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Radiative correction to the equivalent-photon spectrum of a relativistic electron
and the two-photon process
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On the basis of the improved Weizsacker-Williams equivalent-photon spectrum of a fast charged
particle, we calculate the radiative correction to this spectrum. The calculation involves the virtual-
photon radiative correction, the soft- and hard-bremsstrahlung contributions, and the vacuum-
polarization contribution. The results are used to calculate the radiative correction to two-photon
production of neutral bosons and pair production of charged fermions and bosons. General features
are that the elastic vertex radiative corrections to these processes are negative and large, up to
10—20%, while the total radiative corrections, including emission of an extra hard photon, are on the
other hand positive and in general considerably smaller, of the order of 1%. The effect of electron
tagging on the radiative corrections is briefly discussed.

I. INTRODUCTION

The radiative correction to electron-induced processes
at high energies has been studied' for inelastic electron
scattering on nuclei involving nuclear excitation or parti-
cle production in the field of the nucleus, and more re-
cently ' for inelastic electron-electron or electron-positron
scattering involving creation of leptons or hadrons.

In the present work we calculate the radiative correc-
tion to the virtual-photon spectrum and use the result to
obtain the radiative correction to electron-induced pro-
cesses, in particular, to (virtual) 2y processes. The
method of calculation is in principle related to the calcula-
tion of Kuo and Yennie for inelastic electron-nucleus
scattering and to the method used by Mork and Olsen
for calculation of the radiative correction to bremsstrah-
lung and pair production. Since it appears that the calcu-
lation is beset by rather heavy cancellations, a fact also
demonstrated by previous work, ' we use the improved
Weizsacker-Williams method which on one hand gives
cross sections to a high degree of accuracy as dernonstrat-
ed previously and, on the other hand, has a fairly simple
mathematical structure so that calculations may be per-
formed analytically. Because of the large cancellations
mentioned above, it seems to us safe to perform the calcu-
lations analytically in order to obtain reliable results for
the radiative corrections.

It should be emphasized that as for the cases of radia-
tive corrections to inelastic electron-nucleon scattering
and to bremsstrahlung it is the fractional radiative
correction 6 in the radiatively corrected cross section
do =do o( 1+6,) which is calculated in the Weizsacker-
Williams approximation while do.o is in general taken to
be the best available numerical or analytical uncorrected
cross section, not necessarily calculated in the
Weizsacker-Williams approximation.

The improved Weizsacker-Williams method is briefly
reviewed in Sec. II. The calculation of the virtual-photon
radiative correction is given in Sec. III, and the real soft-

II. THE IMPROVED WEIZSACKER-WILLIAMS
METHOD

Since our calculation of radiative corrections is strongly
dependent on the method for improving the Weizsacker-
Williams method in particular in connection with the cal-
culation of the hard-photon radiative correction in Sec. V,
we review briefly the calculations of Ref. 6.

The cross section for the process pictured in Fig. 1

where a high-energy equivalent photon of momentum Q
together with a high-energy photon of momentum k form
a final-state system of momentum P is given by

a dp2 1do. (p ) k ~p2P) = Tg'(P, , Q)
2~ E&E2 q

X ,'M„M„(2')—
X6 (p &+4 P)d I, —

where q = —Q and where we have taken the vertex
u~y"u ~ explicitly into account which gives the term

T8 = 2p ip i , q ~Ã—— (2)

M„is the matrix element for the process Q +k~P, for
an equivalent-photon polarization p, and dI is the invari-

photon and hard-photon contributions in Secs. IV and V,
respectively. The vacuum-polarization contribution is ob-
tained in Sec. VI and the elastic vertex and the total radi-
ative corrections are presented in Secs. VII and VIII. Ap-
plications to two-photon processes are discussed in Secs.
IX—XII, a general discussion in Sec. IX, followed by
specific calculations of radiative corrections to neutral-
boson production and charged-fermion and -boson pair
production in Secs. X and XI. In Sec. XII a brief discus-
sion of the effect of electron tagging on radiative correc-
tions is given.
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FIG. 1. Creation of a system with momentum P and mass M
by one real and one equivalent (virtual) photon.

