where g and Q have the same meaning as in (A6) except for deletion of f3, and (p~,p~,p3,p4)=tr(p'p p'p )p ~~@4. A
similar term arises by interchanging 2 and 3 in M4' ' of (A8).

The term M4 "has already been considered briefly in the first paper in Ref. 7, but will be given more fully here. Only
the factors at the EIV's need be considered here, since the IIV's give the loop factor

2g N —1

L =Q[L"( )] 2B, X+ g G'(, „)p„
r=1

T, (z) . (A9)

In (A9) the contractions on the X's are only to be taken between each other, as the value r =0 indicates. The EIV's fac-
tor V2 V3 has the following contributions:
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~2a3p 2P3L 2 L 3 82i 831

O(&2) &2[&2 &3L 2 L 3 (p3G23+p 1G21)'p&821 831 2&2&3L 2 L 3p 2G3zp 382i (831@1)]

O(a2a3): a2a3[ —4G2'382i '83i '+4a2a3p ~ jL qL 3(83i821)'(83i82i) G23G32

+ 2&2ii3 L2 L 3G3zp +$821 (83i821} +(piG21+p3G23} (p1G31+p2G32} 821 831

Equation (A10) is now to be combined with the various terms of —1, O(aq), O(a3), and O(aqa&) in

(ai8i+a282+a383) '" and integration performed over 8i, 8q, and 83. In the process, traces of products of SU(4) matrices
p'~~ with polarization vectors g„or moments p„result. Thus

M4(0') =K4Lg

and K4, the kinematic factor, may be obtained from (A2) and (A10) to be

4

E4=a2a3a2a3 — g g„' 8p2p)(t ' ' ''LqL3+G32Lqt ' ' ''+Gq3L3t ' ' '') —64G2'3(gi(4)(gq(3)

(A 1 1)

+16G23G32((i/4)p2p3(2'f33~ ' '+16L go (p3Gp3+p)Gp3)p3 gi g3 f4 t

+ 16L A/3'(pzG3z+p i Gh)p)gl(2 g4't ' ' ' —64(giga)[(p &Gzi+p3Gz3)gz][(pi G»+pzG32)$3] (A12)

In (A12), r'b'"=tr(p'p p'p ), r' ' 'f=tr(p'p"p'p p'pf). The various terms in (A12) are to be evaluated in terms of scalar
products of the SO(6) vectors g„,p, and extended to SO(1,9) vectors in the obvious manner. At one loop and higher
there are also contributions from terms of higher order in the IlV factors. There are three such terms, one of O(a2), one

of O(a3), and the third of O(n2a3). The first of these arises by replacing one IIV quadratic fermionic term [8;U;(z )]
by [82i8;v;(z )] G'(z, a2), the second by interchanging the labels 2 and 3. There will be an associated modification of
the factor T&(z) of (4.10). The remaining 8; must be picked up from one of the two EIV factors, so will involve 8;v;(z„)
(r =2 or 3). There will thus be a generalization of T;(z) to

g

T~a;( ~, a, z )= J + d'8; g [8p;p( )] '~[8;U;(z )] [8,U, (z )]
i =1 P~a

(A13)

where z~ =z2 or z3, zs =z~; j= [j I, z = [z~ I.
The O(a2a3} factor is of two forms. The first has two changes of the above form, so replaces the factors

[8;U;(z )] [81UJ(zp)] by [8qi8;v;(z )] [83i8iv~(zp)] G'(z, z2)G'(zp, z3). The other term involves replacing a single

IIV factor by [8zi8»] G'(z, zz)G'(z, z3). The associated factors extending T;(z) of (4.10) are now

y~~, p

where zA, zB ——z„,z3 and z~, zD ——z,zp or

A, B,C, D

(A14)

T„ , ( „ ;x ) = f + d 'g; g [8; ,, ( )] ' + [8;. .( )]"[8 ( .)1 (A15)

where zA, zB,z~ ——z2, z3,z, respectively. In general these new terms may be interpreted as corresponding to additional
fermionic lines G (z,z„) from an IIV to an EIV. There are at most two such lines. The expressions (A13)—(A15) are

special cases of the tensor spinor of (4.16).
These new terms also give contributions with different numbers I" of contractions between the EIV's and IIV's.

