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A parametrization of the covariant superstring
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We exhibit a parametrization of the covariant superstring which at one and the same time encodes
the bosonic and fermionic components of the superstring in such a way as to satisfy all of the classi-
cal equations of motion.

I. INTRODUCTION

Recently, ' we found a bilinear parametrization of the
bosonic string in 3, 4, 6, and 10 dimensions based upon
the following identity for two elements z and z' of a
division algebra:

the possibility of treating the fundamental spinor out of
which the string coordinates are composed as a truly an-
ticommuting object. We then find new and strange trans-
formation properties for the bosonic variables (which are
represented as fermionic bilinears).
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which we establish by a new route which illuminates its
dimension dependence. In fact, it becomes increasingly
apparent that the special dimensionality associated with
supersymmetric gauge theories is just a reAection of the
properties of division algebras. In Sec. III we discuss the
local supersymmetry and local bosonic invariances in the
light of this new parametrization. In Sec. IV we explore

where the pararnetrization identifies the two light-cone
components of the vector aX"/a(cr+r) with ~z

~

and

~

z'
~

and identifies the transverse components of the vec-
tor with the coefficients of the basis elements of zz'. [For
octonions as the division algebra, (1.1) is known as the
eight-squares theorem. ' ] This parametrization achieves
two objectives: it automatically incorporates the null
quadratic constraints of the theory and it permits a reali-
zation of the action of the Lorentz transformations on X"
as a linear action upon the z and z' (specifically the com-
ponents of z and z' transform as a spinor). However, this
parametrization is apparently redundant, having twice as
many variables as are necessary to describe the bosonic
string. This would seem to indicate, as does the above
spinor transformation, that the parametrization might also
encode the fermionic coordinates of the superstring. In
this paper we show that this is indeed possible. Further-
more, this parametrization gives classical solutions of all
of the equations of motion of the Green-Schwarz covari-
ant superstring. By classical, we mean that all of the
coordinates are treated as commuting variables. These
solutions appear to be new.

In Sec. II we give the parametrization explicitly for the
ten-dimensional case with octonions as the division alge-
bra. (The cases of 3, 4, and 6 dimensions, associated with
the real, complex, and quaternion division algebras are
similar. ) We then show that the parametrization solves
the equations of motion. This proof involves the use of
the identity familiar from super- Yang-Mills theories,

II. THE PARAMETRIZATION OF THE SUPERSTRING

The Green-Schwarz covariant superstring action takes
the form

5=—f do dr(L)+L2),1
(2.1)

where

L, , = ——,'& —gg t'11gn,„, (2.2)

I.,= t e ia.X~(e 'y„—a,e' e'y„a,e')—
& Pg ~&~g g~g 2&„g&g' (2.3)

H" =0 X"—iO y"0 0 (2.4)

X"(o.,r) are the ten bosonic coordinates of the world
sheet and e"(o,r), 2=1,2, are the two 32-component
spinors in the ten-dimensional spacetime. The two-
dimensional metric g ~ has the signature ( —+) and the
ten-dimensional metric used to contract the p index has
the signature ( —+ + + . ). The equations of motion
which follow from this action after making the covariant
(two-dimensional light-cone) gauge choice g ~= ri ~ are

rr~rr „=0, rr&rr „=0,
y„rr~a O'=O, y„rr~a O'=0,

a a X"—ia (e 'y"a e') —ia (e y"a e ) =0,

(2.5)

(2.6)

(2.7)

11+=X'X, 11:=q'lt, 11 =(X'A q), (2.8)

where the subscripts + refer to &1/2(tr+r) Note that.
these are the equations of motion whether the 0's are
commuting or anticommuting variables. Following the
ideas of the introduction and Ref. 1, we can write
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where X and it are 8-component objects which together
form a 32-component Majorana-Weyl spinor

7

g AapAys= 2—Tapys+. 5ay5ps —5as5yp, (2.14)
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(2.9)

Equations (2.5) are automatically satisfied since [see (2.14)
below]

8

X XP"g= g (X A'P)(X A'P) . (2.10)

