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We study a system of gravity and free massless scalar fields minimally coupled to gravity in a 7-

dimensional background which is a direct product of a 4-dimensional Minkowski space and a 3-

dimensional homogeneously deformed three-sphere. Cornpactification is caused by the vacuum en-

ergy of scalar fields. The effective potential as a function of two parameters (scale and deformation)
is calculated numerically after dimensional regularization. We find the effective potential decreases

rapidly toward negative infinity in both prolate and oblate directions. The classical curvature, how-

ever, can balance the quantum effect and yields three extrema. In addition to the round S solution

in the quantum-corrected field equations, we find two deformed ones. One of the deformed solu-

tions corresponds to the local minimum of the total potential. The round three-sphere solution,

however, corresponds to the local maximum of that. More scalar fields can enlarge the scale of the
internal space but not affect the shape. This serves as an example of gauge symmetry breaking by
deformation of the internal space in multidimensional theories. The stability of these background
solutions is discussed but not established conclusively. A discussion of four different analytic-
continuation procedures is presented in one of the appendixes.

I. INTRODUCTION

Several mechanisms have been proposed for higher-
dimensional theories to compactify part of the spacetime
dimensions (usually spacelike) to make them undetectable
at present energies. Some mechanisms are pure classical.
One interesting scheme is to introduce elementary gauge
fields in higher dimensions. Their nonzero vacuum ex-
pectation value in the classical field equations can yield a
solution with M &B configuration, where M is 4-
dimensional Minkowski space and B an N-dimensional
compact space. Another possibility is to introduce a non-
linear o model. In the context of supergravity, the vacu-
um expectation value of antisymmetric tensor fields can
also be employed to compactify the 11-dimensional
ground state. In this scheme, however, a large negative
cosmological constant is induced. As a result, the 4-
dimensional spacetime is anti —de Sitter instead of Min-
kowski. A spin-torsion compactification is proposed as a
semiclassical approach to solve the cosmological-constant
problem, if an appropriate fermionic bound state can be
found. Yet there is another semiclassical scheme which
we wiH discuss here: namely, compactification by the
vacuum energy of the matter field.

The scale of the internal space is generally believed to
be not too much larger than the Planck length (=10
cm). Therefore, quantum effects should be taken into ac-
count, although a quantum theory of gravity is still lack-
ing. As was first pointed out by Appelquist and Chodos,
the one-loop quantum fluctuation of gravity produces a
Casimir effect in the 5-dimensional Kaluza-Klein model
and may lead to a collapse of the fifth dimension. How-
ever, the properties of vacuum energy depend strongly on
the topology and geometry of the manifold. This feature
gives the vacuum energy a chance (as demonstrated by

Candelas and Weinberg ) for certain higher-dimensional
backgrounds, to balance the classical Einstein tensor in
classical field equations and yield self-consistent solutions.
However, one must keep in mind that in order to have a
quantum effect comparable to classical terms in the action
and without considering effects of quantum gravity, a
large number of matter fields (including, perhaps more ef-
ficiently, higher-spin fields) should be considered. This
model can fix the size of the internal space and provides
an opportunity to calculate gauge coupling constants.
The calculability of these quantities, however, is limited to
odd dimensions and odd-loop quantum fluctuations (with
dimensionless regularization ). Other cases are plagued
by the ambiguity of unknown coupling constants of
geometrical counterterms (e.g., R' + '~

) (Ref. 10). Un-
fortunately, in odd dimensions one has to surmount the
difficult problem of chiral fermions. " Nevertheless, this
mechanism may still play a role in more realistic models.

In this paper we use a 7-dimensional model to demon-
strate that it is possible to have a M &&Taub background
supported by the vacuum energy of a massless scalar field
minimally coupled to gravity. Taub space' is a 3-
dimensional homogeneous but anisotropic space with
isometry group SU(2)&&U(1). It is, roughly speaking, a
deformed three-sphere characterized by two geometric pa-
rameters; the scale a and the deformation a (see Sec. II).
The reason that we choose to work with the static Taub
space is twofold. Firstly, it is the lowest-dimensional
model to allow homogeneous deformation which we con-
sider as a slightly more generalized step than the dilata-
tion mode considered by many authors toward a systemat-
ic study of the stability of a M &(S background.
Secondly, the Taub space has an isometry group:
SU(2) XU(1), which may lead to phenomenologically in-
teresting gauge groups from a 4-dimensional point of
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view. One may take this "geometric symmetry breaking"
as an alternative to the usual Higgs mechanism in grand
unification theories (GUT's), except that it occurs at the
compactification energy scale which is much higher than
the usual GUT symmetry-breaking energy scale.
Geometric symmetry breaking' is not a new idea, ever
since the revival of Kaluza-Klein theories. For example,
deforming the spherical background to an ellipsoid to ac-
count for gauge symmetry breaking from SO(N+ 1) to
SO(N) has been considered by Lim. ' A 6-dimensional
gravitation —Maxwell system with a Higgs field and with
a nonlinear o. field have been proposed by Sobczyk' and
Shin, ' respectively, to account for electoweak symmetry
breaking. The low-mass scale (100 GeV) of the vector bo-
sons can be obtained by extremely small deformation of
the internal S . One of the differences of the present
work with the above-mentioned ones is that the geometric
deformation here considered is homogeneous which may
have less "kinetic energy" than the inhomogeneous ones.
Of course, geometric symmetry breaking is relevant only
if at least a part of the 4-dimensional gauge group ori-
ginates in isometrics of the internal space.

In this paper we consider only a free massless scalar
field minimally coupled to an M" XTaub background.
The exact effective potential can thus be obtained. The
effective potential is formally divergent. An analytic con-
tinuation which involves a Sommerfeld-Watson transfor-
mation is used to render it finite. In this way we obtain
an effective potential which is a function of deformation
parameter a and internal space volume 0 (see Fig. 4).
Taking this potential as the energy source for Einstein
equations, we find that in addition to the spherical solu-
tion, there are two deformed ones (see Fig. 5). It seems
that one deformed solution can be stable; however, it
could be an illusion (see Sec. IV). The complete stability
analysis will be reported elsewhere. Besides the physical
aspects, we find analytic continuation is of its own in-
terest. We have collected four different methods and con-
vinced ourselves that they give the same answer in the
common domain. However, each one of them has its ad-
vantage and limit. We devote Appendix B to a detailed
drscussron.

