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Long-distance Lienard-Wiechert potentials and qq spin dependence
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The long-range spin dependence of the qq interaction is considered in a model in which the
confining potential is required to be the static limit of retarded scalar and vector potentials analo-
gous to the Lienard-%'iechert potentials of classical electrodynamics. A generalization of
Darwin's method is used to obtain the corresponding Hamiltonian. The long-distance spin-
dependent interaction is found to be determined completely by only two potentials: namely, the
static scalar and vector potentials. This is to be compared with the four potentials required in
Eichten and Feinberg's general formulation. Two diferent solutions are allowed by Gromes's
theorem. In one, the scalar potential can be linear; in the other, it must be logarithmic.

At present the form of the long-distance (LD) spin-
dependent interaction between quarks is not known and
cannot be obtained from perturbation theory. It can be
written in terms of bilinear products of Dirac matrices
(the Dirac expansion) or in terms of products of Pauli
matrices and the orbital angular-momentum operator
(the Pauli expansion), but the potential functions multi-
plying these matrix operators are not known. ' Although
reasonable assumptions about the r dependence of these
LD potential functions can be made, their relative mag-
nitudes have not been established. Our purpose is to
give a theoretical, albeit phenomenological, basis for
determining these relative magnitudes for the case of
scalar and vector static potentials.

The question of the spin dependence of the qq force
has received considerable attention in the literature but
discussions of the LD component are almost inevitably
based on a simple assumption for the form of the Dirac
expansion. From this assumption the corresponding
Pauli expansion can be obtained by some method of
reduction. For example, one may assume a Dirac expan-
sion of the form S + Vy, „y " in the Bethe-Salpeter
equation, or generalized Breit interactions, ( V,
+~lflzS1 )r'tztr'az and ( Vz+~PzSz )tzt 'az may be used
in the Breit equation. Some authors also include a ten-
sor term. In each case the spin dependence is generated
through the corresponding Pauli expansion.

The most general treatment is given by Eichten and
Feinberg who obtain expressions for the potential func-
tions in the Pauli expansion where the potentials are ex-
pressed in terms of integrals over the magnetic and elec-
tric color fields, but these fields are not easily evaluated.
In a similar approach Gromes uses Lorentz invariance
to derive a relationship between the static potential and
the two spin-orbit potentials in the Pauli expansion. An
important consequence of his theorem is the necessity of
including a long-distance component in the spin-
dependent interaction. Pantaleone, Tye, and Ng' gen-
eralize the formalism in Refs. 8 and 9 and study the con-
sistency of the parameters used in various potential-
model calculations. ' They conclude that no long-
distance correction is necessary for the Y system but

that some type of nonperturbative relativistic corrections
is needed for the charmonium system.

We suggest that the appropriate form for the Dirac
expansion of the LD spin-dependent interaction can be
derived by an approach that begins with the classical in-
teraction energy between two relativistic particles. In
general, the interaction energy is velocity dependent and
may be expanded in powers of U /c: i.e.,

U = U' '(r)+ U' '(r, v, )+0 (v /c ),

and

UsD = —', (a, /2r)(a, az+r a, r az), (3)

where the annihilation potential has been omitted for
simplicity. The third potential ULD is commonly as-
sumed to be linear on the basis of descriptions in terms
of Aux tubes'' or relativistic strings, ' but a logarithmic
or small power-law behavior is also used due to its suc-
cess in phenomenological calculations. The fourth po-
tential ULD, which is a primary source of the LD spin
dependence, is considered in the literature at the classi-
cal level by Woodcock and Havas, ' and in a more re-
stricted sense by Bopp as quoted by Bagge. ' The impli-
cations of their results for the quantum-mechanical case
are discussed elsewhere. Possible forms for the quantum
potential U'„D are considered by various authors. ' '
However the Pauli expansion of the scalar interaction

where U '(r) is the static potential and UI '(r, v, ) is the
velocity-dependent potential of order v /c . In QCD it
is convenient to discuss the short-distance (SD) and
long-distance (LD) behaviors of the interaction separate-
ly. The interaction may therefore be divided into four
parts: ( I ) the SD static potential UsoD", (2) the SD
velocity-dependent potential UsD; (3) the LD static po-
tential O'LD,

