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Higher-derivative gravity, surface terms, and string theory
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We consider adding Euler densities to the Einstein action as new gravity interactions in higher-
dirnensional theories. When the appropriate surface terms are included, the surface geometry is
sufficient data for the boundary-value problem associated with the new Lagrangians. We also discuss
the relevance of such interactions in the context of string theory.

Motivated by string theories, Euler densities have come
under study as higher-derivative interactions for gravity in
more than 3+ 1 dimensions. ' The original motivation
was the observation that the low-energy effective actions
of some string theories include R" ~R„p interactions,
but the string theories do not include any ghosts which
such an interaction produces. The apparent resolution of
this problem was that the interaction should actually be
the Euler density of four-dimensional manifolds,
R" ~R„~p—4R" R„+R, which leaves the graviton
propagator unmodified. ' This reasoning later came under
some criticism, ' but in any event the effects of Euler
densities as gravity interactions in higher-dimensional
theories have been examined by many authors. ' The
inclusion of such terms is also necessary in the analysis of
0 (ct' ) interactions in low-energy string theory.

In this paper we examine the boundary-value problem
associated with these actions. We find that with the addi-
tion of certain surface terms there is a good boundary-
value problem, by which we mean that the action can be
extremized while keeping only the surface geometry fixed.
Motivated by string theory we attempt to construct a
broader class of such good interactions. We also discuss
the relevance of our results to low-energy string theory.
From the point of view of boundary data, it is straightfor-
ward to see that despite their exceptional properties, these
interactions are not the only ones relevant for string
theory.

Investigations of general relativity in a Hamiltonian
framework first revealed the necessity to supplement the
Einstein action with a surface term
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where eq, . . . ~ is the completely antisymmetric tensor
with 6p. . . ~ =1. A useful identity in the following manip-
ulations is

tion of the Ricci scalar, one encounters a total derivative
which produces a surface integral involving the derivative
of 5g,q normal to the boundary. These normal-derivative
terms do not vanish by themselves, but are canceled by
the variation of the surface term included in the action
above.

Now we will extend these considerations to general
Euler density actions. The concept of Euler number has a
simple extension to manifolds with boundaries just as for
any topological index. ' '" The Euler number is remark-
able though because it can be calculated entirely in terms
of local integrals over the volume and boundary of the
manifolds. We will find that the boundary integrals pro-
vide the surface terms necessary for gravitational actions.

The Euler densities are most elegantly constructed in
terms of diff'erential forms. ' We consider an (N+1)-
dimensional space-time with metric g =q qB E g E
where E, 3 =0, 1, . . . , N are an orthonormal basis of
one-forms, and riAtt =diag( —1, +1, . . . , +1). It is con-
venient to introduce the forms
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Here h q is the boundary metric and K =h' K,q is the
trace of the second fundamental form. The plus (minus)
signs apply to a spacelike (timelike) boundary. The same
surface term was also later revealed from considerations
of the path-integral approach to quantum gravity. ' ' "
One can recognize the need for the surface term in deriv-
ing Einstein's equations by extremizing the action against
variations 5g,q of the metric. "' One fixes the metric on
the boundary (i.e., 5g,b vanishes there), but in the varia-

Let m be the Levi-Civita connection one-form which is
compatible with the metric and vanishing torsion. ' '
The curvature two-form is given by

B =D~ B =~~ B +~ C ~ ~ B =TR BCDE ~ E

The Ricci tensor and scalar are defined as R qB ——R
and R =g R~B. The Euler number of a compact mani-
fold with 2m dimensions is found by integrating
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Dmwhere the generalized 5 function 5A, . . . B is totally an-

tisymmetric in both sets of indices. For example, one has
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X =Q" RQ Re
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To extend our discussion to the Euler character of
manifolds with boundaries, we must introduce the second
fundamental form. ' ' Let co be the connection form on
a manifold M with boundary BM. One can choose Gauss-
ian normal coordinates Ix',y I such that y =0 is the local
equation for BM (Ref. 15). In these coordinates, the line
element is

where in constructing Q2, we have used Eqs. (4) and (5)
as well as the fact that the nonzero components of cop"B
have only tangential indices while those of 0 B have one
normal index.

