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We derive an operator solution for the fermion in the chiral Schwinger model with a Wess-
Zumino term and study the quantum structure of the model in a manifestly covariant operator for-
malism. The U(1)L gauge symmetry restored by the inclusion of the Wess-Zumino term gets spon-
taneously broken and the gauge field becomes massive. The left-handed fermion is found to be
confined. The right-handed fermion, on the other hand, remains a massless free field in spite of
the fact that the left- and right-handed sectors of the model are coupled through the anomaly.
This massless fermion is interpreted as the Nambu-Goldstone mode associated with the spontane-
ous breakdown of the global U(1)R symmetry.

I. INTRODUCTION

Recently there has been considerable interest in the
study of the chiral Schwinger model. ' The motivation
stems from exploring, in this model, the possibility of
constructing a consistent quantum theory out of gauge
theories with anomalies. Such a possibility was first
pointed out by Jackiw and Rajaraman. ' On the other
hand, Faddeev suggested that the Wess-Zumino term
may be included in an anomalous gauge theory to make
the latter a physically sensible quantum theory. The
analysis of Jackiw and Rajaraman can be understood in
this context; ' their eA'ective action is obtained in the
unitary gauge, where the Wess-Zumino term disappears.

In this paper we study the full consistency, as a quan-
tum theory, of the chiral Schwinger model with the (neg-
ative) Wess-Zumino term. As yet, most approaches to
this problem have dealt with the bosonized form of the
model. Here our analysis places special emphasis on the
fermion and symmetry contents of the model. We con-
struct a fermion operator out of the boson fields in the
bosonized theory and show that it behaves properly as
the fermion in this model. We carry out the quantiza-
tion of the model within a manifestly covariant operator
formalism with indefinite metric, developed by Naka-
nishi. Our analysis confirms that this chiral Schwinger
model possesses consistent fermion contents and reveals
further that one of the chiral fermions (the left-handed
one) is confined.

In Sec. II we examine the anomaly structure of the
chiral Schwinger model. It turns out that the gauge
anomaly spoils the conservation of both U(1)L and U(1)z
chiral currents.

In Sec. III we consider the chiral Schwinger model
with its anomaly canceled by the Wess-Zumino term.
We verify, in an operator language, that the local U(1)t
gauge symmetry is restored in this model.

In Sec. IV we quantize the bosonized version of the
model. We find that the restored gauge symmetry gets

spontaneously broken and that the associated Nambu-
Goldstone boson becomes unphysical. The physical
spectrum of the model agrees with the one obtained ear-
lier. '

In Secs. V and VI we study the fermion content of the
model. A fermion operator is constructed, which yields
the correct canonical commutation relations and which
correctly embodies the anomaly structure of the fer-
mionic chiral currents. The left-handed fermion is found
to be confined; its propagator has no pole in momentum
space, like the fermion in the Schwinger model. On the
other hand, the right-handed fermion remains a massless
free field in spite of the fact that the U(1)tt fermion
current obeys an anomalous conservation law. This
massless fermion is understood as the Nambu-Goldstone
mode associated with the spontaneous breakdown of the
U(1)tt symmetry. Section VII is devoted to summary
and discussion.

II. ANOMALY IN THE CHIRAL SCHWINGER
MODEL

Lp g[ti ttl+e&tr
——A„y'"(I —y )]Q—'F„, —

L =BR„A"+—,'aB
(2. 1)

(2.2)

P=(tt „tt't2)' and F„.=B„A. c},A„; yP=tT',
that p"p =e" y withE=—e =eip —l. '(Our metric is g = —g

"= 1.) The01 10

L~ is a gauge-fixing term corresponding to linear covari-
ant gauges with parameter a and B is an auxiliary field.
The chiral U(1)tt XU(1)L symmetry is manifest in the
Lagrangian L; in particular, the right-handed fermion P,
is a free field. The L0 is also invariant under the local
U(1)L gauge transformations A„~A„+t)„gL and

The chiral Schwinger model describes a chiral cou-
pling of the fermion g to a gauge field A„, with the La-
grangian L =L0+L:
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g~exp[ie&~gl (1—y')]itt,

although this gauge invariance is spoiled at the quantum
level.