Recently, we found similar work has been done. Oka-
da' considered a conformal scalar field in the same back-
ground but only for oblate deformation (a & 0 in our nota-
tion). With respect to our work, many technical complex-
ities can be avoided in this case. Page' has conducted a
minimal scalar-field effective-potential calculation in the
small-a expansion which we shall discuss in Appendix C.
Shiraishi' also discussed small-deformation stability of
the effective potential of a Dirac field and a scalar field
with an arbitrary positive coupling to gravity in the back-
ground of M &(S and M &S7.

The plan of the remainder of this paper is as follows.
In Sec. II we present the calculation of the effective poten-
tial. In Sec. III we find self-consistent solutions. In Sec.
IV the problem of stability and some physical implication
of these solutions are discussed. Technical discussions on
sums and regularization are presented in Appendixes A
and B. A small-a perturbative calculation of the effective
potential is presented in Appendix C.

II. EFFECTIVE POTENTIAL

Consider a scalar field 4 in a 7-dimensional spacetime.
The classical action of the system has the form

S = dV7 —R —2A + —,N —R —m
K

(2. 1)

o' =cosP d 0+ sing sin 8 d P,
o = —singd6+cosgsinOdg,

cr'=d g+ cos8 dP .

(2.3a)

(2.3b)

(2.3c)

The I, 's are principal curvature radii of the homogene-
ous internal space and in general a function of the exter-
nal spacetime. The case where all I, 's are equal corre-
sponds to the usual round three-sphere with isometry
SU(2))&SU(2)=SO(4). The case when two I, 's are equal
corresponds to the Taub space with isometry SU(2) )& U(1).
This is the case we shall discuss in this paper. The most
general case with three different 1, 's corresponds to the
mixmaster space with SU(2) isometry only.

Let I~ ——I2&I3. The background geometry depends on
two parameters only: the scale a and deformation o. de-
fined by

a =2I),
a=(l, /13) —1 .

(2.4)

(2.5)

The range of a is —1 &o, & oo and a=0 corresponds to
round S ~ In particular, since we are looking for static
background, we consider a and a constant. The curvature
scalar of the geometry (2.2) can thus be reduced to

4I )
—I3R=R=

2I, 4
2(3+4a)
a (1+a)

(2.6)

where tilded quantities are in the internal space. The
Laplace-Beltrami operator in this geometry can also be
simplified into a Minkowski space one and its Taub-space
counterpart

(2.7)

The scalar field N(x, y), where y denotes internal coordi-
nates, can then be expanded by a complete orthonormal
set of eigenfunctions YM (y) of the operator

+gR+m with eigenvalues (A,M ) as

where dV7 is the volume element and quantities with
overbars are in the 7-dimensional spacetime. We assume
that this system admits a M )&S geometry as a solution
of the quantum-corrected field equations where M
denotes a Minkowski space and S a three-sphere with
possible homogeneous deformation. The line element of
this background geometry is given by

3

ds =rj„gx"dx + Q (l,o')2, (2.2)
a=1

where x"'s are coordinates in the Minkowski space; o"s
form a basis one-form on S satisfying the structure rela-
tion der'= —,e'b, o. ho'. In the Euler-angle parametriza-
tion ' (0 & 8 & ~, 0 & P, P & 2~) the o"s are given b
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@(x,y) = g 4M(x) I'M(y) .
M

(2.8)

YM's are the well-known three-dimensional rotation-
group representation functions which are of the form

"r( —d/2)
2ad(4~)d/2
oo n —1

&& g n g [n —1+a(n —1 —2q) ] /

q=0
D~L (&,p, Q) =e' dxl. (6 )e' (2.9)

(2.16)

J(J+1) 1

2 I 2
K +m +gR . (2.10)

2

The quantum number L is totaHy degenerate in the
Taub-space case.

On making use of the orthonormality of YM and homo-
geneity of the internal-space geometry, the 7-dimensional
scalar action can be reduced to a 4-dimensional one with
infinite number of massive scalar fields

S = g fdV„QM(x)( —0+AM)p(x) .
M

(2.11)

where J,K,L take all values of integers and half-integers
and K,L = —J, —J+1, . . . ,J—1,J. The eigenvalues A.M
are obtained as

P( q) = [n —1+a( n —1 —2q ) ]"/2 (2.17)

The effective potential as it stands is well defined only for
Red & —3. We shall perform an analytical continuation
of V as a function of d to d=4, using a Sommerfeld-
Watson transformation (see Appendix B for details).
Since we use dimensional regularization, the one-loop cal-
culation in an odd-dimensional spacetime is finite. The
main result is presented in (2.31) for a &0 and in (2.35)
for a&0. The effective potential (2.36) is plotted in Fig.
4. Detailed calculation is given below.

We first do the sum over q in (2.16) by making use of
the Plana sum formula (see Appendix A for details).
Since n=1 is the zero mode, one can start from n=2.
One should at the beginning examine the analytic proper-
ty of the function P(q) defined by

I = —i ln J[dg]e' (2.12)

The effective action of a real scalar field in vacuum is
given formally by P(q) has branch points at

n —1 i n2 —1q= +—
2 2

1/2

for cz) 0, (2.18a)

Since we are dealing with free fields (2.11), the functional
integral of (2.12) can be performed exactly and yields n —1 1

2 2

1/2
n —1

for o. &0 . (2.18b)

i iHI = ——trln
2 p

(2.13)

where H =8 S/BP and a mass scale p is introduced to
render [dP] and I dimensionless. The eigenvalues of H
can be read off from (2.11) as k +AM. The effective ac-
tion (2.13) then follows:

We find from (2.18b) that if ——, &a &0, branch points
will fall outside of the summation region ( —, , n ——, ). —
Integration path C'& and C2 of Fig. 6(b) can be used.