The Euler character for a 2m-dimensional manifold M
with a boundary BM is

ds = —dy +g,b(x', y)dx'dx

This metric yields a new connection cop, which has only
tangential components on BM. The second fundamental
form is then defined as'

0=CO —C00 . (4)

This form is related to the more familiar tensor KAB usu-
ally discussed in the context of general relativity [see Eq.
(1)] by

where we have chosen to consider a spacelike boundary.
Now choose a product metric on M, which agrees with
the original metric at BM:

ds = dy +—g~b(x y =0)dx'dx

Using Eq. (2), the definitions of X and g given in Eqs.
(3) and (6) may be extended to an arbitrary number of di-
mensions, and we may consider I as a part of the gravity
action. For less than 2m dimensions, I will simply van-
ish. For exactly 2m dimensions, I is not very interesting
since all of the field-theory interactions will vanish being
total derivatives, but it may still play a role in the path-
integral approach. ' It is for more than 2m dimensions
that I contributes nontrivial gravity interactions,

That I with their surface terms are appropriate as ac-
tions with good boundary-value problems is suggested by
the observation that I~ /16mG is precisely the Einstein ac-
tion given in Eq. (1}. We examine in detail that this is
also true for

I2 —— 0 ~ Q ~ eABcD
M

8 B =8 B CE =(N'N)(N KBc —NBK c }E —2 f 8 R(Q —T~8 ER8 )R&ABcD
BM

where N is the unit normal at BM and (N N) has been re-
tained so that either timelike or spacelike boundaries
might be considered. In Gaussian normal coordinates„
one has N =dy and K,b = —,'(N, .b +Nq , ). —.

Next the second fundamental form is used to construct
the appropriate Chem-Simons form on BM (Ref. 14).
Define

We extremize this action in two stages, keeping only the
metric on the boundary fixed. First the basis forms E"
are varied while keeping the connection co fixed. Only the
volume integral contributes:

&E12= f 5E RQ" RQ REABCDF
M

~s =m —St9
= f 5E R[(RABcDR" 4RABR" +R )g—FG

M

which interpolates between co at s =0 and cup at s =1.
Denote the corresponding curvature as

s =d~s+~s ~~s

On the boundary of a 2m-dimensional manifold, define

4(RFABcRG +2—RFABGRABC AB

—2RF "RAG +RRFG ) ]e

Next we vary the connection co which yields contributions
in both the volume and surface integrals:
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Here we have used DA =0=DE qggD as well as
50~ =6m ~ on BM, and that mo

~ has only tangential
components on BM while both 0" and Lo have one
normal index denoted by n. Since the variation of the
connection canceled exactly, the action can be made sta-
tionary against variations of the metric keeping only the
boundary metric, but not its normal derivatives fixed.

That the desired cancellation is achieved for all I is a
result of the topological origin of the terms. The Chern-
Simons form Q is constructed in 2m dimensions to
yie1d'

Since the product metric at the boundary cannot generally
be extended throughout the manifold, X (cop) is not well
defined, but considering a small variation of the connec-
tion rp, one will have 5L =d5Q to yield the desired
cancellation. These results survive when the forms are ex-
tended to arbitrary dimensions using Eq. (2).

That these actions yield simple boundary-value prob-
lems is a rather extraordinary property, which is not true
of an arbitrary combination of Riemann tensors. To see
how it would fail, consider two higher-derivative interac-
tions for a scalar field:

Ig —— d +'x V, V' V

Ig= J d +'x(QV P)'

Since these interactions contain second derivatives of P,
their variations include surface terms involving normal
derivatives of 5P. One finds that I~ can be extremized
with respect to variations of P with only 5/=0 at the
boundary, if the action is supplemented by the surface in-
tegral

where N is again the unit normal to the boundary. No
surface terms exist though which can be used to eliminate
N V'(5P) from the variation of I~. The problem arises be-
cause I~ contains terms which are quadratic in second
derivatives of P (with respect to a particular coordinate).
On the other hand, I& only has terms which are linear in
second derivatives of P. Essentially such terms can be
eliminated by partial integration. Examining the second
form of the Euler densities given in Eq. (3), one might
have easily seen that it must be possible to produce a sim-
ple boundary-value problem. The Riemann tensors con-
tain second derivatives of the metric, but the antisym-
metry of the generalized 6 function ensures that at most
one factor will have a second derivative with respect to
one particular coordinate. One might ask whether it is

possible to construct new interactions making nontrivial
use of gauge invariance to produce a good boundary-value
problem.