ant phase-space element for this process. When we
neglect longitudinal and scalar equivalent photons, intro-
duce new variables for p2 so that
d p2=(E2/2E~)dq dgpdg, and perform the azimuthal-
angle integration we obtain

dcr(p~k~p2P)= f d N (pq, g )dpr(cgk~P),

where

(3) FIG. 2. Equivalent-photon diagrams, including virtual-
photon correction diagram b, soft- and hard-real-photon diagram
c, and vacuum-polarization diagram d.
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and where

f= 1 if P is a fermion pair,

f=0 if P is a boson .

2

dcr(gk P)= g ~

M
~

(2 ) 5 (p(+k P)dl-
Sgp

The factor f (q ) in Eq. (4) is a propagator factor and is

(1+q /M ) if P is a fermion pair,

1 ifP is aboson.

2 2
2= gp m

&max =4E1E2~ /min E)E2
(6)

For a boson the q integration is cut off at q =M . One
finds

The equivalent-photon spectrum is obtained by integration
over q:

2

dNp( Qp ) = f dq d Np(q, Qp )/dq
qmin

where the maximum and minimum momentum transfers
for fixed equivalent-photon energy gp are given by

M is the invariant mass of the produced system P =M .
The main contribution to the equivalent-photon spectrum
occurs for equivalent-photon energies gp which are con-
siderably smaller than the electron energy. We shall ac-
cordingly make the approximation Qp «E& throughout
the paper.

III. THE VIRTUAL-PHOTON RADIATIVE
CORRECTION

The radiative correction due to the virtual-photon dia-
gram in Fig. 2(b) is obtained in the same way as Np. The
virtual-photon vertex is given by

I
ugly„u~F~(q )+ uqcr„u~g'Fq(q ) .

2fPl

Here the fermion charge form factor is

F (q )= 2 1+ +~ In/ ln ——2 —3(1+/ )+2/1
~

1+(
2~ 1 g~ g 2(1 g2) 1 g 6

——ln g 2+in(1 g+)in/ 2+L q( —g)
2

where A, is the virtual-photon infrared cutoff and g is related to q by
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q /m =(I—g) /g,
and Lq(z) is the Euler dilogarithm

(10)

yz ln(1 —x)

The anomalous-magnetic-moment form factor is given by

F2(q') = —— In/ .
~(1 — )

(12)

As shown in Appendix A the contribution from the anomalous-magnetic-moment form factor is negligible and the
virtual-photon radiative correction is obtained directly as

d "1Vvir(q «Qo)=2d Ãp(q «Qo)Fi(q ) (13)

which is the correction to the spectrum Eq. (4). The correction to the virtual-photon spectrum Eq. (7) is obtained by in-
tegrating Eq. (13),

dX„,(gp)= f ', dq d 1V„;„(q,gp)/dq
q min

with the result given in Appendix B, which becomes, for Qp=Ei E2 «E—i,

a-' dgo
dX,.;„(Qp)= 2~' Qo

2 2—8 In (M/m)+ 16 ln(M/m) —— —12 ln ——In'(M/m)+ 101n (M/m)
3 k 3

(14)

with L3(z) the Euler trilogarithm, L3( —1)=-0.9015. It should be noted that this spectrum has the simple I/Qp depen-
dence, which will be a general feature of the radiative correction spectra.