It is convenient to use Fujikawa's method to calculate
the gauge anomaly. The local chiral rotations (with pa-
rameters gz and gl ) of P and P yield the Jacobian factor
~ Tr[(g~ —(L )y'], which one may regularize using the
cutofF e' with the operator

D = [i8+e&mA(1 .—y')]

The regularized Jacobian

Tr[(gz —gL )y e' ] (r~+0 in Euclidean space),

terms to the vacuum functional. ' In the present case,
one can take into account this ambiguity to replace Eq.
(2.3) by the conservation laws

B„Jg=ae B„A"—e (g"'+e"')B„A

a„Jg=e (g" +e" )a„A

(2.4a)

(2.4b)

where a is a real constant parametrizing the ambiguity.
[Note here that the gauge field responds to U(1)t gauge
transformations alone. ] Consequently, only the Jg
—ae A"=JI' '" portion of the left-handed current Jg is
anti-self-dual while the Jg=J~I '" remains self-dual. In
view of the duality structures of the currents, we can ex-
press them in the form

which turns into the anomaly, is easily evaluated. As a
result, both of the fermion chiral currents

Jl ~=e&~Py"(1 —y')g

and

Jg =ae A "+e (g" —e"')B,P,
Jg = —e (g"'+e"")B„P,

where the field P is defined by the equation

8 P= —e(g"'+e~ )B„A, .

(2.5a)

(2.5b)

(2.6)

J~~o'" =e &argy" ( I+y') Q

obey the anomalous conservation laws

a J "~=—a J"'~= e'(g~ +—e~ )a Ap L p R p v (2.3)

The superscript (0) indicates that these currents are self-
dual (or anti-self-dual), e„gl '"———JL,„
=JR„'. This duality property is a direct consequence of
the matrix identity yPy —eP y, specific to two dimen-
sions, which is respected in the path-integral derivation
of the anomaly. We have confirmed that the Pauli-
Villars regularization leads to the same result.

The form of the anomaly is determined uniquely up to
the ambiguity arising from the addition of local counter-

The right-hand sides of Eq. (2.4) represent the most
general form of the chiral anomaly. Any sensible regu-
larization method should yield the anomaly of this form.
It is possible to reproduce this result by means of a
point-splitting prescription. The phase factors are need-
ed separately for the (regularized) vector and axial-
vector currents:

JI',(x;e)=e&vrP(x+e)y"I i, (x+e,x )g(x),
(2.7)J, (x;e)=e&~q(x+e)y y'I „(x+e, x )q(x) .

It is a simple exercise to verify that the desired form of
the anomaly is obtained by the choice of the phase fac-
tors:

I i,(x+e,x)=exp ie&~ f dz"[(1+a)A„+e„A ]
X

I z(x +e,x) =exp ie&7r f '+'dz"[A„+(1—a)e„,A "]
X

(2.8)

The result remains the same if one replaces e„,, A by

y A „ in the above.
chiral Schwinger model. To verify this, let us look into
the equations of motion:

[iB+e&~A(1—y )]/=0, (3.2)
III. CHIRAL SCHWINGER MODEL
WITH THE WESS-ZUMINO TERM

We have studied the anomaly of the chiral Schwinger
model in the previous section. Following Faddeev, let
us introduce the (negative) Wess-Zumino term Lwz to
cancel the anomaly and consider the new Lagrangian

L"'"=Lo+Lwz+Lg
(3.1)

Lwz ———,'(a —1)(B„g) —eg[(a —1)g""—e" ]B„A

where L9 is a scalar field.
The U(1)L gauge symmetry, though not manifest in

the Lagrangian Lo+-L wz, is recovered in this modified

B„F"'[A] O'B+J"=0, —

(a —1)B 0+ e [(a —1)g"'—e" ]B„A =0,
0 AP+czB =0 .p

The gauge field is now coupled to the current

J"=Jg + e [(a —1 )g"'+e" ]B,H,

(3.3)