Again, string theory motivates this question. In the
scattering amplitude for three gravitons, one finds a con-
tribution in bosonic string theory containing six momenta,
which does not appear in the corresponding superstring
amplitude'

k .e3.k k e) k k e2.k1 1 2 2 3 3

where k' and e; are, respectively, the momenta and polar-
ization tensors of the three gravitons. This amplitude
would arise from an interaction proportional to

B,hyh' B,B„h'"B,B h'

Naively, this term appears to be more than linear in
second derivatives of the graviton field, h'. Consider
time derivatives, for example. Variations with respect to
h 'J and h

' reveal that Eq. (9) is only linear in their second
time derivatives. the variation with respect to h yields
an unsatisfactory term:

(l0)

Therefore Eq. (9) appears to be cubic in BpBph, but in

fact this is a gauge artifact. Imposing the gauge condition
B,h' =0 reduces Eq. (20) to

—38 Bo(5h )(c)oB;h' ) + .

which will not lead to problems with the surface terms.
Therefore the gauge invariance of the theory ensures that
Eq. (9) is a good interaction.

In the low-energy effective action of the string, one ex-
pects Eq. (9) to arise as the leading term in the expansion
of a covariant term such as R„pR ~zQ

"~" . The ques-
tion becomes whether there exists a covariant completion
of Eq. (9) which is at most linear in second derivatives of
h'". We approach this question using the usual N+1
decomposition of general relativity. ' In this framework,
the gauge invariance is expressed as saying that g00 and
ga; are completely arbitrary on an initial time slice.
Therefore we need only eliminate higher-order terms in
BOB~;~. There are eight distinct contractions of three
Riemann tensors and two independent terms with two
Riemann tensors and two covariant derivatives. It is a
simple exercise to find linear combinations of those terms
in which all terms cubic or quadratic in higher time
derivatives of g;~ are eliminated. The final result is that
the only such combination is X3. Unfortunately X3 does
not contain a three-graviton interaction, and hence can-
not provide the desired interaction. Similarly if one ex-
amines four derivative terms, one finds that only X2 is
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linear in BOBog,J. It is likely that X is the only covariant
2m derivative interaction linear in BOBog;~ since any other
new density would be an unknown topological term.

Hence while the bosonic string theory should have a
good boundary-value problem, we find that the low-
energy effective action does not. This apparent paradox is
resolved by the fact that the string's boundary data in-
clude an infinite set of massive fields as well as the mass-
less fields which appear in the low-energy action. In
terms of these local fields, the string field equations are an
infinite set of ordinary differential equations which may be
written schematically as'

c 'V2% =0 ~%+M*%+M*M,
(a'V' +X)M =4 e ++M e ++M e M . (12)

Here + and M represent massless and massive fields, re-
spectively. N is an integer and hence the massive fields in
Eq. (12) have mass squared of the order of the string ten-
sion 1/a'. One should also note that the interactions in-
clude derivative couplings. The effective low-energy
theory is constructed as a perturbative expansion in a'V
(or a'p ). First one inverts the kinetic operator in Eq.
(12) to yield

2
1 a'V a'V

N N + ~ ~ ~

X( II+4+Me4+MeM) .

Then one solves for the fields M by iteratively substituting
for M on the right-hand side. This process produces an
infinite expansion for M in both a'V and the massless
fields 4. Substituting this result into Eq. (11) yields a
differential equation 'in terms of the massless fields only.
Typically these expansions are truncated with a finite
number of derivatives, and gauge invariance is used to
determine the expansion in 4 (Ref. 17). Having eliminat-
ed the massive fields, the boundary data must still include
their corresponding expansions in terms of massless fields
and derivatives. Therefore the boundary-value problem
for the effective low-energy action becomes increasingly
complicated as the expansion in derivatives is carried to
higher orders (i.e., the boundary data will include higher
derivatives of the massless fields).

