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Convincing evidence of a nonvanishing string tension in the continuum limit of compact three-
dimensional U(1) gauge theory is presented. It is based on Monte Carlo measurements of Wilson
loops on a 32' lattice at p=2. 0 and 2.2. The observed string tensions at these couplings are con-
sistent with the Polyakov theory. Also, a very clean signal of a string vibrational contribution to
the potential is observed.

I. INTRODUCTION

Compact U(1) gauge theory in 2+ 1 dimensions is the
most well-understood nontrivial gauge theory. The
pioneering work is due to Polyakov. ' The partition
function with two external charges is that of a Coulomb
gas of magnetic monopoles interacting with an electric
current loop. This gas is always in the plasma phase.
Polyakov showed that at arbitrarily large finite /3 there is
a mass gap and a nonvanishing string tension given by

o.a = exp[ —tr V(0)/3t, ],4&v

~Qp,

where V(0) =0.2527 and /3V is the inverse coupling con-
stant as defined by the Villain action (the latter is a
large-P approximation to the Wilson action).

Several numerical studies of three-dimensional U(1)
gauge theory [U(1)3] have been performed previously.
In Ref. 2 the monopole density was studied and the
physical picture of confinement was confirmed. Refer-
ences 3 and 4 focused on Wilson loop measurements. In
Ref. 3 an exploratory study was made, whereas in Ref.
4 fairly large loops (8&&8) were probed with reasonable
statistics. The results were nevertheless inconclusive.
The reason for this, according to the authors, is that the
distance scales probed by the measured Wilson loop sizes
are too small in order to disentangle the three-
dimensional Coulomb term (lnR) from the linear poten-
tial (crR ) originating from string formation. Thus to
date no conclusive numerical evidence for o.&0 in the
continuum limit exists. One should also mention Ref. 5,
where a mass gap was established using the Villain ac-
tion and a dual method. Also the derivative of the
string tension was measured and found to be consistent
with predictions from Eq. (1). This unclear situation
calls for a new measurement of large Wilson loops with
high statistics.

Another reason for reexamining U(1)3 theory is that,
because of its simplicity, it is often a testing ground for
new algorithmic approaches. The conventional method
for determining the static force between two charges on
the lattice is by measuring Wilson loops. These vacuum

TABLE I. Details of the Monte Carlo runs.

P=2.0 /3=2. 2

No. of sweeps used
for therrnalization
No. of sweeps used
for measurements
No. of sweeps between
two measurements for loops

Smaller than 8&8
Larger than 8&8

& 5000

22 000

90
30

) 5000

11 700

90
30

expectation values are exponentially damped for
confining theories, and hence very time consuming to
measure. Ideally one would like to generate
configurations including the charges in the action. This
gives a complex action, which is impossible to handle
with standard updating procedures. Alternative algo-
rithms have therefore been suggested: the dual method
and the complex Langevin equation. Being reasonably
simple and theoretically well known in the P~ oo limit
U(1)3 theory is a good testing ground for these new algo-
rithms. The dual method gives values a factor 2 larger
for o. than those of Ref. 4, whereas the complex
Langevin approach did not provide any evidence for
string formation at all. This situation with regard to
new approaches is another strong incentive for a new
numerical investigation within the Wilson loop para-
digm.

We have measured Wilson loops up to sizes 14)& 12 on
a 32 lattice with the Wilson action using the variance
reduction technique of Ref. 8. The string tension is
carefully extracted using two diff''erent techniques, yield-
ing a o. value of the same order of magnitude as that of
Ref. 4. Our o values obtained at P=2.0 and 2.2 are
consistent with Eq. (1) indicating that we are in the con-
tinuum limit ~

As a by-product we also find strong numerical evi-
dence for the presence of a string vibration term
—tr(d —2)/24R in the potential. This fact is, of course,
an additional piece of numerical support for string for-
mation in U(1), theory. It turns out that this contribu-
tion to the potential is what in Ref. 4 was interpreted as
a Coulomb term.
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This paper is organized as follows. In Sec. II we de-
scribe our numerical procedures and the data. Section
III contains the string-tension extractions and the results
are presented and discussed in Sec. IV.

II. MONTE CARLO CALCULATIONS

Using the familiar Wilson action and the Metropolis
algorithm for updating, we have measured Wilson loops

on a 32 lattice at /3=2. 0 and 2.2. The variance was re-
duced by use of the technique of Ref. 8, which amounts
to replacing link variables UI in the measured objects by
their local averages

f d U U exp [13Re( UX& ) ]
Ui —— U~X, = g U~.

dUexp Re UXI

(2)

TABLE II. Wilson loop values W(T, R) with errors at (a) @=2.0 and (b) /3=2. 2.