(3.4)

(3.5)

(3.6)

0 B=O. (3.7)

which, in view of Eqs. (2.4a) and (3.4), is conserved,
B„JP=O. As a consequence, B obeys a massless free-field
equation



36 FERMIONS IN THE CHIRAL SCHWINGER MODEL 3783

Except for the gauge-fixing equation (3.5), all of the field
equations are U(1)z gauge covariant when 0 simultane-
ously undergoes the transformation 0~0—

equi . Hence,
the new theory recovers the gauge symmetry at the
quantum level.

In the above, we have examined the equations of
motion since we resort to the operator formalism. Alter-
natively, in the path-integral language, the gauge sym-
metry restoration is seen at the Lagrangian level: The
gauge variation of the Wess-Zumino term precisely can-
cels the anomalous Jacobian factor arising from the
gauge rotations of the fermion fields P and iit.

IV. BOSONIZED SYSTEM
AND ITS CANONICAL QUANTIZATION

Equations (3.3)—(3.7) are combined with Eqs. (2.5a)
and (2.6) to form a bosonic set of field equations. Note
that these equations are reproduced from the eAective
Lagrangian

(4.2) —(4.4). As a check of the operator solutions, one
can easily confirm that the propagators directly obtain-
able from the original Lagrangian (4. 1) are reproduced
from the propagators of the asymptotic fields. Our re-
sult is a covariant-gauge version of the unitary-gauge re-
sult of the Jackiw and Rajaraman. ' As noted in Ref. 1,
in the case a & 1, the V field becomes tachyonic (m &0)
and the theory is not unitary. Correspondingly, we shall
henceforth take a ~ 1.

The commutation relations among V, g, B, and X are
easily read from the Lagrangian (4.5). In what follows,
we take the Landau gauge a=0 and avoid (inessential)
complications due to the dipole-ghost part of X. Then,
g and X are massless fields of positive norm whereas
(BD+X) is a massless field of negative norm; V is a sca-
lar field of mass m and positive norm. The (nontrivial)
field commutation relations are given by

[V(x), V(y)]=id(x —y;m ),
[i)(x),i)(y)]=[X(x),X(y)]

= —[BD(x ),X(y) ]=iD (x —y), (4.7)

+ed„(g" —e"')B,,P+ —,
' (a —1)(B„O)'

+eA„[(a —1)g" +e"']d,O+L (4.1)

/=a '[(a —1)i)—v'a —1V—i aX] . (4.4)

Here V, i), X, and BD:—(ev a ) 'B constitute the asymp-
totic fields of the system and are described by the La-
grangian

Except for the gauge-fixing term L, this Lagrangian is
invariant under the U(1)z gauge transformations
~A„+B„gz, 0~0—eg'z, and P~P —egz. We regard
this boson system as a bosonized version of the chiral
Schwinger model with a Wess-Zumino term and study
its canonical quantization in this section. (In the unitary
gauge 0=0, this system is regarded as a bosonized ver-
sion of the original chiral Schwinger model. ) As point-
ed out by Nakanishi, one has to introduce indefinite
metric for a manifestly covariant quantization of mass-
less scalar fields, as well as gauge fields, in two dimen-
sions.

To determine the asymptotic fields and physical states
in this boson system, one has to solve the field equations
following from Eq. (4.1). It is a simple exercise to derive
the operator solutions

aeA„=e„,B (&a —1V+i))+&a B„(BD+X), (4.2)

O=a '[ —i)+(a —1) ' V —&a X], (4.3)

[Ba(x),BD(y)] =0,
where b(x;m ) and D(x)—:b(x;0)= —

—,'e(x )0(x ) are
the usual D functions in two dimensions.