For ——, &a &0, we can rewrite the effective potential
from relation (Al):

—i2 "I ( —d/2)

d"k ln k +AM
2(2m. )

4 —d

r
2(2m. )" (2.14)

where

+2, (1+ )d/2f" G y dy
0 e2my+ 1 d=4

(2.19)

where the dimension d is a complex variable so that I as
a function of d can be analytically continued. One can
then define the matter effective potential in the Min-
kowski spacetime by V= —I /Qd. It proves to be con-
venient to use the following definitions:

n =2J+1, q =J—K, cr=m a +JR —1 .

F(y) y n2(n2 g 2)d/2

n =2
(2.20)

G(y)= g n [[(n+iB) E] / [(—n iB) —E2]d/2I, — —
n =2

(2.21)

The eigenvalues can thus be written as

A,M ——[n +o+a(n —1 —2q) ]/a. (2.15)

(1+ y2) —1/2 B y E2 ay=2
1+a ' (1+a)2 1+a

(2.22)

In this paper we shall consider only a massless, minimally
coupled (g'=0) scalar field; o reduces to —1 and the effec-
tive potential follows from (2.14) and (2.15):

Next, we find the infinite sum in F(y) can be converted
into an integral in the complex plane by a Sommerfeld-
Watson transformation (see Appendix B):
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g n (n —A ) = — dzz (z —A )
~ cotvrz

C

(2.23)

where C is the contour of Fig. 1. Because a is negative
and y&(0, 1), we find 1&A &2. The analytic continua-
tion consists of two steps. First, one changes the integra-
tion path C to C' (see Fig. 1). Equation (2.23) can now be
expressed as

C'

2 ReZ

2 2 2 d/2F(y)=sin P x (A x)—~ cotirx dx
2

x (A +x )" coth(irx)dx
0

—( A —1)" cos
2

(2.24)

FIG. 1. The n summation in Eq. (2.23) is replaced by a com-
plex integral representation along the contour C. By Cauchy's
theorem the contour C can be changed into C' which runs along
the cuts associated with the branch points z = + A. z = 1,2 . . .
are simple poles. When this figure is referred to the discussion
of Eq. (B14), a change of A H {0,1) is understood.

Because z=1 is a simple pole on the integration path, the
(O, A) integral has to be defined by the principal value.
The last term of (2.24) comes from the residue of the z= 1

pole. The second integral in (2.24) is divergent when the
value d =4 is taken. Hence further analytic continuation
is called for. Rewriting cothirx as [1+2/(e ""—1)] (Ref.
24), one has

f dx x (x +A ) cothmx =
0

2I
2

d+3
2 ~ x2( 2+A 2)d/2

+2 dx
0 e 27IZ

(2.25)

Substituting (2.25) into (2.24) and taking the d~4 limit, we find

F(y)= lim ire ,'P f x (A——x ) cotirx dx+ +2A +A
3 (y) I (7)g(7) 2 I (5)g(5) 4 I (3)g(3)

e 0 (2ir) (2ir) (2ir)
—lim cos (A —1)"~

d~4 2

(2.26)

where e=d —4. Note that there is an overall I ( —d/2) factor in (2.19) which gives —I/e in the limit of d~4. We
conclude that (2.26) gives finite contribution to the effective potential except for the last term which will be treated
separately.

It remains now to evaluate the function G in (2.19). Because the branch cuts are different, we have to separate the
(O, oo) integral into (Ou) and (u, op ) with u = —,[(1+a)/( —a)]'r . From (2 22) it is easy to see that when 0&y &u,
E )0. Branch cuts of the function [(z+iB) E] ~ are shown —in Fig. 2. One can do a similar Sommerfeld-Watson
transformation, and G (y) takes the form

2iG(y)= f dzz cotvrzI [(z iB) E] —[(z+i—B) E—]— (2.27)

where C is the contour in Fig. 2. One may observe that contour C can be replaced by contours ( C'i + C3 ) and ( C2+C3),
respectively, for the two terms in (2.27) (this is allowed for d & —3). After manipulations similar to that of F, we ob-
tain, for 0(y &u,

2 2 B sin(2~x) —x sinh(2irB) 8B I"(5)g(5) B2 E2 I (3)g(3)+8B
E 0 o cosh( 2irB) —cos( 2irx ) ( 2'ir )5 ( 2 ir )

B(y)
+ f dx cothvrx[(x B) +E ] x —lim —

I [(1+iB) E] ~ [(1—iB) ——E ]—
0 1~4 (2.28)
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iB

C)

C'

Rez

i(abc),
I B 'I' Cl

i(a-c)"

- i(a-c) i
C~

— iB
- i(a+c)

C3

ReZ

-iB

FIG. 2. In Eq. (2.27), the contour C is replaced by C]+C3
for the [(z iB)' E]—" —part of the integral and by C2+C3
for the [(z+iB)' E']"~—part. (E )0. )

FIG. 3. In the case of E (0, the two terms on the RHS of
Eq. (2.27) have branch points along the imaginary axis. Similar
to Fig. 2, the contour C for these two terms is changed to
C ]' + C3' and C&' + C3', respectively.

In the case y )u, (2.22) yields E &0. The branch cuts associate with (2.27) will be along the imaginary axis (see Fig. 3).
We then replace the contour C of Fig. 3 by (C'i'+C3') and (C2'+C3') for the two integrals in (2.27}, respectively. By
carefully keeping track of the phase changes when the integration path is along the cut, we find (2.27) leads to

2iG(y)= lim 2vre „BF+8B— +(B +E )
8 2 1(5) (5) p 2 1(3)g(3)

@~0 (2m) (2~)

x[(x+B) +E J F+s x[(x B) +E ]—
0

dx + dx
2 fTX 0 27TX

—lim I [(1+iB) E] ——[(1—iB) —E~]~~2I,
d~4

(2.29)

lirn —I
d~4

where F = ( E)'~ and y—)u.
Substituting the last terms of (2.26}, (2.28), and (2.29) into (2.19) and performing the y integration, we find these terms

do give a finite contribution to the effective potential after d~4 limit is taken. More explicitly, we have
d/2—d ' 1 ~d . dy

dy 1 — cos +2i 1+e

&& [ [(1+iB) E]" [(1—iB)' —E']" 'I—'——1 +16 y 4y —11 4y +1

+2, 16y' —24y'+1 0,

where tan8/2=1/2y. On using the result of (2.26) to (2.30) in (2.19), we obtain the final expression for the regularized
effective potential:

1 u 8'~(y)V=
4 —,

' f dy(1+ay ) I' f x (A —x ) catrex dx+2(1+a) f dy
32~a 4 0 0 277/+ 1

(1+a)2 dy
,', BF dx

x [(x +—B)+E ]
21TJP+ 1 0 2 flax

F+~ x[(x B) +E2J—
dx

0 e —1
2 ITX

(2.31)

where
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2 ] d " d 45 7 2W~(8)= —16 f y(4y —1)ln(4y +1)—2 f (16y —24y +1)8 + 1+ +
25 0 e2 V+ 1 0 e2~V+1

+ (3+2a+a )+ —+ —+g(5) g(3) 1 a 7a'
2m' 4 6 60

W ( )
' 'd (E2 2)2B sin(2') —x sinh(2mB) ' 'd th [( B)2+E2]2

cosh(2vrB) —cos(27rx)

For a)0, recall that the branch points (2.18a) force us to take the contour C'&' and C2' of Fig. 6(c) during the q sum
(Appendix A). As a result the modified Plana sum formula (A6) gives rise to an extra term inside the large parentheses
of (2.19):

co ~ (
2 2)d/2—(4a)"~ 4sin g n f dy (n 1)+2 y

(2.32)

where p = —,[(n —I)/a]'~ . This term is finite in the limit d=4 thanks to the exponential factor in the denominator.
Other modifications in functions F and G are also needed. In the F part, positive a dictates the range of 3: 0 & 3 (1.
No poles will lie on the integration path (O, A). The right-hand side (RHS) of (2.24) is thus replaced by

2 2
oo

sin x (A —x ) cot~xdx+ x (A +x )
i cot(~x)dx —(1—A )

0 0
(2.33)

Since both B and E are now positive, (2.27) can be regularized by contours shown in Fig. 2. Similar calculation also
leads to a change in the definition of 8 in (2.30),

gl
tan —= —2y,

2
(2.34)

the rest of (2.30) remains intact for the case of a g 0. With these modifications, we find the regularized effective poten-
tial for a) 0 as

1 A (V) W2(y)V= —f dy(1+ay ) f x (A —x ) cot~x dx+2(1+a) f32ma 2 0 0 277++ 1

oo oo (
2 2)2—32a g n f dy, , „+W~(8')

Tl =2 e l ~(n 1)+2~V (2.35)

All the integrals in (2.31) and (2.35) can be evaluated nu-

merically. It turns out to be convenient for later analysis
if we replace the scale a by the internal space volume 0
via the relation

27T 0
&I+a

We can then write the effective potential as

Y(a)
~4/3 (2.36)

The graph of Y(a) is plotted in Fig. 4.
It is interesting to note that even if the topology of the

manifold is still S, deformation in both prolate (a &0)
and oblate (a & 0) directions induce large negative Casimir
energy similar to the well-known case of two parallel
plates which corresponds to the topology of S'. The
asymptotic behavior of V(a) seems to be independent of
the coupling constant g (Ref. 25).

We have also compared the present result with that of a
small a perturbation calculation (see Appendix C) in Fig.
4. The perturbative calculation agrees with the exact one
within l%%uo up to

~

a
~

=0.14.

III. SOLUTION OF FIELD EQUATIONS

S = fd V„dVy
—( R —2A ) —V
K

(3.1)

where V is the 7-dimensional matter effective potential.
In particular, we are seeking a vacuum solution with 4-
dimensional Poincare invariance and a static homogene-
ous internal space, the action can hence be reduced to

o

S= dV —R —2A —V
K

L

(3.2)

We have calculated the effective potential of a massless
minimally coupled scalar field in a M &Taub geometry
without asking how to obtain this background in the first
place. In this section we shall show that a certain config-
uration of the background geometry can be sustained by
this potential.

Since we consider a vacuum state, the matter Lagrang-
ian consists of only a geometrically dependent effective
potential which is generated from quantum fluctuation of
matter fields in this background. The action, in general,
can be written as
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V(a)'
5"

(2 2)2/3 4ap vY'

(1+ )7/3 2~ 4/3 (3.5b)

3

2 where

( 1+ )4/3 2&o' ' (3.5c)

-O.4( -O,2 0

dY
de

From these equations we first determine the solution ap
through

Yl —14ao

Y 3(3+4ap)(1+ap)

Then, Qp and Ao follow accordingly:

7i7Y(ap)( 1+ap) /
5/3

4( 3+4ap)( 2~ )

(3.6)

(3.7)

FIG. 4. Effective potential of a massless, minimally coupled
scalar field in a M )&Taub background. The dotted line denotes
the small a perturbative result in Eq. (C6). Deformation param-
eter a is 0 for a round three-sphere. Here we set the S volume
0=1. V(a) is plotted in units of 10

5i7Y(ap)
Ap ——

4n, '" (3.8)

From (3.2) we see that the 4-dimensional Newton's con-
stant is given by Ir =ir/0 (actually this is true only up to
quantum corrections ). Numerical calculation of (3.6)
gives three solutions:

ao ——0, —0.05941, —0.1861 . (3.9)

There is no kinetic term in the Lagrangian, so the total
potential can be read off immediately:

1
VT ———( —QR+2QA+vV) . (3.3)

We can take (3.3) as a potential for a classical system with
two dynamical variables: internal space volume 0 and de-
formation parameter a. A is a 7-dimensional cosmologi-
cal constant which will be determined by the value of A
and a through (3.4b). Static solutions must satisfy the
following field equations:

The total potential VT is shown in Fig. 5 where A and 0
are evaluated through (3.7) and (3.8) with ap ———0.05941.
For the other two values of ap, the shape of the potential
VT is similar except that fine-tuning effect of the cosmo-
logical constant shifts the value of VT to zero at a =0 and
—0.1861, respectively. It may be interesting to note that

av,
8CX aoQO

8VT =0,
BA a,no

(3.4a)

Vr I.,n, =o . (3.4b)