If we define two octonions via

There is a similar parametrization of the II+ in terms of a
Majorana-Weyl spinor 4 . The matrix A is given by
I@Ig I, and the real, antisymmetric matrices
A' (i = 1, . . . , 7) which satisfy [A', A/I = —25'I can be
constructed as follows

where T pz~ is the four-index tensor introduced in Refs. 7
and 8. It is not necessary for us to know anything about
T other than that it is invariant under the action of SO(7)
and it is antisymmetric in its four indices. Equation
(2.14) is proved by noticing that the left-hand side is an
SO(7)-invariant tensor, so it must be representable in
terms of a linear combination of isotropic
SO(7)-invariant tensors (T pys, 5 y5ps, 5 s5py, 5 p5ys)
Symmetry properties of the left-hand side dictate the al-
lowable combinations of tensors on the right-hand side.
The coe%cients in the linear combination may be deter-
mined from a few specific choices for the indices. A ver-
sion of this identity (2.14) is recorded in Ref. 8. Using
(2.14) and saturating the indices a, P, y, 5 with
X,gp, Xy, gs, in consequence of the antisymmetry of T we
obtain the eight-squares theorem.

The result (2.14) can also be used to prove (1.2). Using
the identification (2.13) and the relations

~2ab 0 2cd ~ac ~bd ~ad ~bc
(2.15)

Iab Icd +0 lab 0 1cd +0 3ab O 3cd =~ac ~bd +~ad ~cd 2~ah ~cd

we have

(r"—y")-bp(r "rv) .yds

—(5ac 5bd + 5ad 5bc 25ab 5cd )5aP5yb

+(5 5bd 5 d5b

z =X e and z'=g e (2.1 1)
x(5 y5pb 5s5py 2T—pys)—, (2.16)

where the e are a basis for the octonions then (2.10), and
therefore (2.5), are just versions of the eight-squares
theorem (1.1).

This parametrization can also be written in the follow-
ing form, for the Majorana-%'eyl spinor 4"', which makes
its Lorentz transformation properties manifest:

H~ =i+ "y'y~% '

where the 32)& 32 matrices y" are represented by

(2.12)

y =i02gIA
y'=O. 1gio.2g A' for i =1, . . . , 7,

=0 1o 1 A

=0 103A

(2.13)

In this representation the charge-conjugation matrix is

y =iy if the 0's are commuting variables and y if they
are anticommuting variables. If %" transforms like a (re-
ducible) 32-component spinor of SO(1,9) then II" trans-
forms as a ten-dimensional vector. Notice that our y ma-
trices satisfy [y",y') =2y/"'. They differ by a factor of i
from those of Careen and Schwarz.

To see how the identities work, we need to develop a
few relations satisfied by the A matrices. The fundamen-
tal relation which we shall use is

eaep Tapy8e +~a8ep+ ~p8ea ~ap {2.18)

and there are no division algebras beyond the octonions.
The identity (2.17) also provides the basis for the estab-

lishment of the existence of nontrivial solutions to the spi-
nor equations of motion (2.6). Suppose we choose the

where y ' is the chiral projection —,'(1+-y") times yc.
(In our representation y" = —cr3gII. ) Hence,

(r' y )aabP(1 rp)cydb+(r y )aacy(r"rp)dbbP

+(y y"). dg(y ' y„)bp, y=0 . (2.17)

The standard identity (1.2) is simply obtained by contract-
ing (2.17) with three arbitrary Majorana-Weyl spinors of
the same chirality 0'~bp %2 y %3ds ~ (Remember that for
these spinors 4 = q/ y . ) It is noteworthy that this identi-
ty is true whether the 4's commute or anticommute. We
can also see the eight-squares theorem from this point of
view by contraction of (2.17) with four identical
Majorana-Weyl spinors.

Similar results hold in the case of 6 dimensions where
T p~~ is replaced by e pz~ and in the case of four dimen-
sions where no such tensor is necessary. There is no com-
parable identity in higher dimensions. This is most easily
inferred from the observation that antisymmetric tensors
such as T p~~ play the role of structure constants for the
division algebras through the relationship
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three spinors above to all be +by=(Xp, gp). Then (2.14) is
tantamount to

H& y~y„% '=0 . (2.19)

Thus if we let 3+0' be proportional to 4"', since y is in-
vertible, (2.6) is solved. In the standard analysis of the
superstring only the trivial solution, 0' a function of justx, is considered. However, in our analysis, the propor-
tionality factor d+f can depend on both x+ and x . The
important distinction between this solution and the stan-
dard one is that here 0' and 8 X" are both constructed
out of the same parameters 4"'. The other constraint for
8 in (2.6) is solved similarly by choosing 8 8 to be pro-
portional to + . For later convenience we will call the
proportionality factor for 8, d+f ' and for 8z, Q f2.