IV. THE SOFT-PHOTON RADIATIVE CORRECTION

1V fi(q', Qp) =d 'No(q Qo)I (q', bcoq)

where I (q 2, hro2) is the soft-photon bremsstrahlung contribution:
2

d k2 pap&

p)k2
I (q', Drop) =

4 2 cd2 (Acd pgk2

cx I+/' Ac~2m
2 I + In/ In

kE)

+ — 21n( ln(1 —g ) —ln g —ln g ln I ——I (I+j') z

2 ( I —g') Ei Ei

The radiative correction due to the emission of a real soft bremsstrahlung photon Fig. 2(c) may be written down, from
the work of Mork and Olsen, ' as

t

+ ln —In — —g + In/ ln +L q
E(g EI ' E) Ei(1—g )

Ep —Eig
+L&

Ep( I —g )

g(E i E2$)——Lg
Ep(I —g )

g(Ep E ig)——L2
Ei(1 —g )

(16)

as shown in Ref. 5. The soft-photon radiative correction to the equivalent-photon spectrum is obtained in Appendix B
for Qp «Ei.

2 dg, 2w ~~2m
dX,„p,(gp) =- —81n (M/m)+161n(M/m) — —12 In ——ln (M/m)2~' go 3 XE) 3

+4ln (M jm)+8L3( —1)—
3

(17)
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It is apparent from Eqs. (14) and (17) that the infrared cutoff A, drops out when the virtual and soft photons are added
together, as it should.

V. THE HARD-PHOTON RADIATIVE CORRECTION

The calculation of the hard-bremsstrahlung contribution Fig. 2(c) to the radiative correction is the most complicated
part of the calculation. The procedure is as in Sec. II. The cross section is again given by an expression of the form Eq.
(1):

dcr(p, k p P)= T" (p, , g, k ) —,'M„M,(2n) 5 (p, +k P)d—I
E,E q

The tensor T" is now, however, the complicated Compton-type term

2

T""(p~,g, kz)=
3 [p&P2Tg"(p, ,g) —m kgkz]+ (2p~&p &

—p&kzg"")
(2 )' (pike)(pzk2) p2k2

2

, Ttl"(pi Q)+(pi
(pqk2 )

(18)

where Tg is given by Eq. (2). It is nice to notice that in the soft-energy limit of kq we obtain the correct low-photon-
energy bremsstrahlung limit,

2
2

T""(p),g, kp)M„M =
3

— Tg"(p(, g)M„M, ,(2') p 1k2 p2k2

since in the limit k2=0, Tg (p~, Q)M„M = T g'(pq, g)M~M„because of gauge invariance, Q"M„=O.
As in Sec. II we retain only transverse equivalent photons, introduce new variables q and Qo in Eq. (18), and perform

the azimuthal-angle integrations with the result

2

d T' p», kz Mi Mj:7T
3(2rr)

pip2
(p)k2)(ppkp)

m 2
2 2 m k2g

2

(2p» +q )—
(p2kq) (p i kp )(ppk2 )

2

+
k

(P&& +P2l +p&k2)+(P&~ P2) g l W l

'
p2k2 i=1

(19)

dcr(pik~p2P) = J d Nhard(p), g, hco2)dcr(gk~P),

where d Nh„d may be written as

d Nh„d(q,go, bc@2)=—d No(q, go) 2+2 1+ in/ ln + in'2 2 O' 2 2 1+/' ~~a 3(1+/')+2/
(20)

Ei 2(1 —g')

written in this form it is apparent that the dependence on bco2 is of the same form as in d N„n, Eqs. (15) and (16)
hat the dependence of be2 drops out when the soft- and hard-photon contributions are added together, as it should.

The correction to the equivalent-photon spectrum is obtained in Appendix C:

cc'dgo 2772 Ei
dNgard(gp, bri)2) =

&
8 ln (M/m ) —16 ln(M/m) + + 12 In —122' Qp 3 Aco 2

—6 ln (Mlm)+ 14 ln(M/m)—
2

(21)

where p&z and k2q are the components of p& and kz perpendicular to Q, respectively. As shown in Appendix C the cross
section is given by

d N„„(q,go)= —2d No(q, Qo)mf(q )q (22)