(a)
10

10

0.496 67
0,000 40
0.375 84
0.000 51
0.286 41
0.000 54
0.218 80
0.000 55
0.167 24
0.000 52
0.127 92
0.000 46
0.097 67
0.000 40
0.074 69
0.000 35
0.057 15
0.000 30

0.261 66
0.000 61
0.184 78
0.000 61
0.131 14
0.000 57
0.093 25
0.000 51
0.066 36
0.000 44
0.047 09
0.000 35
0.033 53
0.000 29
0.023 89
0.000 23

0.121 95
0.000 58
0.081 18
0.000 52
0.054 21
0.000 44
0.036 25
0.000 37
0.024 13
0.000 28
0.016 15
0.000 22
0.010 81
0.000 17

0.050 87
0.000 45
0.032 06
0.000 37
0.020 25
0.000 30
0.012 71
0.000 21
0.008 03
0.000 16
0.005 07
0.000 12

0.019 13
0.000 30
0.011 44
0.000 24
0.006 74
0.000 16
0.004 02
0.000 12
0.002 41
0.000 09

0.006 51
0.000 18
0.003 60
0.00011
0.002 04
0.000 09
0.001 15
0.000 07

0.001 92
0.00009
0.001 02
0.00007
0.000 54
0.000 05

0.000 51
0.000 06
0.000 25
0.000 04

0.000 12
0.000 03

(b)
10 12

10

12

13

14

0.550 81
0.000 33
0.436 80
0.000 43
0.348 73
0.000 47
0.279 12
0.000 51
0.223 68
0.000 49
0.179 37
0.000 49
0.143 89
0.000 49
0.11540
0.000 46
0.092 56
0.000 43
0.074 25
0.000 40
0.059 58
0.000 37
0.047 81
0.000 34
0.038 37
0.000 30

0.324 83
0.000 55
0.244 88
0.000 45
0.185 54
0.000 60
0.140 95
0.000 56
0.107 26
0.000 57
0.081 72
0.000 54
0.062 21
0.000 50
0.047 38
0.000 45
0.036 09
0.000 40
0.027 50
0.000 35
0.020 97
0.000 31
0.015 99
0.000 27

0.175 59
0.000 50
0.127 01
0.000 63
0.092 28
0.000 57
0.067 22
0.000 56
0.049 03
0.000 53
0.035 77
0.000 48
0.026 10
0.000 42
0.01905
0.000 37
0.013 92
0.000 32
0.010 18
0.000 27
0.007 45
0.000 23

0.088 04
0.000 59
0.061 41
0.000 53
0.043 00
0.000 51
0.030 16
0.000 48
0.021 19
0.000 43
0.014 90
0.000 37
0.01048
0.000 32
0.007 39
0.000 27
0.005 21
0.000 23
0.003 68
0.000 19

0.041 19
0.000 47
0.027 77
0.000 45
0.018 77
0.000 42
0.012 74
0.000 36
0.008 65
0.000 30
0.005 89
0.000 25
0.004 00
0.000 21
0.002 73
0.000 17
0.001 87
0.000 14

0.018 02
0.000 31
0.011 82
0.000 35
0.007 76
0.000 29
0.005 09
0.000 23
0.003 35
0.000 18
0.002 20
0.000 15
0.001 46
0.000 12
0.000 96
0.000 08

0.007 48
0.000 32
0.004 74
0.000 25
0.003 02
0.000 19
0.001 91
0.000 15
0.001 22
0.000 10
0.000 78
0.000 08
0.000 50
0.000 06

0.002 91
0.000 16
0.001 79
0.000 12
0.001 10
0.000 09
0.000 68
0.000 07
0.000 43
0.000 05
0.000 26
0.000 04

0.001 07
0.000 09
0.000 63
0.000 07
0.000 38
0.000 05
0.000 24
0.000 04
0.000 14
0.000 03

0.000 36
0.000 05
0.000 21
0.000 04
0.000 13
0.000 03
0.000 07
0.000 02

0.000 12
0.000 03
0.000 07
0.000 02
0.000 04
0.000 02
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in W(R, R)
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-6" FIG. 3. The difference V(R) —V(R —a). The errors were
obtained in the same way as the errors in V(R ).

-8"

-10-.

FICs. l. 1n8 (R,R) as a function of R from this work and
from Ref. 4 at f3=2.0 and 2.2. The curves show the results of
fits to Eq. (4).

more long ranged for the smaller loops. Further details
of the Monte Carlo (MC) runs are found in Table I.

Our results for the Wilson loops are given in Tables
II(a) and II(b). The quoted errors are corrected for auto-
correlations. We may note that the statistics are consid-
erably improved, by roughly a factor of 10 for larger
loops, as compared to previous measurements.