It is amusing to note that from the point of view of the
underlying division algebra, the existence of nontrivial
solutions to (2.6) is associated with the simple result

z'(zz)=(zz)z'=z(zz') . (2.20)

III. LOCAL INVARIANCES

Green and Schwarz point out that the action (2.1) is
invariant under the local bosonic transformations

s,e'=a e'x',
5gO =8 8 A, , 6gX"=i 0 y"5g8",

(3.1)

where the two-vector A,
' is anti-self-dual and the two-

vector A,~ is self-dual, i.e., X+ ——A. =0. For our solutions,
these transformations correspond to variations in the pro-
portionality constants f ' and f . On the space of our
solutions 8+8'=8+f'O'. The only restriction on f' and

f arising from the equations of motion are that they be
real, so the Lagrangian should remain invariant under in-
dependent real changes in f' and f . We can consider
the variation 5~0 to be entirely attributed to a change in

f ' of the form f'~f '+ 5f ', where 5f ' = "r)+f 'A, ' for ar-
bitrary real A, ', so that for our solutions 50'=d+O'A. ' as
desired. The other variations in (3.1) follow straightfor-
wardly. [Romans' has recently shown that these bosonic

The first equality is just cornmutativity of the scalar zz.
The second equality is alternativity, a weak form of asso-
ciativity satisfied by octonions. In our previous
identification we had II' =the components of zz'. If we
now identify the rows of y"8+8' with the components of
z' and z, then (2.20) is just another form of (2.19).

Straightforward substitution shows that the equation of
inotion (2.7) is automatically satisfied as long as +' and
therefore II~ depends only on x and similarly 0' and
therefore II~+ depends only on x+. Hence 8'=f '4' and
8 =f 4 . We have also used the facts that X" is real and
the Lagrangian is Hermitian.

This situation is somewhat reminiscent of the classical
solutions of monopole theory in the Prasad-Somrnerfield
limit, where the Dirac spinors in the background field of
the monopole are necessarily chiral and are parametrized
by the same vectors as are employed in the Atiyah-
Drinfeld-Hitchin-Manin (AD HM) construction of the
monopoles themselves.

transformations (3.1) can be ascribed to field redefinitions.
This is in accord with our interpretation. ]

Green and Schwarz also point out that the action (2.1)
is invariant under the local supersymmetry transforma-
tions

5„8'=(2iq.lI —Sa 8'8')~',
5„8 =(2iy 11+—88+8 8 )a.

p gyp g 1~1 gyp g 2K2 + ) g AyPg gA

(3.2)

where v' is anti-self-dual and a function of x alone, and
~~ is self-dual and a function of x+ alone, i.e., K =K+
=0.

Using (2.14) or simply as a consequence of the pv sym-
metry of II" Il" and (2.5), it is easy to see that

(II" y„)(II' y, )=0 . (3.3)

This shows that another class of solutions of the fermionic
constraints (2.6) can be obtained by identifying 8+8 with
II~ fpK+, where here ~+ is an arbitrary Majorana-Weyl
spinor. It is clear that these solutions are different from
the solutions discussed after (2.19) as these solutions are
quadratic in X and g whereas the first solutions were
linear. These solutions are just the supersymmetry trans-
forrnations acting on our original solutions. Green and
Schwarz point out that a two-dimensional reparametriza-
tion has to be added to this transformation to maintain
the light-cone version of the equations of motion [as in
(3.2)].

Returning to our parametrization, we may enquire as to
whether there exist transformations on 4' which leave the
components of H" invariant. Indeed there are in four
and six dimensions. These are just "phase" transforma-
tions which act on the elements of the division algebra.
The two elements z and z' must transform oppositely un-
der these phase transformations:

z —+e ~z, z' e ~z', (3.4)

where P is a constant, pure imaginary number in four di-
mensions and a constant, pure imaginary quaternion in
six dimensions. Apart from an overall scale these trans-
formations encode the redundancy in the bosonic parame-
trization allowing the usual choice of z'=p+, the light-
cone pararnetrization of Goddard, Goldstone, Rebbi, and
Thorn. " Interestingly, in the case of ten dimensions,
where one would analogously expect seven "phase" trans-
formations, no such linear transformation s exist as a
consequence of nonassociativity of octonions.