3+4~0 — 2~ Y+A — =0,
3(1+a ) 3Q

Equations (3.4a) and (3.4b) are the (mn) and (pv) com-
ponents of Einstein equations, respectively. [One may
also vary the action (3.1) with respect to g& to obtain the
(pv) component of the Einstein equations and with
respect to (a, Q) to obtain the (mn) component of the
Einstein equations. One then sets g&

——q&„ for a solution
of M XS and Einstein equations are reduced to Eqs.
(3.4).] Equation (3.4b) signifies that cosmological con-
stant in four dimensions is zero. From the general form
of the effective potential (2.36), and curvature scalar (2.6),
Eqs. (3.3) and (3.4) yield the following set of algebraic
equations:

2/32~'
(3.5a)

0

O.l a 0.2

FIG. 5. The total potential in Eq. (3.3). A and 0 are deter-
mined by Eqs. (3.7) and (3.8) at one of the solutions
ao ———0.05941. Here we set 2(4m 0)' /~= 1.
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at +=0, Y'/Y=O for any matter fields in this back-
ground. This relation follows directly from (2.36) and
(3.6). As we have discussed near the end of Sec. II, per-
turbative calculation of Y gives a very good approxima-
tion for

~

a
~

(0.14. One must be careful, however, in ap-
plying the perturbatively computed Y in the analysis lead-
ing to the solution of (3.6), because the deviation of Y'

thus calculated is already 2.8% for
~

a
~

=0.005.
QD as it stands in (3.7) leads to a scale a0 —5 X 10 lp

(Planck length) which is beyond the validity regime of
semiclassical approximation. One way to justify our re-
sult is to consider 6 scalar fields. The scale aa will in-
crease with V'b; however, the shape (aa) is preserved.

IV. DISCUSSION

It is important to ask whether the ground-state solution
we find in Sec. III is stable. Unfortunately, for vacuurn-
energy compactification models it is quite involved to cal-
culate the response of the effective potential to an arbi-
trary metric perturbation. If one considers only the dila-
tation mode of the internal space and if the effective po-
tential is calculated from conformal fields, one can per-
form a conformal transformation in 4+ N dimensions
to scale out the spacetime dependence of the internal
space. One can then use the static effective potential in
the stability discussion. In particular, when the total
number of spacetime dimensions is odd, one need not con-
sider the conformal anomaly in the odd-loop effective po-
tential. In our case, there are two complexities. Firstly,
we consider massless minimally coupled scalar fields.
True, there is still no conformal anomaly; however, at the
classical level a scale-dependent mass term appears as is
clear from the following.

If

gpv =ro gpv~

then

~r'0' 0=~~ 0 0+0' n
1 ——

2

n——2
2

(4.1)

The static massless effective potential could only be used
within the limit that the spacetime dependence of the
scale m is small. Secondly, since the deformation cannot
be factored out as a conformal factor, the previous con-
forrnal transformation scheme cannot give us a new
spacetime with static internal space. Therefore the static
potential (2.36) should not be used to analyze the stability
problem, rather, one needs to consider the effective action
with a dynamical background. A perturbative formalism
to evaluate the effective potential for Bianchi type-I
spacetime has been laid down by Hartle and Hu. One
may argue that in the perturbative sense, corrections to
the static potential can only affect the kinetic terms (e.g. ,

Q, a). By assuming that the kinetic term has the "right
sign, " one can proceed to examine the static potential to
see whether our solutions (3.9) are local minima. We
would like to point out here that even in this naive stabili-

ty analysis (i.e., by considering only homogeneous internal
space volume and shape perturbation) the above-
mentioned assumption needs justification. Following the
usual small-oscillation analyses of classical mechanics, the
stability condition around static solutions reduces to the
condition to have only a positive co solution of the secular
equation:

det( V cu T—) =0 . (4.2)

Where the 2)&2 matrices V and T denote generalized po-
tential and kinetic terms, respectively, in coordinates 0,
and a. It is not difficult to convince oneself that the posi-
tive co solution depends sensitively on the matrix element
of T as well as V. Since the quantum correction to the ki-
netic terms is comparable to the classical part in the
vacuum-energy compactification models, to neglect it is
highly risky. A detailed study in this direction is now in
progress.

The stability consideration we have discussed so far is
only a special case to the whole issue. In general, one may
classify stability problems into classical and semiclassical
ones. In the category of classical stability one can further
divide it into linear and nonlinear stability. In the linear
case, as in the usual field theory, one introduces the
(4+ N)-dimensional metric perturbations, h„, h&„, h

and then writes down the perturbed action to the second
order to seek possible tachyonic or ghost modes. A par-
ticular gauge may be chosen (e.g., a light-cone gauge ) or,
if possible, a gauge-invariant method ' can be applied in
the analysis. The quantum response due to the gravita-
tional and Yang-Mills wave perturbation has been calcu-
lated by Awada and Toms. Taking this into considera-
tion, Candelas and Weinberg reached the conclusion that
M &S background is stable against gravitational and
Yang-Mills perturbation, if fermion fields are introduced
and the boson to fermion ratio is less than an N-
dependent upper bound. Later on, Gilbert, McClain, and
Rubin concluded that a lower bound of this ratio can be
obtained by considering a stability condition against a
homogeneous dilatation mode of the S if this mode is
adiabatic. As we have mentioned a general discussion is
technically complicated. Many authors ' have studied
another particular mode: namely, the homogeneous dila-
tation in both internal and external spaces. It usually
bears the name of cosmological stability due to the homo-
geneity assumption. Classical linear perturbative stability
is the first step in the discussion of stability of a candidate
for a ground state in a higher-dimensional system. If it is
satisfied one can intuitively think that we find a state at a
local minimum of energy. The nonlinear stability of the
background geometry has also been explored within the
context of cosmology. In addition to classical stability,
Witten has demonstrated that a M )&S' background
can decay semiclassical (as in tunneling effect) into noth-
ing provided a topology-changing dynamics is allowed. It
appears difficult to generalize his argument to other
theories admitting Freund-Rubin-type compactification.
Recently, some authors suggested that by taking the
geometric quantities of the internal space (e.g. , radius) as a
quantum scalar field, then the shape of the effective po-
tential can dictate the fate of a vacuum-energy compacti-
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1/2
2I12~ l32

tanO
l3 3

(1+ 2 &)i/2 (4.3)

fication ground state. Following these arguments,
one may look at Fig. 5 and naively conclude that
ao ———0.05941 solution is quantum-mechanically unsta-
ble. We think the meaning of this approach should be
more carefully studied.