' and (4) the LD velocity-dependent potential
U'„D. The quantized version of the first two potentials
UsD and UsD can be derived from single-gluon-exchange
diagrams which give (for the qq state)

(2)
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A=S(ys) . (4)

Likewise a retarded four-vector potential C&=(P, A) can
be constructed by requiring that 4.4=~t —A. A is an
invariant. It follows that

P=y V(ys)

given by Olsen and Miller is inconsistent with the results
of Woodcock and Havas' as shown in Ref. 5, and the
results of Ref. 16 for the most general form for the vec-
tor interaction represent, in fact, only a special case.

A derivation of ULD similar to the deviation on Eqs.
(2) and (3) is not possible because perturbation theory is
not valid at large distances. However, another approach
may be considered. For example, Eqs. (2) and (3) can be
obtained without using the perturbative expansion of
quantum field theory. The original derivation of Eq. (3)
in 1929 is based on a classical expression for the interac-
tion energy between two electric charges obtained by
Darwin. ' His method does not use perturbation theory.
It starts with the Lienard-Wiechert potentials of classical
electrodynamics, P =e /s and A =v( t„)P/c, where
s R=—R. v(t„)/c, R =c(t —t„), and t„ is the retarded
time. Darwin shows to order v /c that the two-time
dependence of the potentials can be reduced to a depen-
dence on quantities evaluated at a single time t and that
a classical Lagrangian can be constructed which is in-
dependent of the particle's acceleration. Breit' tran-
scribed Darwin's results into quantum-mechanical form
and obtained Eq. (3).

A direct application of Darwin's method is difficult, if
not impossible, in chromodynamics because of the non-
linearity of the theory. Therefore, we assume first that
the principal effect of the nonlinearity is the confinement
behavior of the interaction at large distances and,
second, that for each particle an effective potential field
can be constructed which simulates the effect of the flux
tube on the other particle. The description of the
effective fields is linear in that the potential energy of
one particle is regarded as a consequence of that particle
moving through the effective field of the other particle.
We impose only two conditions on the LD effective field:
(1) it must transform as a Lorentz scalar or a Lorentz
four-vector and (2) it must be a retarded field, i.e., one
that depends on both t and the retarded time
t„=t —R /c.

The Lienard-Wiechert potentials provide the insight
needed for the construction of the effective retarded po-
tentials satisfying the above three conditions. We notice
that the invariant magnitude of the four-vector Lienard-
Wiechert potential is [e Is y( t„)], where y = ( 1 —v I
c )

'~ . Clearly, sy(t„) is an invariant. Since a scalar
potential is, by definition, a Lorentz invariant, the most
general choice for the retarded scalar interaction which
behaves as S(r) in the static limit is

and

v( t„)A= (6)

A; =S(r)+rS'(r)[r. a +(r.v ) ]/2c

N, = V(r)+ I V(r)v +rV'(r)[r. a +(r.v ) ]) l2c, (8)

and A, = V(r)v /c, where r=r, —rz and v, a are eval-
uated at time t. For V(r) =a/r Eq. (8) is identical to the
corresponding expression obtained by Darwin. ' The in-
variant action I,2 for particles 1 and 2 can be construct-
ed from the Lorentz scalars A,. , m;, and u,--4,-, where
u; =(y, c, y, v, ) is the four-vector velocity of the ith parti-
cle. This suggests the following form for the action:

I = —g(m;c +A;, /2+u;. 4J /2c)dr, ,

where d~, =dt/y, is the proper time of the ith particle.
However, the above expression depends on the accelera-
tions of the particles. This is the reason another term
must be added to I,2. This additional action term must
be the integral of a total derivative, it must be Lorentz
invariant to order 1/c, and, of course, it must remove
the acceleration dependence. The appropriate term is