VI. THE VACUUM-POLARIZATION RADIATIVE
CORRECTION

The radiative correction due to vacuum-polarization
efT'ects may again be written down from Ref. 5. Et is given
by

rrf(q )= n 5

3&@

4g
(1—g')'

2g 1+(
1 —g

(23)

where mf (q ) is the renormalized vacuum-polarization
term:

where g is defined in Eq. (10).
The radiative correction to the spectrum is obtained in
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Appendix B which becomes, for Qp «Et,
a' dQodN„„(gp)=
3rr 0

X 41n (M/m)

2——"ln(M/m)+
3 9

(24)

which shows that the vacuum polarization increases the
number of soft (Qp «Et) equivalent photons of the fast-
moving electron.

VII. THE ELASTIC VERTEX RADIATIVE
CORRECTION

When conditions are such that Acu2, the energy of the
emitted photon with momentum k2, can be kept small
Aco2«E], the vertex is essentially elastic E] ——E2+~2,
and the radiative correction is given by

d Net co„(q,gp, hro2) =d N„;„(q,go)+d'N„rt(q', Qp, hc02)+d N„,(q', Qp)

dNO(q—, gp) ~ 2 1+ in/ ln
rr 1 g b, rp2

3(1+/')+2/
2(1 —g )

2 5 4g + 1—
3 3 (1 —()2

2g 1+/
(1—g)' 1 —g

(25)

The correction to the equivalent-photon spectrum is correspondingly given by

a' dQo
dNel corr( Qp ~

~~2 )
22r2 Qo

2 2

8 ln (Mlm) —16 ln(M/m)+ +12 ln + —"In (Mlm)
3

ln(M/m)+ —3' +9 18 27 (26)

VIII. THE TOTAL RADIATIVE CORRECTION

The total radiative correction to equivalent-photon emission from an electron vertex is obtained by adding the contri-
bution from the hard-photon emission to the elastic radiative correction Eq. (25):

Ntot corr(q ~ go ) —d Nel corr(q 1 Qor ~~02) +d Nhard(q i Qoi ~t02)2 2 = 2 2 2 2

It is then apparent from Eqs. (13), (16), and (20) that the contributions to the radiative correction from virtual and hard
and soft real photons cancel exactly

d'N„;,(q', Qo)+d'N„rt(q', Qp)+d'Nh„d(q', Qp) =0, (27)

and we obtain the remarkable result that the total radiative correction is given by the vacuum-polarization contribution
alone:

d Ntotcorr(q ~go)= — d No(q, QO) — +2 2 2a 2 2 5 44
3' 3 ( 1 —g)2

2g 1+(
(28)

For the radiative correction to the equivalent-photon spec-
trurn which is the most useful quantity for applications,
we find, from Eq. (24),

a' dQodN„,, „(Qp)= 41n (M/m) ——", ln(M/m)
3vr2 Qo

86+ + (29)

IX. APPLICATIONS: RADIATIVE CORRECTIONS
TO 2y PROCESSES

We discuss here the application of our theoretical re-
sults to processes involving two equivalent photons. The

is in most cases of experimental interest well described by
the creation of X by two quasireal, equivalent photons.
When we include the radiative correction the cross section
is given by

der�

(P &P & ~P 2P 2P~ ) = f [dNp( g 0 ) +dN , ( g p )].
X [dNp(Qp')+dN. o„(Qp')]

Xdo(g'Q' P~), (3O)

production of a system of particles X in electron-electron
collisions or electron-positron collisions,

ee ~eeyy ~eeX,
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where we have assumed head-on collisions of the
equivalent photons with momenta Q' and Q producing
X. If desired the angular distribution of the equivalent

photon s may be taken into account by the use of
d No(q, go), d N„„,(q, go) replacing dNo(go),
dN„„,(Qo) in Eq. (30). The radiative corrections dN„,„
and d N„„,are given in Secs. VI and VII for elastic ver-
tex and total radiative corrections, respectively. The cross
section der(g'Q ~Px) is the physical cross section in-
volving real photons including radiative corrections to the
process yy~X. To relative order a we have

dt7(p lp 1 ~p2p 2PX ) —dao(p 1 p 1 ~p2p 2PX )