If any of the solutions of (3.9) is stable, it is a candidate
for the ground state. Consider a general metric perturba-
tion on this background. The h&„part of the perturbation
in the direction of a Killing vector on S can be identified
as gauge field 2„. The gauge symmetry will be the same
as the isometry of the internal space, because there is no
other field configuration to break this symmetry. For the
solution a=0 the gauge symmetry is SU(2) XSU(2) [or
SO(4)] and there are six gauge fields. For a&0 solutions
gauge symmetry reduces to SU(2) X U(1) and hence there
are four gauge fields only. Using the zero-mode ansatz,
we find the mass gained by the two gauge fields is propor-
tional to the deformation a(au'I+a) ' (Ref. 40). Sym-
metry breaking in Kaluza-Klein theories have been con-
sidered by many authors. ' ' However, one has to keep
in mind that in our case to preserve the 4-dimensional
Poincare invariance we have to fine-tune the 7-
dimensional cosmological constant (3.8). Hence each dif-
ferent solution (ao, Qo) associates a different cosmological
constant Ao. It is, therefore, meaningless to ponder the
transition from one solution to the other as in the case of
usual symmetry breaking. The symmetry-broken phase
comes together with spontaneous compactification.

If we do have a M XTaub background, the gauge cou-
pling constants of SU(2) and U(1) can be determined
geometrically. The weak angle at the compactification
energy scale hence follows. ' At a classical level the weak
angle is simply the ratio of the "averaged radius" of SU(2)
to the radius of U(1):

Since the range of a is ( —1, oo), one finds the range of
weak angle in this model is 0.25&sin 0 &1. Note that
the common value of the weak angle obtained from vari-
ous grand unification models (0.3 from [SU(6)] and —',

from SU(5), SO(10), SU(16), E6, and E8) falls within this
range. When quantum correction is included, using Eq.
(37) of Ref. 41 and the values of Y at a=0, —0.05941,
—0.1864, we find sin 0 =0.5, 0.5028, 0.5098, respective-
ly. Of course, to be realistic one should include fermions
and gravitons. In fact, the contribution of higher-spin
field to the effective potential is much greater than that of
the scalar. ' Also, more dimensions are required if one
wishes to consider more realistic models. Our results
holds if the Taub space is a part of the larger internal
space. The work presented here serves only as a modest
attempt to study the ground state of a higher-dimensional
system with a non-maximally-symmetric internal
geometry and to investigate possible physical implication
of it.
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APPENDIX A: PLANA SUM FORMULA (REF. 45)

In this appendix we outline the derivation of the Plana
sum formula and discuss some variation of it. Let P(z) be
analytic in the region bounded by ( n —

z
+i oo ) and

(m+ 2
+i oo) and for z=a+ib, aH[n ——,', m+ —,'],

P(z)e ~0 when b~+ oo. The Plana sum formula
takes the form'

m m +1/2
1 1 1 1g P(i)= f P(x)dx i f—[P(n —
2 ~iy) P(n ——,—iy) P—(m +——, ~iy)+P(m ~ —, iy)] . —

n —1/2 e2my+ 1i=n

It can be obtained by adding the following two integrals along the path C'i and C2 of Fig. 6(b), respectively:

(Al)

P(z)
'

tt —i/2 m +(1/2)+i oo m ~1/2 P(z)dz
, dz . = + +P

C& e
—2miz 1 n —1/2+i oo m ~ 1/2 —2niz

vari g Re—s (i),
i=n

(A2)

f P(z) n —1/2 m+1/2 —i oo m + i/2 $(z)dz
dz = + ~P . ~brig Res~(i. ),

n —(1/2) —i oo m +1/2 n —1/2 e 2~iz
1 i=n

(A3)

where Res+(n) denotes residues calculated from $(z)l(e-+"—1) and P denotes the Cauchy principal value.
Alternatively, one may also choose the contour as Ci, C2 in Fig. 6(a) if it proves to be convenient. In this case, the

Plana sum formula becomes

m dgP(i) = , [P(n) ~P(—m)]~ f P(x)dx i f—[P(ii iy) P(n—+iy—) P(m iy)+—P(m—+iy)] .
n o 27TP~ 1

(A4)

If, however, the function P(z) has singular points in the region surrounded by contours, then the above formulas should
be modified. Taking the function defined in (2.17), for example,

P(z)=[k I+a(k —1 —2z) ] —/2, kEN, k&2,
it has branch points at

(A5)
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' 1/2
k —1 i k —1

2 2

for a & 0. If one chooses branch cuts as in Fig. 6(c), paths along the cuts may give a nonzero contribution. Following
the same procedure as above we obtain the modified Plana sum formula for the function defined by (A5):

m m +1/2 dyg P(i) = 1 P(x)dx i—J 2 [P(n ——,
' +iy) P(—n ——,

'
iy—) —P(m + —,

' +iy)+P(m + —,
' i—y)]

i=n n —1/2 P e 2' 1

2 2 d/2
4

. rrd
(4 )~~2 (y —p ) dy

p i n.( k —1 ) +2' (A6)

where

17=2
1/2

n —1

Another version of the Plana sum formula for infinite
sums is discussed in Appendix B.

APPENDIX B. ANALYTIC CONTINUATION

n n» n+~

ji

. ~ .~~
fYl-2 N-l + ReZ

In this appendix we shall discuss four different pro-
cedures [labeled A to D] of performing analytical con-
tinuation. In order to make the exposition more transpar-
ent, we introduce the function (Bl), which is a typical ex-

pression we have encountered in Sec. II, as an example:

IIZ

Q(d A2) I g n2(n2 A2)dl2 A2( l
—d
2 n=1

(BI)
G',

F(d, A ) is well defined only for d & —3. We shall show
how to express the sum in (Bl) in integral forms and ob-
tain expressions which make sense also for other values of
d. In particular, we are interested in the limit d ~4. The
case when d=0 and 3 =1 will be discussed at the end of
this appendix. The generalization of the lower limit of
the sum from n=1 to n =m, m )2 will also be dis-
cussed along the line.

