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We complete the bosonization of two-dimensional QCD within the path-integral approach. We
compute the contribution of the gauge field sector, which was considered as a background in pre-
vious works. This enables us to obtain an eft'ective Lagrangian completely written in terms of bo-
sons. The current algebra which arises in this bosonic context is also discussed.

Since Witten' showed how to extend two-dimensional
bosonization techniques to the case of non-Abelian inter-
nal symmetries there has been much interest in the ap-
plication of this procedure to the solution of various
two-dimensional models. This, together with the exact
evaluation of the fermion determinant ' allowed the de-
velopment of a path-integral approach to bosoniza-
tion which showed to be very fruitful in the study of
interacting fermion models such as two-dimensional
QCD (QCDz), the chiral Gross-Neveu model, etc.

In the approach of Ref. 2, fermions are decoupled by
means of a chiral change in the fermionic path-integral
variables. Associated with this transformation one has a
Jacobian whose computation is directly connected with
the evaluation of the fermion determinant and originates
a topological Wess-Zumino term contributing to the
effective action. Following this method the fermion
determinant for QCD2 was exactly computed and physi-
cal properties of the model were discussed in terms of
the resulting effective Lagrangian.

In this paper we complete the path-integral bosoniza-
tion of QCD& by properly taking into account the role
that the gauge field sector plays in the final effective La-
grangian. Indeed, in previous studies the gauge field was
considered as a background field and therefore the physi-
cal picture of the model has remained so far partially un-
derstood.

We start by briefly sketching how the fermion deter-
minant can be computed using the technique developed
in Ref. 2 (see also Ref. 10). The functional integral for
QCDz with massless fermions (in Euclidean space) reads

Z= f 2)$2)$2)A„exp —f d x(/II)g+ —,
' trF„„}

where g =y"D„=iel+gA, and A„ takes values in the
Lie algebra of SU(NC). The massless fermions are taken
in the fundamental representation of SU(NC) with the
generators t, normalized so that trt, tI, ———,'6,„and the

quadratic Casimir operator in the adjoint representation
gi~~~ by f.b,f.b~ ——&( G )&,&, & ( G ) =Nc.

Exactly as it happens in the Abelian case (the
Schwinger model) there exists a change in the fermion
variables which completely deco uples fermions from
gauge fields, at the classical level. Although this is very
simply done in the so-called decoupling gauge, '" we
shall work in an arbitrary gauge' which will be more
suitable to our present purposes (later on we shall choose
the light-cone gauge A ~ = A o+i ( A, =0).

Then we can write"

(2)

where tb=p't' and ri=ri't' are scalar fields taking values
in the Lie algebra of SU(NC). [Notice that Eq. (2) be-
comes A„=—(1/g )e„„t) p+(1/g )c)„g in the Abelian
case, giving the usual decomposition of 3„ into longitu-
dinal and transverse parts. ] It is straightforward to
check that in terms of the new fermion variables

X(x)=e ' " P(x ),

LF QBQ=XitIX —.— (4)

Now quantum effects are taken into account by the
change in the fermionic measure under transformation
(3):

2)tbsp)g

=JFZ)X X)X,

where JF is the fermionic non-Abelian Jacobian. The
functional integral (1) then reads

Z= f BA„exp —
—,
' f d x trF„detu.

= f XA„exp ——,
' f d x trF„JF deti 8 .

X(x ) = tb(x )e

the fermion Lagrangian becomes completely decoupled
from gauge fields:
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f d x f dt trAt)'X)'rI, (7)

In order to compute JF one introduces an extended
transformation depending on a parameter t (t &[0,1])
that allows to build up the whole change (3) varying t
from 0 to 1 (Ref. 2). The result is

lnJF= 8 — d x trA
2~

2

J d x f dttrl~A, JA,

where 2)„' =a„—ig [ A „', ] and with

tI) P+ 'q) tty—g+ 7))