I= Ir [ V'(r)+S'(r)]r (v2 —vi) I dt .
1 d

4c2 dt

The above expression differs from the one used by
Darwin' for V =a/r by the presence of the velocity v, .
But it is precisely the inclusion of vi that makes I&2 in-
variant to order 1/c . The resulting action is
I', 2 ——Ii2+I =L,2dt and the two-particle Lagrangian is

where y is evaluated at the retarded time t„. Equations
(4) —(6) form the basis for the calculation of the two-
particle interaction energy. They reduce to the
Lienard-Wiechert potentials of electrodynamics when
S =0 and V=a/ys.

Darwin' obtained the second-order potential U ' for
electrodynamics by considering the Lagrangian for a sin-
gle particle moving through the potential of the other
particle. This method is not valid for arbitrary poten-
tials because it involves the addition of a term to the La-
grangian that destroys the relativistic invariance of the
corresponding action. However this problem does not
arise in the construction of the two-particle Lagrangian.
Let A, - and N, be the scalar and four-vector potentials,
respectively, of the jth particle evaluated at the site of
the ith particle and expand A;- and N; about the time t.
This is equivalent to an expansion in powers of v /c,
and it can be shown that

L, z
——g(m, c +A;1 l2+u, .4&

J /2c)/y;+(1/4c )
—[r( V'+S')r. (vz —vi)]

l~J

= —m, c /y, —m2c /yz —V —S —Hz —~q,
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where

Hi, ——— (rV'+2V)vi vz+(r V"+»V')r. v, r.v~ —g[(»V'+ V)u, +(r V"+2rV')(r. v, ) ]l2 2c (9)

Hs ——— »S'v, .vz+(r S"+rS')r. v, r vz —g[(»S' —S) u, 2+(r S"+2»S')(r. vi)i]/2 2c (10)

The generalized momentum is p,-=dL/dq, and the cor-
responding Hamiltonian is H, 2

—g p, q, L i—2. Carrying
out the indicated operations, we find that

H, z
——[(m, c ) +(cp, ) ]'

+[(m2c ) +(cp2) ]' +UiD,
where U~D ——S+ V+H~+H~ is the long-distance in-
teraction energy.

A useful check of Eqs. (9) and (10) is provided by the
work of Woodcock and Havas' who obtain the most
general single-time, classical Lagrangian derivable from
a Lorentz-invariant variational principle. The Lagrang-
ian is determined by an interaction kernel UwH depend-
ing on the two-body invariants cu, g, X, and o. , where o
is the four-dimensional separation of the two particles,
CO=@ ) Q2,

g=y2[c(t, —t2) —v2(t2). [r, (ti ) —r2(tz)]/c ),
and X is given by the above expression for g, but with
1~2. The interaction kernel that corresponds to our
Lienard-Wiechert potentials is

Uw„= —,'co'[f (g)+f (X)]5(o.),
where 1 =0 gives Hs, 1 =1 gives Hi, f (g) is an arbi-
trary even function of g, and the static potential is

f (r) I».
The final step is the quantization of Eq. (11). General-

ly the transition from classical to quantum mechanics is

straightforward, but this is not the case for Hz and H&.
The problem is that classically p, /m, differs from v,

only by terms of order 1/c . Since these variables ap-
pear in the second-order part of H;„, and H;„, is only
valid to that order, p, /m, and v, in H;„, are effectively
identical at the classical level. However at the quantum
level for spin- —,

' particles, they are represented by com-

pletely different operators, i.e., p; ~ —ih V; and v, ~ca;.
To our knowledge there is no fundamental basis for
resolving this ambiguity. However the correct form for
the quantum-mechanical H~ is known for V =a/r, and
we can use this to determine the correct quantization of
the first two terms in H&. Comparing Eqs. (3) and (9),
we find that v, .v2 and r - v, r.v2 should be represented by
c ai a2 and c r.a, r.az, respectively (at least in Hi ). It
can be argued that for the last two terms in both Eq. (9)
and Eq. (10), v, should be replaced by i V, /m;. The-
other alternative, i.e., replacing v, by ca, , has the effect
of making the u, and (r.v, ) terms equivalent in impor-
tance (order) to the zero-order potential V(r)+S(r).
Recall that a, =3 and (r.a, ) = l. In that case the stat-
ic potential in the quantum-mechanical calculation

would be different from the static potential in the classi-
cal problem, and we assume that this is not the case.

