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Light neutral boson in spinor-connection theory
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It is shown how spinor-connection theory should allow a neutral spinless particle whose mass is
much smaller than the neutral-pion mass. It is also shown how the theory prohibits charged parti-
cles with similar structure and mass.

I. INTRODUCTION

The field equations of the theory have been given pre-
viously' and electrically neutral and charged pionlike
particle solutions have been demonstrated. ' Denoting
these pionlike particles by P,P—+ we found that the
mass ratio of the neutral-to-charged particles, that is,
m(P )Im(P —), would closely equal the corresponding
mass ratio for pions, that is, m(vr )Im(ir —), if the elec-
tromagnetic and strong coupling constants have a corn-
mon value of 1/137.

The purpose of this work is to show that the theory
also allows a much lighter, electrically neutral, spinless
particle, L say, with anticipated mass m (L ) « 26
MeV/c . The essential difference between the L and P
is that the L, unlike the P, has a zero torsion field.
Apart from this difference in the torsion, the general
structure and method of derivation is the same as that
used previously. The L, like the P, carries a strong
charge as a source for a short-ranged field intensity. In-
terestingly, electrically charged, Coulomb field particles,
say L —,with similar structure and mass, are prohibited
by the theory.
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II. NEUTRAL L SOLUTION

(2.1)

We use the same ansatz as was used previously for the
neutral P particle' and hence have six real radial func-
tions: P, Q, R, S, fo, and go. The first four functions
describe the spinor-tetrad field, which by this ansatz is
collapsed to a single pair of Dirac four-spinors having
opposite half-integral spin and opposite sign for the elec-
tric and weak charges. The remaining two functions, fo
and go, specify a spherically symmetric space-time line
element. Scaling these functions as before, the field
equations require the same set of eight real radial func-
tions (P, , Qi, R i, Si, f i, gi, K&, and Ji ), where the last
two, E& and J&, specify the strong potential field and the
strong field intensity, respectively. For convenience we
now dl op
all subscripts of unity and write (P&, Q i, . . . ,J i )

=(P, Q, . . . ,J). Neglecting as before' terms of relative
order T ' = 10, the field equations for a strong
charge +q are given by

fgJ
ry' '

where the prime denotes differentiation with respect to
the scaled radial variable y, and where

A=P +Q —R —S

a =P'+Q'+R'+S' .

The constant r is specified as before by

y = —(64~a )

(2.9)

(2.10)

(2.1 1)

where a is the coupling constant for the strong field,
with a=q (4ah'c) '=1/137, as needed for m (P )I
m (P )=m (ir )/m (sr*). Fo—r the choice of y' as given by
(2.11), we must require the normalization condition

2~ dy=1 .
0 g

(2.12)

The function A in (2.9) determines torsion, since the tor-
sion scalar, ' T ~ T &, contains the factor 3

The field equations above split naturally into two
classes, corresponding to the existence or nonexistence of
torsion. If torsion is present, we need just two of the
four functions P, Q, R, and S. For example, the P solu-
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tion given previously arises with 8 =S=0 and A =B.
By symmetry of the field equations, the torsional solu-
tion with P =Q =0, and 3 = —B, is apparently physical-
ly identical to the previous solution.

In this work, we wish to investigate the case of zero
torsion. Actually, a rather cursory numerical search for
this case was made previously, but with inconclusive re-
sults, due to a lack of guidance provided by a later-
developed and more analytical approach. That same
analytical approach is used here, in appropriately abbre-
viated detail.

The symmetry of the field equations permits a globally
zero torsion field, A =0, in two, apparently physically
indistinguishable cases: namely, (P, Q) =+(S,R ). For
definiteness, we choose here the positive sign so that we
can write, by (2.9) and (2.10),

the other hand, as y~0 for consistency of (2.2) and
(2.12) with strong charge +q, we need

lim J =J(0)= —(32iry)
y~0

(2.22)

p
g 0
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Asy~g, y —q&0, we find

B =bo-6(a/il)

E =ko ——8ira(a /il )

(2.23)

(2.24)

(2.25)

Having set these boundary values, we can now fill in a
semianalytic global solution, with the far-field (y~ m )

solution holding good until we approach very close to
the Schwarzschild radius at y =g, where

P=S, Q=R

B =2(P +Q ),
(2.13)

(2.14)

while J varies as 1n(y —rI). We can solve the metric field
equations (2.7) and (2.8) if the KB term dominates over
the J, that is, if

A=0. (2.15)

(2.16)

where, with the scaling chosen for y, the mass m (in
grams) of the particle is'3

m =pM0, (2.17)

At large radial distances from the particle, that is,
y ~ cc, the metric field is given by Schwarzschild's vacu-
um solution

g2J2

to
(2.26)

where the constant to is, with the help of (2.24) and
(2.25),
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We find that f has a turning point at y =i), where it at-
tains a maximum value of

where p is dimensionless and Mp is the fundamental
mass of the theory. At large y, the remaining field func-
tions differ only slightly from those for the P solution.
We find that

2

so that, since f & 1,

to&2 .
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We find also at y =g, that g =to ', so that the inequal-
ity (2.26) becomes rj »J . From (2.19), J
& 9a (64@ rI ) ', so that we anticipate
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Proceeding inside the Schwarzschild radius, we find a
solution similar to that for the P, P—.The solution is

a4
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where a is a constant. The field intensity generated by
the strong charge is proportional to Jy, and hence
varies as y far from the source because of (2.19). On

P=(bo/2)' sin(P —oy ),
Q=(bo/2)' cos(P —oy ),
K =kp,

~bpto y
2 2

J= —(32)ry) ' 1—

where F, o, and P are constants.
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To estimate the mass factor p, we use the normaliza-
tion condition (2.12). With the help of (2.31), (2.33),
(2.34), and (2.14), we obtain

2~ fB g boto y
1 =2~ dy )2' dy =~to gbo

0 g 0

Noting (2.24) and (2.27), the previous inequality gives

(rl/a)(g/a )'& 1 .