This result coincides with that of Ref. 10. Making
g=0 one gets the fermion determinant in the decoupling
gauge, as evaluated in Ref. 2. One can also easily obtain
the expression for the light-cone gauge A+ ——Ao+i A]
=0, A = Ao —i A, =(i Ig)Ua U

W[ A, A + =0]= W[ V]

,
'

tr f d x a„Va„V '+ -'
e„„trf 'dt f d x V, 'a, V, V-, 'a„V, V-, 'a, V, -, (8)

where

(9)

With this last gauge choice the kinetic gluon term takes the simple form

1
,'F„,,F„,= ,'—(a A )'=-—,[a (va v ')]'-

pl p1 4 + —
4 2 +

(a+ ——ao+ia, ) and the generating functional reads

Z= f AA exp, tr f d x[a (Ua U ')] e
1

4g-

where the (decoupled) free fermion determinant has been
disregarded since it plays no role in the present discus-
sion (although it has to be kept if fermionic correlation
functions are computed by adding adequate sources).

We have now arrived to a last and central step in our
analysis: If we compute the Jacobian J~ connected with
the nontrivial change in the bosonic measure

=J BU, (12)

6A
Dad

6p g
(13)

we shall then get a complete description of the original
model in terms of the bosonic field U. In other words,
we shall get the complete bosonized form of QCD2.

In a diff'erent context, a change of variables similar to
(11) was considered in Ref. 3 and more recently in Refs.
12—14. We shall briefly describe how Jz can be easily
calculated by considering an infinitesimal variation 5P of
U as defined in (9) and then evaluating 6A /5P, thus
giving

I

and then express this determinant as a path integral over
fermions in the adjoint representation:

J„(U)= f 2)XX)Xe exp( f d x XD'"X) . (16)

5 lnJ [P dt ]= e„ f d x trPF„"'
4~ ~ (17)

where F„"',, is the curvature associated to A„"' as defined
above. The Jacobian for a finite transformation is ob-
tained from (17) by integration over t Now, (17) is. valid
for all fermion representations and hence allows us to re-
late the result in the adjoint and the fundamental ones.
Our convention is trt, tb ——N5, b with N = —,

' and f,~q f„~q
=C(G )5,b with C(G ) =Nc. We then have

This determinant can be related to the determinant in
the fundamental representation given by Eq. (8) just by
noting that if one considers an infinitesimal change of
the fermionic variables this leads to the Jacobian [see,
for example, Eq. (2.30) of Ref. 2]

where D'" is the covariant derivative in the adjoint rep-
resentation:

&»J
l

a= ~ »J =2Nc 6 lnJ
l „„„~,

C(G)
fund

(18)

D'" =a ig[A, ] . —

We can then write

and the same relation then holds for the full Jacobian
(16):

J~ ( U ) = detD '~ (15) ln Jz ——lnJ,&
——2Nc W[ U ] . (19)
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Thus, replacing (19) in (10) one gets the completely bo-
sonized version of the QCD2 generating functional [(a,U-')U]+ 277

(20)

with

Sii [U) =(2NC+ 1)W[ U] — tr[a ( Ua U ')]1

4g 2

(21)

+ ', [[a +(a, U-')U], (a U-')U],

—'[(a U)U- ]
271

[a +(a U)U ', (a U)U '],

(26)

This action corresponds to a nonlinear o. model with a
Wess-Zumino term with a shifted value for the level k,
k=1+2N&, pius the contribution of the F„F„ term
which crucially changes the effective dynamics. Indeed,
the model defined by (21) corresponds to a higher-
derivative Lagrangian this being at the origin of the
massiveness of the boson fields. Indeed, consider an ex-
pansion

which satisfy a Kac-Moody algebra with level
k = 1+2Nc.

At this point it is interesting to discuss how the free
fermionic model results can be derived within this
framework. Let us first note that in order to compute
vacuum expectation values (VEV's) of currents one has
to add external sources s„ in the generating functional
(1),

U=l+2P'&'+O(P') .