For the quantization of the first two terms in Eq. (10)
we consider two possibilities: (i) The same quantization
procedure should be used for both Hamiltonians; (ii) all
velocities v~ in H~ should be replaced by —i V+/m~.
All other quantization schemes yield results which are
not consistent with Gromes's theorem. In both of the
above cases a factor P&/3z, which is represented by unity
at the classical level, must be inserted before every scalar
term.

The most striking difference between these two possi-
ble quantization schemes is the different types of spin
dependence which they imply. The reduction to
Schrodinger-Pauli form has been carried out elsewhere.
If the spin-independent terms are omitted for simplicity,
the results may be written as

1
Hi +Hs~ (E'+2Wi )4r

CT )

2 + -L+ o. .L
ypz2 2m )m2r

V/
+

r
T V V+W+ Oi &24, 6

1

~ (cr, .Lo 2.L+cr2. Lcr, .L),
2m &mar

(12)

W~ ——V— r
2

S"+2rS'

W = 3[rS'p ——(S+ »S")ir.p],
and in case (ii), S, = W'=0 and W2 ——V. In both cases
e= V+S and W& ———S.

Gromes has derived a theorem relating the static and
spin-orbit potentials, which may be written as

g'+ W'( ——Wq (13)

Although the primes in Eq. (13) are usually omitted, it is
important to include them in case (i). Gromes's theorem
has the somewhat unexpected consequence of determin-
ing the form of the scalar potential in case (i). Equation
(13) is satisfied for any V(r), and it reduces to the fol-
lowing equation for S(r):

where T =r.o,r cr2 —o, o 2/3. In case (i) one finds that

rS, = — (rS'),
2 dr
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2 S"+2rS' =0 .
8r

(14)
V'

spin +
C7p V'

L+ o- L
2m )m2r

The solution to Eq. (14) is the logarithmic potential'

S(r) =a 1 n(r) +b . (15)
T V'V

+ o &.o z . (17)
m]m2 6m]mp

S'(r)
spin 4

+
m 1

z 8'
~ L+

m~ 6m, m2

where in case (i) 8'= —3ap and S(r)=a ln(r)+b and
in case (ii) IV =0 and S(r) is arbitrary.

For pure vector confinement the spin-dependent part
of Eq. (12) is

Notice also that Eq. (15) implies that S
&

——0, so the
quadratic spin-orbit term does not contribute to Eq. (12).
That is appropriate since the general form for the QCD
potential given in Ref. 8 does not contain such a term.
In case (ii) Gromes's theorem is satisfied for any V(r)
and S(r).

For the special case of pure scalar confinement the
spin-dependent part of M;„, is quite simple: i.e.,

Although the above is intended as a description of the
long-distance part of the QCD interaction, it is worth
noting that if one sets V =a/r, Eq. (17) reduces to usual
Fermi-Breit interaction.

In conclusion we have shown how to include retarda-
tion effects in the long-distance part of the QCD interac-
tion. This has been done by assuming a simple ansatz
for the long-distance Lienard-Wiechert-type potential
and using a method based on the original derivation
given by Darwin for electrodynamics. The classical in-
teraction Hamiltonian which we obtain is consistent
with the results of Woodcock and Havas, ' and its quan-
tized version satisfies Gromes's theorem. The descrip-
tion of the long-distance QCD interaction is simplified
considerably by our result since the Hamiltonian con-
tains only two potentials, V(r) and S(r), rather than the
four potentials introduced in Ref. 8.
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