IV. ANTICOMMUTATIVITY

In the analysis of Sec. II, it has been assumed that all
the variables are commuting. From the point of view of
quantization, we would prefer the basic spinor 4' to be
Grassmannian. However, we would also like the Fourier
components of H" to satisfy a Heisenberg algebra. This
does not work with our choice of (2.8) when we impose
canonical anticommutation relations on O'. If from the
outset we assume anticommutation relations for 4', then
we can construct a set of bilinear quantities each of whose
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IS[A;,AJ], o3gA;, ioqA;, o~gA; (4. 1)

(where i = 1, . . . , 8), which act on the column vector 'P'

in a representation where all the matrices are real. These
matrices close under commutation on the Lorentz group
in 10 dimensions. The number of matrices of the first
type is 21 and of each of the other types is 8. This gives a
total of 45, the correct dimension for SO(1,9). In the new
representation, the matrices which generate the transfor-
mations which preserve the null character of II" are ob-
tained from the above transformation by the same substi-
tutions, o 3 by I and io.q by o. ]. The first type of matrices
are absent since the A's commute. Of the second type,
the substitution forces two of the groups of matrices to be
identical. We are left with

Fourier components satisfy a Heisenberg algebra for the
transverse degrees of freedom. It is clear that this must
work as all we are demanding is a fermionic representa-
tion of the Kac-Moody algebra with finite subalgebra
[U(1)] . This is accomplished by substituting for the A
matrices of Sec. II, a new set A which are obtained from
the A's by replacing o.3 by I and io.2 by o. ~. The A''s
formed an anticommuting set, the new A's form a com-
muting set. It is this change from anticommuting to com-
muting which allows the Fourier components to satisfy a
Heisenberg algebra. Remarkably this replacement does
not affect the analysis of Sec. II, i.e., Eqs. (1.2) and
(2.5)—(2.7) are still satisfied where y y" is interpreted via
(2.13) with the above substitutions. Furthermore, this
construction works in any dimension d =2 +2 since
io.2 A are antisymmetric and one can always find a set of
2" commuting antisymmetric matrices of dimension 2'+'.
The matrix elements with 4' then give the bosonic ob-
jects.

The strangest feature of this construction is that the
light-cone components of H" vanish, yet we still maintain
H" as a null vector. In fact, by juggling with signs it is
possible to show that the first construction gives null vec-
tors in spaces of signature (l,d —1), (3,d —3), etc. , while

the second, with anticommuting variables, realizes in a
formal manner null vectors with signature (O, d —2),
(2,d —4), etc. , and this latter construction works for
d =2"+2.

Just as with the original representation, we should like
to have linear transformations on 4 ' generate transforma-
tions on H' which preserve its null character. To see
how this works, it is best to see how the Lorentz transfor-
mations are generated in the original representation. The
action of the Lorentz group is generated by the following
four types of matrices:

o]g A', Ig A'. (4.2)

There are 2'+' matrices of dimension 2'+' which close
under anticommutation. In fact, they form a Jordan alge-
bra.

The transformations which stabilize the representations,
in a similar manner to the phase transformations of Sec. I
are in fact just the SO(1, 2+n) transformations acting on

The Lorentz transformations do not appear to be
realized linearly on +': transformations linear in
which move the components of II" are the analogies of
the phase transformations. Further elucidation of these
mysteries, which are really a consequence of the funda-
mental nilpotent character of bilinears in a finite number
of Grassmann variables will, we believe, require a deeper
understanding of the role of ghost fields in maintaining
covariant quantization.

V. FURTHER REMARKS

8

a= g a'e;, (5.1)

where the coordinates a' are either all integers or all half
odd integers or 4 of them are half odd integers and the
rest are integers, by regarding a as an eight-dimensional
vector with scalar product ,'(ah+ha). T—his suggests the
existence of a yet deeper interplay between the special
properties of octonions and superstrings.

Recently, Derrick' has employed a parametrization
equivalent to ours in four dimensions to describe particle
motions. He also discusses the quantization of this sys-
tem in terms of his parametrization. After this paper was
typed, we became aware of a preprint by Bengtsson, '

which covers similar ground.
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There is an intriguing prospect that the description of
the superstring which we have constructed may be ex-
tended to incorporate the lattice framework of the heterot-
ic string. In Ref. 3 Coxeter shows how to construct the
root lattice of E8 out of what he calls integral octonions,
i.e.,
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