III. THE STRING- TENSION EXTRACTION

In the case of U(1), we can write

X,* I, (Pd)
Ui —— , d= iXid Io(Pd)

' (3)

We have used two different methods for extracting o.

from the Wilson loop measurements. The first method
follows Ref. 4, where quadratic loops were fitted to the
form

In W(R, R)—=o R +PR +c .
where Io and I& are modified Bessel functions, which we
can tabulate for a given /3. Since we want to focus on
long distances, we have chosen to measure larger loops
more frequently than smaller ones. Such a choice is fur-
ther motivated by the fact that autocorrelations are

av(R)
75 II

.50-

As seen from Fig. 1, this form gives a good description
of our data. The statistics obtained in Ref. 4 did not al-
low the authors to exclude the possibility that the curva-
ture may originate from a perturbative term R lnR. To
make sure that this is not the case in our data we have
performed fits for different lower cuts in R. Excluding
R =2, and in the case of /1=2. 2 also R =3, our results
are stable to variations of this lower cut. This suggests
that we get reliable values for o. . In Fig. 1 we also give
the results for the quadratic loops obtained in Ref. 4.
Especially for larger loops, we see that our values differ
considerably from theirs. This might be a thermaliza-
tion effect. Whereas the authors of Ref. 4 state that at

.25"

~ P= 2.2
.02

o P=2.0
t3 2.2

10

FIG. 2. The static potential V(R). The errors have been es-
timated by dividing the data into 20 bins and regarding the
corresponding values of V(R) as independent measurements.
The curves are fits to Eq. (6).

8

FIG. 4. The quantity A=a [ V(R) —V(R —a)]—oa, with
o.a given by Eq. (7). The curve corresponds to a vibrational
term —~(d —2)/24R in the potential.
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In QQ
Il

TABLE III. Results for o.a from diff'erent fits.

1.8 2.0 2.2 Fit to

Eq. (4)
Eq. (6), a free
Eq. (6), a fixed

P=2.0

0.054(3 )

0.053( 3)
0.052(2)

f3=2.2

0.032( 3 )

0.031(3 )

0.031(2)

-3.

-3 5"

P =2.0 to f3= 2. 2 the magnitude of the deviations at
small R remains essentially unaltered. Such scaling be-
havior is expected if the deviation originates from a
universal 1/R term in the potential.

IV. RESULTS

FIG. 5. Inoa as a function of P. The dashed line indicates
the slope obtained from Eq. (1).

least 400 sweeps are required to thermalize larger loops
we find it necessary to use around 5000.

Another and more frequently used method for the
string-tension extraction is to establish the linear behav-
ior at large R for the static potential

V(R)= — lim —InW(T, R) .
1

T ~oo T (5)

Compared to the previous one, this method has the ad-
vantage of not only making use of quadratic loops,
thereby improving the statistics. We have chosen to fit
our results for V(R ) to the form

V(R ) =crR +c —a/R (6)

(see Fig. 2) expected at large R in a fluctuating string
picture. ' We find that this form allows for good fits,
which are stable to exclusions of small R's. From the
point of view of the string-tension determination, the as-
sumption of a vibrational term in Eq. (6) is not impor-
tant. Extracting o. directly from the slope at large R
does not significantly change the results.

In order to exhibit more clearly the behavior of V(R)
as a function of R, we have also plotted the difference
V(R) —V(R —a) (see Fig. 3). A constant value of this
difference signals the dominance of a linear term and
this is indeed what we observe at large R. Furthermore,
the deviations from a constant behavior seen at small R
are very well described by the vibrational term in Eq. (6),
taking for a the value ir(d —2)/24 as predicted by scalar
string theory. ' This is illustrated in Fig. 4, where we
have subtracted from the difference V(R) —V(R —a) a
constant piece corresponding to the linear term. One
should note that whereas the string tension (in lattice
units) decreases by almost a factor —,

' when going from

We thus see clear evidence for area-law behavior for
the Wilson loops. For final values of o. we have chosen
to fit to Eq. (6) keeping a=sr(d —2)/24 fixed. We then
arrive at

0.052(2), P=2.0,
0.031(2), /3=2. 2 . (7)

Fitting Eq. (4) or Eq. (6) with a as a free parameter gives
slightly larger but consistent values of o (see Table III).
Since we are using the full Wilson action and not the
Vil1ain approximation, which has a difFerent I3 parame-
ter, we cannot directly check whether these numbers
scale according to Eq. (1). However, one expects that
the string-tension slope in the two theories should be
identical as the continuum limit is approached. In Fig.
5 we show the logarithm of the values of Eq. (7) together
with the slope predicted by Eq. (1). As can be seen from
this figure that our data are consistent with the slope of
Eq. (1). From this we conclude that our measurements
are performed in the continuum region and that the
values agree with the Polyakov theory. '

When fitting all three parameters in Eq. (6), we obtain,
for the vibrational coefficient,

a =0.11(4) and 0. 13(4)

for @=2.0 and 2.2, respectively. This result is in agree-
ment with the string-model prediction ir(d —2) /24
=0. 13.

As mentioned above, alternative numerical approaches
have been applied to compact U(1)3 theory. In Ref. 6 a
dual algorithm using the Wilson action yielded o. =0. 11
and 0.055 for P=2.0 and 2.2, respectively. These values
disagree by a factor of 2 with our results and do not fol-
low the slope of Eq. (1). A possible explanation of this
discrepancy could be that this algorithm fails to
efficiently generate configurations outside the strong-
coupling domain.
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