The bosonic effective Lagrangian then reads

1
tr kg

g 2&

', ~„,tr y(a„y)a„y "g
ya„y—a,y

(22)
z= f nqnqn~„

X exp —f d x[P(@+i(')P+—,'F„]

so that, for example,

$2Z

Z 5s„'(x)5s,(y)

(27)

(28)

+ higher-order terms, (23)

U~U'=A(x+ )UB(x ), (24)

with A and B arbitrary SU(NC )-valued matrices is an in-
variance of Sz,

with k =1+2Nc. Now our previous cornrnent becomes
apparent. As usual in the path-integral approach to bo-
sonization, one gets an effective Lagrangian with
higher-order derivative terms. Its free part corresponds
to Nc —I massive scalars [with mass m =g(k/2')' ]
and the same number of massless gauge excitations. '

In contrast' ' with QED2 where the massive field is
free, here a self-interaction is present, given by the
Wess-Zumino term and the F„ term the whole leading
to a Skyrme-type effective Lagrangian. Note that be-
cause of the nontriviality of J„[Eq. (19)] the scalar
masses are multiplied by the factor 2Nc+1. Hence, in
the large-Nr limit (where as usual ' one defines

g =go /QNc ) one gets m =go /&ir exactly as in the
Abelian case. (Cf. Ref. 5 where only the fermionic con-
tribution was analyzed and Ref. 18 where the J~ contri-
bution was disregarded. )

Coming back to the bosonized action Sz defined by
Eq. (21) one can repeat the analysis of Knizhnik and Za-
molodchikov' to study the fermionic currents in terms
of the U field by noting that the transformation

In the noninteracting case (g~0) the path integral over
3 factors out and Z[s] reduces to

Z[s]=JVdet(irl+f) . (30)
Suppose one just wants to consider the right-handed

currents J+ . One then puts s+ ——0, s =ig 'a g (the
left-handed case can be treated analogously) and uses
W[s, s+ ——0] from Eq. (8).

Now, in Ref. 9 we have computed the current algebra
for a model of SU(N) fermions in a general background
s„by computing the current-current correlation function
from (30) and then taking the Bjorken-Johnson-Low lim-
it. Using this technique and making s„=O at the end of
the computations one gets

[J+(x ),J~(y )]=if'"'J+(x )5(x —y )

+ 5'5'(x —y ),2~ (31)

that is, J+ satisfies a Kac-Moody algebra with level
k =1 as is to be expected for free fermions. '

It is also very simple to consider the case of ferrnions
with fiavor NF&1. Indeed, W[U] in (10) has to be re-
placed by NF X W[U] but J~ is still given by (17). One
then has, for the bosonized action Ss, instead of (21),

Then instead of Eq. (6) one has

Z[s]= f 2)A„exp ——,
' f d x trF„, det(g+g') .

(29)

S [U']=S [U],
this leading to the conserved currents

(25)
S =(2N +N )W[U] — tr[a (Ua U-')]' .1

4g 2
(32)
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The scalar mass becomes then

m =g [(2Nc+NF ) I2vr]'

and in the g ~0 limit one has also a Kac-Moody algebra
but this time with level k =NF.

In summary we have presented the complete bosoniza-
tion of QCDz in the path-integral framework by consid-

ering the contribution of both the fermionic and the
gauge-field sectors. To this end, we have computed the
fermionic determinant and the bosonic Jacobian J~
which emerges when one writes down the path-integral
measure as a Haar measure over the U fields which natu-

rally appear in the decoupling of the fermion sector. We
have shown that the resulting effective model contains
massive self-interacting scalars with mass

m =g [(2Nc+ 1 ) l27r]'~

for an SU(Nc ) gauge group.

We have also discussed the current algebra in terms of
the bosonic fields. In order to go further into the under-
standing of the model, studying the fermionic correlation
functions in terms of bosons at long distances (the
decoupling implies fermions are free at short distances)
one has to consider the complete action S~, for instance,
by means of a 1/X expansion. Also, the bosonization of
QCDz with massive fermions can be envisaged in this
approach following the lines discussed in Ref. 6. We
hope to report on all these aspects in a forthcoming
work.
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