+d tT

carr�

(P 1P 1 ~P 2P 2PX )

where do.o is the lowest-order cross section:

with

and'

16 H 86l, —

2'
l

19+
2

—
3

'1+
4

2

3
I

dobro(pip l~p2p2PX)= f dNo(Qo)dNo(Qo )

&& dtT(Q 'Q'~PX ) (31)

+ ', ~2+4L3(1),

with dNo(go) given by Eq. (7), and da„„the radiative
correction to relative order a,

dt7««(p lp'1 ~p2p 2PX ) =2 f dNo(Qo )dNcorr(go

&&der(g'Q ~Px),
(32)

where dN„„(go) is given for elastic vertex correction by
Eq. (26) and for total correction by Eq. (29).

X. RADIATIVE CORRECTIONS TO NEUTRAL-BOSON
PRODUCTION IN 2y PROCESSES

This process was discussed in a previous publication,
and we give only a brief outline of the calculation. The
radiative correction to the total cross section is from Eq.
(32) given by

c7corr(p lp 1 ~p2p 2Pzo) = 2 f dNo( go' )dNtot cort (Qo )

Xcr(g'Q ~P~o),

where ll ——1n(4E1 /m21 ), 12=in(m21 /m ), and L3(x) is
the Euler trilogarithm.

As pointed out in Ref. 8, the radiative correction im-
plies that the boson decay width I zo inferred from ee
collision experiments differs from the real boson decay
width I

(36)

The total radiative correction 6t„is small and positive, it
is given in Fig. 3 for vr, rl'(958), and f (1270) mesons.

For completeness we also consider the elastic vertex
correction. The radiative correction to the cross section is
again given by Eq. (33) with dN„,„„„(Qo) replaced by

O
~O

(33)

where we have assumed that the neutral boson B with
momentum Pzo is recorded irrespective of the energy of a
hard photon emitted in the untagged process. The physi-
cal 2y creation cross section is

8 2

o(g'g ~P~o)=(2J+1) I ~o 6(M —mso ) (34)

with J, m~, and I the spin, mass, and the 2y decay width
of the boson. With dNo(Qo), Eq. (7), and dN„,„„(Qo),
Eq. (29) inserted in Eq. (33), the integration is simple with
the result, which may be written as

a(pip 1 ~p2p 2P21o) t70(p lp 1 ~p2p 2P21o)( I+ ~tot)

(35)

Lh

O

I

60

E (GeV)
where the total radiative correction 6t, is given by

bt t=(2a/3~)I/Io
FIG. 3. The radiative correction At, t for m, g'(958), and

f (1270) mesons.
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TABLE I. Coefficients I„in Eq. (39) for fermion and boson
pair production.

o~0

C)

I

Integral

Ip

Fermion production

14
9

—ln2 ——'
7.16

—27.11

Boson production

4
9

9 ln2 —9'

1.47
—5.00

1 1
80 loo

E (Gev)
FIG. 4. The elastic (soft-) photon radiative correction

6,1(hco2) for ~ and g'(958) for various values of h~~. Curves 1

and 2: m and b,cop = 10 MeV and 100 MeV, respectively.
Curves 3 and 4: g' and Acoq=500 MeV and 1 GeV, respective-
ly.

60

dlV, i „„(Qo). Curves for b,,i(bros) defined in the same
way as b,„,in Eq. (35) are given for vr and rl' in Fig. 4.
In contrast to A„„A,1 is negative and numerically much
larger.

XI. RADIATIVE CORRECTIONS TO FERMION AND
BOSON PAIR PRODUCTION

We calculate in this section the pair production of fer-
mions and bosons including the effect of equivalent-
photon radiative corrections. The intrinsic radiative
corrections to the photoproduction process yy ~pair par-
ticles which must be included in order to obtain the com-
plete radiative correction, is not taken into account in the
present calculation.