Using to ~ 2 and (2.27), we also obtain

6vra(a/g} & —,
' (2.38)

The inequalities (2.37) and (2.38} combine to give
g~ &a(24~) ', so with (2.23) we obtain

p & (8~a/3)' (2.39)

III. ABSENCE OF L + SOLUTIONS

The L, P, and P— solutions all have a common un-
derlying structure. In each case the vacuum metric field
admits a Schwarzschild singularity. However, in all
cases this singularity is just averted by a sudden growth
in fields determining the detailed structure of the parti-
cle. We show now that torsionless, electrically charged,
spinless particles, say L —, with this same underlying
structure are prohibited by the theory.

If they exist, the L —particles would have gravitation-
al, electric potential, and electric intensity fields at large
y which are determined by

(3.1)

2o.

y
(3.2)

1 uJ—
4

1/2

(3.3)

Using +=137 ' as the strong coupling constant, Eq.
(2.39) gives p & 0.25. Recalling that for the P —,
p=2. 18, and that m (P —

) should be close to m(a —),
that is, 140 MeV/c, we obtain m (L ) & 16 MeV/c .
This upper limit is very sensitive to the magnitude of the
maximum value, f „„=—,

'
to, attai. ned by f in the

Schwarzschild region. As f,„ increases beyond unity,
or as to increases beyond 2, the upper mass limit de-
creases as to . Another rather more restrictive upper
mass limit can be obtained from (2.30) and (2.37). The
result is rI «(8I ) ~

a)/3, giving p &&0.4, or
m (L ) «26 MeV/c .

In principle, as previously, an accurate value for
m (L ) could be determined by numerical integration.
At present, the author has no access to computing facili-
ties.

On the other hand, as y ~0,
(3.4)

IV. CONCLUDING REMARKS

Light electrically neutral bosons have been previously
proposed: for example, the X particle. It seems, how-
ever, that the X and L have little in common, apart
from small mass, zero spin, and present lack of empirical
verification. The X involves scalar or pseudoscalar par-
ticle fields which do not occur in spinor-connection
theory. Here the L is built up from two members of a
four-fermion field. Furthermore, the L is neutral in the
electrical sense only, since it carries a strong charge.
Indeed by the symmetry of the theory, there should also
be another L -type particle carrying the weak charge.
However, we have no idea of the value of the weak field
couplirIg constant o. and hence can make no estimate for
the mass of such a weak particle.

Also, it seems unlikely that the L could fulfill the
conjectured role of the X, which is to decay to an
electron-positron pair. Presumably, a decay
L ~e++e would violate strong charge conservation.
Pair production might possibly arise by L, L annihila-0 —0

tion, although any detailed mechanisms (solutions) for
either decay or annihilation processes are unknown.
However, all of the L, P, and P—particles are unstable
in the sense that their solutions demand a total absence
of fields arising from external sources.

The L might play a quite diferent decay role. There
are several obstacles to identifying the pionlike P ' —par-
ticles with the actual pions ~ ' —. The most obvious ob-
stacle' is that the pionlike decay P ~y +y violates
charge conservation. A sufficiently light L particle
raises the possibility of the decay P ~L +y+y as a

lim J=J(0)=0 .
y~0

The metric (31) is singular for y)0 if and only if
P) (16~a)' =0.61, or m(L —

) &39 MeV/c2. Hence if
they do exist, the L —should be much more massive than
LO

Supposing now that p) (16~a)'~, the field equations
(2.1)—(2.12) still apply. We notice that with A =0 in Eq.
(2.7), the function f will be singular near the
Schwarzschild region unless the —KB term is positive,
or equivalently, unless K is negative. However, E can-
not be negative, as follows from (2.1), (2.2), (2. 10), (2.11),
and (3.2) —(3.4). Hence, the L — do not occur.

A point worthy of note is that the common underlying
structure of P, L, and P —raises an intriguing possibili-
ty that the structure of all elementary particles might be
such that Schwarzschild-type metric singularities are
avoided in every case, but just at the last minute, so to
speak. The condition m ) 39 MeV/c just noted for the
L —,if it were general, would then prohibit the electron.
However, the condition is not general, but very specific
to spherically symmetric, electrically charged, spinless
particles with vacuum metric (3.1). Electric particles
with spin are currently being studied by the author. The
cylindrically symmetric fields needed are tediously com-
plicated, but the condition m ) 39 MeV/c is absent.
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substitute for ~"~y +y. This speculated neutral decay
exhibits an interesting intrinsic feature of the theory:
namely, nonconservation of torsion, with P being tor-
sional and I." torsionless. If we form the pseudovector

~any where T~pr is the torsion field, we find
that B"„=. 3i A(2T) ' ( 1t I o&p ) . This nonconservation
law for 8" is easily derived from the field equations'
for the spinor-tetrad and torsion fields.
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