The first two methods are based on the Laplace
transformation. After applying the transformation, the
dependence on n is contained in the factor e "'. There-
fore, the sum over n can be performed easily.

1. Method A

n nfl /42

(b)

FA-2 fYl-) f/) ~~ 1
2

lt C&
2

\ i'

()

ReZ

This method was introduced by Candelas and Wein-
berg. For n ~ 2 and D ~ —1, we can write
n(n —A ) as

( —d —1)/2

n(n —A ) = dte
I ( —d/2) o 2A

n--'
2 ~ flf1

'
m~-'

m-i m ~ ReZ

, ( ct)
2

X I( g 3)/ ( 2tA) (B2)

(I
I

(

XI( g 3)gp( At) . (B3)

where I( —d —3)/2 is a modified Bessel function. Using

this relation we obtain, from (Bl),
d —2

F(d, A ) =~772("+"~ J dt (At)(~+3)~&
(2 sinht /2)

(c)

FIG. 6. (a) is used in deriving the Plana sum formula (A4).
(b) is used in deriving another version of the Plana sum (A1).
When the function is not analytic [(A5) or (2.17)], (c) has to be
used in deriving (A6).
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Since I„+~/2(z) approaches e'/v z for large z, the integral
in (83) is convergent in the taboo limit, if A &1. How-
ever, it diverges at the j~0 limit in the case of d ~ —3,
because I „&/2(z) approaches z " ' for small z. For
even integer d the integrand is an even function of t.
Near j=0, it behaves like j' " ' so that for d & —3
one can choose the integration contour C along the whole
real axis bypass of the origin (see Fig. 1 of Ref. 7). Hence
(84) can be written as

d —2
F(d A 2) 3/7r2(d —&)/2 f dr (At)(d+3)/2

(2 sinht /2)

X ( d 3) /2(A r) (84)

The representation (84) is well defined also for d=4. Us-
ing the explicit form of I 7/2(z), one obtains

F(4,A ) =4 f sinh(At) + —cosh(At) 6 +dj 15A A 15 6A
c (2sinht/2) j' j' j' j' (85)

F(4,A ) can be evaluated by closing the contour C in the upper (or lower) half-plane and summing over residues of poles
at Z =27rpi (p integer). The result is

00 —90A 9A 39AF(4,A ) =87r g sin(27rpA) + +cos(27rpA)
p=1 (27rp) (27rp) (27rp)

A4

(27rP)'

90
(27rp)'

(86)

In particular, for A =1 we have

F(4, 1)=87r g(5) g(3) — g(7) . (87)39 1 90
(27r) (27r) (27r)

A problem arises if the integrand of (82) is not an even
function of j. This is the case when we have the sum
starting from n=2, for example, or d is odd. It is not
clear, in this case, how to choose an appropriate integra-
tion contour.

2. Method B

This method is also based on the Laplace transforma-
tion. It was used by Critchley and Dowker and later by
Sarmadi. To employ this method in our case, we have
to first calculate F(4, —A ) and then we will make a
"Wick rotation" and obtain the expression for F(4,A )

which agrees with (86).
We begin with the relation

F(d A 2) r y [(n 2+ A 2)l+d/2—d
2 n =1

—A (n +A )" ) (88)

From the definition of the 1 function, one has

( 2+A 2)v 1
dr r

—v —1 — In2+A)t2=
r( —v)

(89)

(810)

one can derive the following representation of F:

valid for v &0. On using the property of the 0 function,
1/2

e
—sn e

—n n2/s

Sn = —oo n = —oo

P

F(d A 2) g 3/~ dS e
—sA e Hn /s A 2S( —d —3)/2+ 1+ ~( —d —5—)/2

0 2
'

n=1

—sA2, 2 ( d 3)/2 i ( —d —5)/2
2 2

(811)

It is here that the minus sign at A is necessary in order to make the integral converge at infinity. One can now rewrite
(811)by an integral representation of the Bessel function IC„(Ref. 49)

Z X Z'
It „(xz)= exp ——t +2 0

j- -'dj, (812)

and explicit forms of K7/2 and Es/2. The result is

F(4 —A )= Ar
4 2

g y 2npA—
p=1

A 9A 39A 90A 90
, + , + , + , +

(27rp) (27rp) (27rp) (27rp) (27rp)
(813)

We now can do the "Wick rotation" ( A ~—A ) on (813) to return to our original expression. Because of the A ~—A
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symmetry in the original expression, we need to symmetrize the final expression too (we call it a "symmetric prescrip-
tion"). Finally, one will arrive at the formula (86) again.

One can also start from the expression (85) and arrive at (813) by a symmetrized A ~—A transformation and per-
forming the integral (85). The contour C should be closed in the upper-half plane for terms with e"" factor and in the
lower-half plane for terms with e "". The residue at zero yields the first term on the RHS of (813).

This method can be used when the sum (Bl) is from n =m (m ~A ). Moreover, even if d is odd, in which case
method A fails completely, this method can single out the divergent part which will be of the form r(( —d —1)/2} and
the regular part can be evaluated numerically.