The radiative-correction cross section is given by Eq.
(32) with the 2y cross section replaced by
o(Q'Q ~p+p ), where p+ and p are the momenta of
the produced pair particles. For the production of a fer-

I

mion pair the total cross section is the Dirac cross sec-
tion'

2
1 2 ma

~o(Q Q p+p-)= (2+2r r)ln—1+&1—r
m2 7-

—(1+v)/1 —r, (37)

where ~=4m 2 /M with

M'=(p +p —)'=(Qi+Q )'=4QoQo'

and m2 the fermion mass. For a boson pair the cross sec-
tion is, correspondingly, '

1 2 wa 2 1+&1—~2

oo(Q Q ~p+p )= r (r —2r)ln
2m 2 v'r

+(1+i)&1—r (38)

ocorr(p lrp 1 ~P2P 2P+P~tot-
oo(p ip 2 ~P2P V+P )—

where' 11

with ~ given as above with m2 the boson mass. For sim-
plicity we have neglected any form factor in Eqs. (36) and
(37).

The total radiative correction for fermion or boson pair
production is given by

a'
corr ~m

2 3- 1
2

21~ l2 +2lg ——12 —2l~—
2 3 4

1 —
2 16 — a 86

3 9 9 27
—1 2

— 12+ + Io —( —'12 ——")I 1

1 -2 16 — n 86+ —l 2
— 12+ + [2(lE+lg) ——,']Ii

3 9 9 27

2 2 4 —
2 2 — 61 — 26 35—lg ——l 2
——lgl2+ l2+ l~—

3 3 3 18 9 36

2

Iz+ —,
' [2(lE+12)——,']I3 . (39)

with lE =in(Ei Imq ) and 12 =in(4m' /m ) and where I„is given in Table I for fermion and boson pair production.
The uncorrected cross section is for fermion pair production given by

oo(p&pl~p2P2P+p )=
z [—", lE +28lE 12+14I, lE —561E +(281n2 —64)l~

9~m 2

—( 184—56 ln2 )lE 12 —42. 7lE + 156.812 +498.4] . (40)
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TABLE II. The radiative correction 5 (in %) to neutral-boson production and charged-fermion and
-boson pair production in untagged 2y processes.

Electron energy

ee ~ee~0

ee ~eel'
ee ~eef
ee ~eep+p
ee ~eel+ ~

5 GeV

0.78
1.73
1.96
1.17
1.22

15 GeV

0.70
1.44
1.58
1.05
1.08

70 GeV

0.61
1.22
1 ~ 32
0.92
0.94

100 GeV

0.59
1.18
1.28
0.90
0.92

ee~ee~+~ (Ref. 4) 1.04+0.6 0.70+0.61 0.72+0.48

The corresponding cross section for boson pair production is found to be given by

a4
cTo(pip i~pzpzp+p )= [—,'l~ +81E'lz+4lz IF —81F +(8ln2 —17)lz'

18vrm 2

+(161n2—42)l~lz —43. Ii~+ 16.7lz+ 149.3] . (41)

Values for Atpt for pair production of p+p and ~+~ are given in Table II. We include in the table the numerical re-
sults of Defrise for ~+n production. Our results which contain rather small uncertainties, of the order (mz/Ei) as
discussed in Ref. 8, agree to some extent with Defrise s results within his rather large limits of uncertainties.