In terms of the asymptotic fields, the conserved
current (3.6) is rewritten as

Q =f dx'1 (x)=f dx'd B . (4.8)

In view of the commutation relations (4.7), the asymp-
totic fields V, i), and B commute with Qz, but X does
not:

[Q~,X (x ) ]= ie &a (4.9)

This implies that the U(1)i symmetry is spontaneously
broken in the present model. The X is regarded as the
associated Nambu-Goldstone boson, which, being gauge
variant, is unphysical. This conclusion does not neces-
sarily contradict Coleman's theorem, " which excludes
the use of indefinite metric. The local gauge transforma-
tions of the original fields A„, 0, and P are generated by
the operator

Gr ——f dx '[g BDB —(9 g )B] . (4.10)

J"=ea(a —1) '~ c4 r), V+d"B .

Accordingly, the (left-handed) charge operator is given
by

L„„=—,'(B„V) ——,'m'V'+ —,'(B„i)) + —,'(&„X)'

——,'[c)„(X+80)]+ —,'aae BD (4.5)

In the present model, the physical states are projected
out of the asymptotic states by the following subsidiary
conditions:

where

m =e a /(a —1).
B~+'

~
phys& =SI +' phys& =0,

(4.6) where

(4. 1 1)

The canonical (and field) commutation relations among
the original fields A„, 0, P, and B are reproduced from
those of the asymptotic fields via the operator solutions

0, '+'= lim dx 'BDi)'+'(x) .
L

L~oo —I (4.12)

For a massless field, the separation of its positive- and
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negative-frequency parts needs some care, as explained
later. In Eq. (4. 11) the first condition is the standard one
while the second condition eliminates a negative-norm
component in the massless field q' —'. The 8 is a physi-
cal field of zero norm. The massive boson V and the
massless boson g represent physical excitations belong-
ing to the physical subspace of positive norm, in agree-
ment with the spectrum found in Ref. 1.

For massless fields f =(il, B,X), the positive- and
negative-frequency parts are defined by regularizing the
infrared divergences

where u =(u, , uz )' is a two-component constant.
Note that one can include into the phase $0 the dual-

field contribution of the form a, (il —ii)+a&(B~ B„—)
+a3(X —X ); this does not affect 3f in Eq. (5.2) since
(g~'+ei' )B,, cc ~3/Bx+. We fix the field X and the param-
eters o. &, o.2, and o.'3 in such a way that the left- and
right-handed currents in Eq. (2.5) are reproduced. We
present the fermion operator constructed in this manner:

g(x) =:exp[i &rr[ —(1—y')P(x)+X(x)+X(x)] j:u,
(5.5)

f (x)= —i —f dz'D —(x —z)Bof(z), (4.13) X(x)=ii(x)+a '~ B„(x) . (5.6)

where

f dg =—(r)f)g f(r)g), D— '( )= —D +'( — ),
and

D~+'(x)=(2w) ' f dp'(2p ) '[e '~ "—0(v —p")] .

(4. 14)

Here ~&0 is an infrared cutoff introduced by Klaiber. '

For the massive field V, V' —' are defined in terms of the
usual b, ' —'(x; m ) functions. The commutation relations
among f ~ —'(x) are given in the Appendix.

V. THE FERMION FIELD

In this section we construct the fermion field out of
the asymptotic boson fields and study its properties. In
deriving the fermion solution, dual fields play an impor-
tant role. Here, we first summarize their properties. A
free massless field f (x) has its dual f(x) defined by

Bg=e„„d'f or f(x)= f dz'~3 j'(x,z') . (5.1)

Here, the P term guarantees that g(x) behaves correctly
under both global and local U(1)L transformations. In
Eq. (5.5), the normal ordering:( ): of operators is defined
according to the rule, F' 'G' 'G'+'F'+' with F=7+7
and G =P.

Regularization is needed to define the fermion current
operators. We define the vector and axial-vector cur-
rents by a point-splitting prescription:

J[',(x;e)=e&~1 i (x +e,x):g(x +e)y"iij(x):,
(5.7)

J"„(x;e)=ei/~I „(x+e,x):g(x +e)y"y P(x): .