3. Method C

The third method of performing analytic continuation in d is based on the Sommerfeld-Watson integral. The basic
equality is

F(d A )=—I
2

—d dzz (z —A )
~ cot(vrz),

C
(814)

where path C and later C are close to those shown in Fig. 1. The only difference is that point A lies now in (0,1) inter-
nal not in (1,2) as before. The equality follows since the integrand on the RHS of (814) has simple poles at
z = 1,2, 3, . . . . For d & —3, one can change the integration contour of (814) from C to C' (see Fig. 1) and obtain

F(d, A )=I sin
2

7rd oo Af dyy (y +A )" coth(my)+ f dxx (A —x )
i cot(m.x)

+contribution from the"bubble" integral at A . (815)

The first integral on the RHS of (815) is formally divergent as d ~4. We can use the relation

2
coth(~y) = 1+

e 277+ j

to separate out the singular part and proceed to regularize it. The singular part can be written as

(816)

g 3+1/2

f d 2( 2+ A 2)d/2 (817)

This representation gives the regular result in the limit of d~4 when it is put into (815). The contribution from the
"bubble integral" at point A is also negligible as d ~4. After dropping terms of higher order in (d —4), we have

6+2 4g2+ Zg4
F(4 A )= 2 f dy +A f dxx (1—x ) cot(vrxA)

720 +48A -, +2A -, + f dx x (1—x ) cot(vrxA)
~(7) 2 &(5) g &(3) A

(2m ) (2') (2w)3 2
(818)

which is to be compared with (85). In particular for
~=1, we have f „+~ 2(2n +1)!$(2n + 1)x cot7rx dx =

F(4, 1)=—~ 720 ~, +48 ~, +2 ~ 3,
(2~) (2vr) (2m)3

1

+ —, f dxx (1—x ) cot(m.x) (819)

Making use of the fact that for a positive integer n,
I x" I —x "cot~x =0, (820)

0

and properties of Bernoulli polynomials B„(x),(Ref. 49),

(821)

one recovers the expression given in (87).
This method still holds if we generalize the lower limit

of the sum in (81) into n =m and I —1 (A (m. If
3 & m —1, the residue contribution from poles such as
m —1 in the C contour integral will be finite and the
overall I ( —d/2) factor leads to infinity when d is even.
When d is odd, this method can also single out the singu-
lar part which is just (817).
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4. Method D

The last method of analytic continuation we shall dis-
cuss is making use of the infinite Plana sum formula

which is valid if (1)f (z) is regular for Rez & m, (2)

lim e ' 'f(r+it) =0t~+ 0o

f(n)= + f f(r)dr
n=m

+i dt f (m +it) f (m— it)—
0

uniformly for m &r& oo, and (3)

lim f e ')
(
f(r+it) (dt=0.

7~ oo

(B22)
Using (B22) for our function (Bl), we have

F(d, A )=I
2

—(1—A ')~/'+ r'(t' A2)~—/2dr
2

1

+i dt (1+it)' [(1+it)' A'—] /' (1——it)' [(1 it)' A—2]~/2—

0 ~2nt (B23)

One must expand the RHS of (823) in powers of ( d —4).
The leading term which is potentially problematic because
limq 41"(—d/2)- —1/(d —4), turns out to be zero. The
linear term in large parentheses combined with the I fac-
tor gives a finite result. The only formally divergent term
(as d~4) on the RHS of (B23) is the (1,0o) integral. It
can be regularized by using the representation

f (X) A

(t A )"/ dt — t2(t A 2)~/2dt
1 ]

w'+"
+

—d —3 d+2r
2 2

(B24)

which is clearly finite as d~4.
The advantage of this method is that it singles out the

divergence [essentially the I (( —d —3)/2) factor] quickly
in the odd d case. It is useful when one is interested in
the renormalization aspect of certain theories. The
evaluation of the finite part seems to be more involved
than that in other methods. This method can also be used
when the summation is from n =m if m & A.

For some values of d and A, F(d, A ) may give a diver-
gent expression. For example, if d~0 and 2~1 then F
diverges as ln(1 —A) in all four methods. In Appendix C
we will encounter this case in the perturbative representa-

tion of the effective potential (C3). Fortunately, that ex-
pression is multiplied by some polynomials of (1—A) and
perturbative expression turns out to be finite [at least up
to 0 (a )]. Observing that in the minimally coupled case
1 —A =m a, so the A ~1 limit is a consequence of the
massless limit that we are considering. The logarithmic
divergence can hence be viewed as an infrared divergence.

APPENDIX C. PERTURBATIVE CALCULATION

2(3+4a)
a (1+a) (3+a —a )+O(a ) .

Q
(C 1)

The eigenvalues of the Laplace-Beltrami operator (2.15)
can be expanded up to O(a ) as

XM [n +p——+a(4k +2/) 2/a ]/—a (C2)

where p=6$ —1+m a .
The effective potential hence follows from (2.12) and

(C2):

If the deformation is small, one can calculate the effec-
tive potential (2.26) in power series of the deformation pa-
rameter o.. The calculation of mode sums in this way is
much simper than the exact calculation presented in Sec.
II. It may hence serve as a useful test to verify the exact
calculation. In this appendix we present the perturbative
evaluation of the effective potential based on Ref. 51.

In the case of small a, the internal Taub-space curva-
ture scalar can be written as

y P g 2( 2+ )d/2+ [ 2( 2+ )d/2+ 2( 2+ )(d/2) —1(g 1)] 2dg 2( 2+ )(d/2) —i
"I ( —d/2) cxd

2a (477) 6

+ ——1 a [3n (n +p)"/ —(6p+10 20$)n (n —+p)'"/ 'd d
60 2

+[3p +10p+7—20$(p+1)+60/ ]n (n +p)' ' j+O(a ) . (C3)
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To evaluate the effective potential (C3), one may use the
analytic continuation scheme of Ref. 7 which is also dis-
cussed in method A of our Appendix B. In the case of
minimal coupling it appears useful to keep a nonzero
mass throughout the calculation to avoid an infrared
divergence in the last term of O(a ) of (C3). Massless
limit can be taken at the very end. Alternatively, one can
sum from n =2 at the expense that the analytic continua-
tion method of Ref. 7 is not applicable and an other
method should be employed (see Appendix B).

Let

S(v) = —2
~ g(5)—,g(3)

12 5

(2m') (2tr)
(C5)

On using (C3) to (C5), we find that for a massless,
minimally coupled scalar field the effective potential is

4 038X10-'V= ', [1—1.300a +O(a')] (C6)n'"
and similarly, for a massless conformal scalar field

S(v) =4 , j(7)+ ~ j(5)—,g(3)
(2~) (2tr) (2tr)

S(v)=I g n (n —1) ~

2
Tl =2

Similar to Ref. 7, we obtain

(C4)

3 812 10
g4/3 (C7)

where f),=2' a /v'1+a is the volume of the Taub space.
Page' has done a similar calculation on a

M &(deformed S ). S is viewed here as a U(1) bundle
over a CP' manifold. His perturbative result agrees with
ours.
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