XII. SINGLE- TAG RESONANCE PRODUCTION

The calculations of the radiative corrections in Secs. IX and X are based on the full range of angles and momentum
transfers. In experiments, ho~ever, tagging of secondary electrons are often used. Our theory is easily adapted to
single- or double-tag situations. As an example we discuss briefly neutral-boson production in a single-tag experiment.
We assume that the momentum transfer of one of the electrons is confined by the maximum and minimum acceptance
angles 0 „and0;„by

. 2 2 2
q I111Il + g + g I11ax (42)

where now (q;„,„)=EiEz(0;„,.„)and where the angles satisfy m-' «E,EzO «meoz. The modified equivalent-
photon spectra are clearly obtained by replacing the full integration over q by an integration over the confined region.
From Eq. (7) we find the modified spectrum

dNo"(Qo)=dNo(go q - ) —dNo(Qo q )

a dgo Ez1+ ln(q „/q;„)
rt o

(43)

and the corresponding total radiative correction from Eq. (29):

4az d o
dN', ;f„„„(Qo)= [ln (q,„/m ) ——,"ln(q, „/m ) —ln (q;„/m )+ —", ln(q;„/m)]3~z Qo

4a' dQo
ln( q,„/q;„)ln

377 0

g maxqmin

71l

8

3
(44)

For single tag we find, instead of Eq. (33),

a',p«(pip'i ~pzpzPzio)= f [dNo's(go)dN««„«(go )+dNo(go')dNiof'o«(go)]a(g Q ~pro) (45)

which gives

20!
~tot, tag— 3~

with

g maxqmin

Pl
——+ —f(m o/m )

8 1

3 2

(46)

16 w 86
l2 — l2 +

f(meo /m -)= 3 3 9
l, +l, —1

with l] and l2 as given in Sec. IX:

li =ln(4Ei /men ), lz =in(meo /m ) .
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As an example we compute the radiative correction for f
production in the single-tag mode of the Pluto detector. '

Here 9;„=23mrad and 0,„=70mrad. With E1 ——15.5

GeV we find

~tot, tag(f ) =2 4%

to be compared with an untagged radiative correction at
the same energy A„,(f )=1.6% from Table II. In gen-

eral it is reasonable to assume that tagging will increase
the radiative corrections.

APPENDIX A

The radiative correction due to the anomalous magnetic
part of the virtual-photon vertex Eq. (8) is obtained as in

Eq. (1) with Tg" replaced by

where we have left out terms proportional to Q' which
vanish by gauge invariance when multiplied with M, .
This gives

a dq dQpQp 3 q'
d N, g (q Qo) = F2(q ) 1+

~q'QpEi M

(A2)

which is of the order Qp /Ei relative to dN„,2 (q2, go)
Eq. (13) and therefore negligible.

APPENDIX B

T";g„=Tr (yp2+m)y"(yp&+m)cr" Q Fz(q )
2m The q integration of Eq. (13)

—(p i+-+p2, v~p) dN„;,(gp)=2 f d Np(q, gp)Fi(q )

4q g" F—2(q ), becomes, for Qp «Ei, when we introduce g by Eq. (10),

dN;„(Qp)= dNp(Qp) ln —1 + i i 2 ln
20. m a . m 3
'l7 ~2 X 2

2

—l 3 + l 5 1 7 +21 9 +2l 11
6

&Qo . m 3

~2E
i2 2 ln ——— 1.l4+ l6 l8+2l 10+2l 126 2

where the integrals i, are

(ii, i3,iq, iq, i9,i ii ) = dg In/, In/, l, ln g, In(in(1+/), L2( —g)
&max ( I+g')g

(1 —g)'[(m /M) +g] 1+/
and

(iq, i4, i 6i gimp, iiq)= dg jng, In/, l, ln g, In/in(1+/), L2( —g)
1+4'

&min ( 1 —g) 1+/

where g,„=m /4EiE3, g',„=Eq/Ei. The results of the integrations are

(B2)

(B3)

2

i i
———21n (M/m)+2 In(M/m)+21n(gp/Ei ) —2—,i 3 =ln(Qp/Ei ) —1,

6
'

2

i5 =21n(M/m)+21n(Ei/Qp) —3, i7 = —,'ln (M/m) —41n (M/m)+ [21n(M/m)+I],

19:L3(—1)+2 ln(go/E, )+ —ln 2 —2 ln2,
4

(B4)