We agree with the criticism '"' of the argument that
X2 should appear in the low-energy action. ' Essentially
the ghost poles are immaterial since they occur at a
momentum scale which is beyond the validity of the ex-
pansion described above. In any event the usual low-

energy calculations involve on-shell quantities, and the
off-shell behavior remains ambiguous allowing the free-
dom of field redefinitions. We argue though that in fact
L2 is the correct choice for the low-energy action. String
field theory determines the off-shell behavior, which will
then dictate the form of the low-energy action. The string
field equations are well understood in light-cone gauge, '

and for closed strings have the form given in Eqs. (11)
and (12). Since upon integrating out the massive fields no
new terms linear in the graviton appear in the field equa-
tions, the propagator is unmodified and hence the quadra-

DeA ——(X m)T R eq, —
A DAO

in N+1 dimensions. Here T =DE = —H' BcE R, E
is the torsion two-form. Since the antisymmetric field
strength is a covariant tensor, many other good and
simpler interactions can be written for B,b (for example,
H b H Hd fH ' ). A conformal transformation of the
metric involving the dilaton introduces a Weyl part in the
connection, ' ' and leads to a further generalization of
I . Finally, it should also be possible to supersymmetrize
these interactions as was done for X2 in Ref. 20.

Ultimately as was discussed above, most of the higher-
derivative graviton couplings appearing in the low-energy
effective string action are not of the form I . In fact at
0 (a' ) for the superstring or heterotic string, ' ' ' and at
0 (a' ) in the bosonic string, ' interactions arise which are
not in this class. If one were considering a quantum field
theory for higher-dimensional gravity, one may still ask if
these new interactions might play a useful role. Since I
do not modify the boundary-value data, in a perturbative
expansion one avoids unitarity problems but the non-
renormalizable nature of the theory remains. One might
still hope (as one usually does for Einstein gravity) that
the weak-coupling perturbation expansion is not relevant,
and consider contributions of I to the nonperturbative
structure of the theory. Here it may be relevant to make

tic Euler density must occur in the low-energy action. In
a theory of open and closed strings, there is an interaction
involving the overlap of a single open string and a single
closed string, which adds new terms linear in the fields to
Eqs. (11) and (12). In that case, a more careful analysis is
required to determine the correct result. These arguments
come with the following caveat. In string theory, a mass-
less, traceless, symmetric tensor field occurs which we as-
sume is to be identified with the graviton h', describing
perturbations of the metric of a background space-time.
One might equally well make some other identification
though, say, h' +a'R'. This is exactly the freedom of
field redefinitions mentioned above under a slightly new
guise. At this juncture the full geometry underlying
string theory is not understood, so that although the first
choice is perhaps the most natural, it still lacks motiva-
tion.

Now we make a few more remarks with regard to low-
energy string theory. For many string theories, there are
at least two more massless bosonic fields: an antisym-
metric tensor B,b and the dilaton p. The antisymmetric
field strength, H, b, ——VaBbc +VbBca +VcBab ~ can be com-
bined with the Levi-Civita connection to yield a general-
ized connection with torsion which seems to play a role in
the low-energy action

B,C =~ B,C +~ BC
A A

Using this connection, generalizations of the curvature
and second fundamental forms can be constructed, which
upon substitution into I yield new actions with good
boundary-value problems (in particular, the case m =2 is
of interest). Varying B,b only produces a variation 5cu for
which most terms cancel, but the B,b equation receives a
contribution since one encounters
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a number of observations. First, the structure of black-
hole solutions of the new field equations is not greatly
modified. ' Therefore any nonperturbative role which
black holes play will be largely unchanged. The new X
interactions will induce interesting effects in black-hole
thermodynamics, similar to those studied in Refs. 8 and
22, which will help solve the problems associated with
black-hole evaporation. Finally in the path-integral ap-
proach to quantum gravity, one finds that the Einstein ac-
tion has a conformal instability. '" A conformal trans-
formation of a gravitational action with additional Euler

densities (or any higher curvature terms) would produce
higher powers of derivatives of the conformal factor.
Since the new interactions may be added with arbitrary
coefficients, one may be able to eliminate the conformal
instability with an appropriate linear combination of I
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