Without trying to disentangle these contractions the value of the short-string limit similar to (3.5) is, for the O(aq) con-

tributions from the IIV's, terms proportional to

[($1$443p3)p2 g2 tr[p 'p 'p T&(z2iza, z ~)]+tl(glg4gd2Tjp 43P3 }]
2g I

X G'(z, z, )G'(z, z ) g 28, X+g G'(z p, z„)p, (A16a)
P=1

[where (pip2p3p4)=tr(p 'p 'p 'p ')pi'p2'p3'p4'], to
2g

tr(p 'p"p' T„)p 'g"(B,,X+ . ) 'gq'(g& $4)G'(z, z3)G'(z2, zl ) g (28 X+ . }'
P=1

(A16b)
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to

2g I

tr(p 'p 'p 'p p 'T&)p3'g3'pz'gz'(g&g4) g (2B, X+ ) G'(z3 zp)G (z z3)
P=1

(A16c)

and to interchanges of 2 and 3 in (A16b) and (A16c). Similar contributions from the 0(aqa3) terms (A14) and (A15) in
the EIV factors are proportional to

2g

(p 'p 'p ) ~, ~, (p 'p 'p ) ~, ~, Tq, ~, ~, ~,(z2, z3,z, zi3, z)gP(3'p2'p 3'(g~(4)G'(z, z )G'(zp, zq) g (t),—X+ ) (A17a)'r
y=a, P

and to
2

tr[p"p'p p;,p, T, (z,z„z;z)]g'g'p"p '(g, g )G'(z, z )G'(z, z ) g (t), X+ . )" . (A17b)

As can be seen from the above there are at most two fer-
mionic lines from each IIV and at most one from each
EIV. These properties follow by direct inspection of the
terms (A6), (AS), (A9), (A13)—(A16). There is the further
nontrivial property of these expressions that there is no
more than one line from any IIV to an EIV. This is au-
tomatic for the terms M4I"" of (A6), (A8), and (A9), since
these terms involve no fermionic terms in the first place.
If a term with a bosonic line G (z,z„)p„and a fermionic
line G'(z, z„) are constructed from (A13)—(A16) it can be
seen from the detailed structure of (A16) that a factor of
p„g„+ (p„g„)P'„; this is zero since p„ is massless and or-
thogonal to g, .

Similar expressions arise when the X —' coordinates
are taken into account. Since the maximum order is
0 (a2a3) in the contribution to the vertex factors from the
IIV's there can still be at most two fermionic lines from
each IIV, and again these will only be to different external
sources. There will still be only one fermionic line per
given external source. The contribution of 0(aqa3) from
the IIV factors can nearly all be shown to vanish since
only the lowest-order terms can then be allowed from the
EIV factors; these terms will always give rise to a factor
(p2 gq) or (p3 g3) after Berezhin integration over the 8„'s
and the 9 s, except for similar contributions to (A16) and
(A17), with obvious modifications to T, by reduction of
the number of vector indices due to the replacement of

quadratic terms in the 0; by quartic or constant ones.
The contributions of 0 (a2) have a similar form to those
of the change (A13) of (A16), (A8) and (All), again with
modification to T;. The 0(1) contribution from the IIV
factors only arises from contractions

X7+i8g
ZA Zg

when z~ and z~ are IIV's. An expression similar to
(Al 1) is obtained with modification of Ls in (A9) by re-
placing an even subset of the vertex factors

(a, X+ y G (z,z„)p„)"

by

X7—i8g X7—i8
T+ 'y—

T&(z) in (4.10) is modified by replacing the quadratic
Grassmann factors by quartic factors at the points zz
and by 1 at the points zz+. All of these extra contribu-
tions from the quartic Grassmann terms are therefore
seen to correspond to extending the quadratic terms ob-
tained earlier by replacing the range of the vector variable
j to 7,8, with associated Dirac matrices p

—' =1. Di-
agrammatic representation of the various contributions
(A6), (A8), (Al 1), (A16), and (A17) is given in Fig. 2.
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