~2 E1
i, i =L3( —1)— —2 ln2 In(gp/Ei )+ln 2+2 ln2,

6 0

l2 ——I, 14= 2'
1

2 E
l6=

3 0

2 E
12 3 Qo

i 7 ——1, i 8 ——0, i10 ———ln2, i]2 —— 1 —— + ln (B&)

When these results are inserted into (Bl) one obtains Eq. (14).
The soft-photon radiative correction dN„rt(gp) is obtained by integrating Eq. (15) over q . The integral is, for

Qo «Ei,
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dN„p,(Qp) =—

where

2' ACuzm
dNp(Qp)lnjj 1

a' dQo
4 i1-

2vr2 Qo

2
Qp AC02m

iz ln +G
E1 A,E1 (86)

&max 1+/
(1 —g)2 [(m/M) +g]

X 2 in/ ln(1+/) —ln g+L2

Qo'

Ei (1—g')

1 E2/—E,( E2 Et (—

1 —g E2(1—g )

$(E2/Ei —g)—12
1 —g'

g(E ) E2()——Lz
E2(l —g )

= ——,'ln (M/m)+41n (M/m)+8L3( —1)—

2a 5.
3'' 3 J1 —4J2+J3 —2J4— (87)

where the integrals J„aregiven by

with the result which gives Eq. (17).
The vacuum-polarization radiative correction is obtained in the same way. When g is introduced as a variable the in-

tegration of Eq. (22) over q may be written, for Qp «E~,
2

QodN„,(Qo) =- ( ,'i s 4i6+i-7 —2i8)—

rmax I+( g g 1+( g(1+/)
1 —K [(m/M)'+g]' (1 —g)' 1 —k (1 —g)'

(88)

(jsj 6j 7j 8)= f dg ((1—g), g(1 —g'), (I+/)(1 —g) in(', g(l+g)in/)
kmm ( 1 —g)

with the results

j ~
=2 ln(M!m) —2 In(Q0/E~ ) —1, j 2 =(E~ /Qp) —E~/Qp,

2

j3 = —21n (M/m)+2 ln(M!m) — —4+4 in(Q0/E~ ), j4 ———,
' in(Q0/E~ ) —2(E~ /Qp) +2E~ /Qp ——',

(89)

(810)

and
2

Qo
(js~j6&j7~js)

1

2

1,— —1,—2, —1

2 Qp

2
1—1

Qp 6

(811)

I

small-angle improved Weizsacker-Williams method of
Sec. II, invariants such as k2p~, Q, etc. , are considerably
smaller than energy terms such as E1,E]coz, etc. By the
use of kinematics, it is easy to show that for Qp «Et and
small values Q, Q =Qp, one obtains

E q E q cc) q
2 ' P2l 2 ' 2l

0 0 0

With these results inserted into Eq. (87), Eq. (24) is ob-
tained.

APPENDIX C

We calculate here the hard-photon radiative correction,
starting with Eq. (19) in the text. In the high-energy,

and the cross section becomes

do(p)k~p2P)= f d Nh„d(p),Q)do(Qk~P) (Cl)

with

d Nh„d(p, Q)= (1+q /M )
a dq dQp

2~ q Qp

1
X

(2 2 4 2)1/2 2 2

Ez z zEz zEz s +y+ q +4m —4m
E12 E1 E1

(C2)
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where we have introduced, following Bethe's calculation
of the bremsstrahlung cross section with screening, " the
variables

and s =x+2m . The x and y integrations are performed
(ttt =2xq —q )

x =u+v, y=u —U,

where

E
u =2p~ (1—cos8~)=2 p~k2,

COp

f
2 2

oo
d

W
d

S +y
2

(
2 2)1/2( 2 2)2

7T

2m

2
pp-kp,

COp

E
U=2p2 (1—cos92)=2

followed by a simple integration over co&, which gives Eq.
(20). The g integration of Eq. (20) is inferred from Ap-
pendix B with the result Eq. (21).
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