Here, the ordering of operators is specified as

:P(x + e)y "P(x ):—= ,' ( y" ) &[P(x—+e ),g(x )&],

etc. One can verify [using Eq. (5.19) below] that,
with the same phase factors as those in Eq. (2.8), the
correct chiral currents are obtained from the oper-
ators JP(x;e)= —,'[JP(x;e) —J~(x;e)] and Jg(x;e)
= —,'[JP(x;e)+J„"(x;e)]in the symmetric e"~0 limit. '

Thereby the normalization of u =(u, , u2)' is fixed:

u, u*, =p/(2'),
(5.8)

uzu2 =p(2~) 'exp[(e /m )[ln(m /4p )+2y]],
where y is Euler's constant and p=—re~ is an infrared
cutoff introduced to define D ~ —~(x) in Eq. (4. 14).

The operator it(x) satisfies the Dirac equation in the
sense that

i8$+e &ir: A (1—y, )P:=0, (5.9)

where the symbol:: implies that the operator 3„ lies
between G ' and G'+' in the normal-ordered expres-
sion for P.

Having derived the fermion operator g, let us next
show that it behaves properly as the fermion in the
present chiral model. Using the commutation relations
among the boson fields and their duals, one can cast the
products of the fermion fields it and g (a=1,2) in the
form

eAg =(g" +e" )d„( —$+ri+a ' Bo), (5.2)

where P is given by Eq. (4.4). We can therefore gauge
away this Ag and write the fermion field it (roughly) as

P(x) =exp[i &~(1—y')go(x)]ito(x), (5.3)

The f(x) is a nonlocal functional of f (x) and obeys a
free field equation r) f=0. As is clear from the
definition, the combination f +f is a function of
x+ =x +x ' (i.e. , a left mover) while f f is a function-
of x —=x —x . The positive- and negative-frequency0 1

parts f '(x) are defined by Eq. (4.13) with f~f. A
dual field does not commute with the original field at
spacelike separations. The commutation relations in-
volving dual fields are summarized in the Appendix.

We are now ready to study the Dirac equation (3.2).
There, only the left-handed projection 3f = (g"
+e"')3, is coupled to the fermion P. The Ag is ex-
pressed in terms of the operator solution (4.2) as

go(x) =exp[i &~[X(x)+y'X(x)]]u, (5.4)

where $0
———P+ ran+ a

' ~ Bo and it o is a free spinor
field. As is well known, a free spinor can be expressed in
terms of a free massless boson field 7 and its dual 7 in
the form

P (x)P (y)=r (z)I (x,y) (a= 1,2),

P (y)P (x) =r ( —z)I (x,y),
r, (z)=u, u*, exp[2rr[D~+'(z)+D' '(z)]],
I, (x,y) =:exp[i &~[Y(x ) —Y(y)] ]:,

(5.10)

(5.1 1)

(5.12)

(5.13)
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r2(z)=uzuz exp[4ir(a —1)a [b + (z;m ) D—+'(z)]

+2ir[D'+'(z) —D'+ (z)]j, (5.14)

where z"=x"—y" and Y(x)=X(x)+X(x). In I2(x,y),
the nomal ordering is defined according to the previous
rule with F~( Y(x) —Y(y)) and G~(P(x) —P(y));
analogously for I&(x,y). As for the D~+' and D' ' func-
tions, see the Appendix. Noting Eq. (5.8), we find that
ri(z) = —i(2n) '(z +z ' —i0) '. As a consequence, we
obtain the anticommutation relation

[P,(x),P, (y) j =6(z +z') . (5.16)

The product gi(x)P, (y) is cast in the form (5.10) with
r(z)~1/ r(z) and

I, ~:exp[i&ir( Y(x)+ Y(y) )]:;
hence [$1(x),t/i&(y) j =0 follows immediately.

The commutation relations among the left-handed fer-
mion $2 are examined in a similar fashion. Eventually,
we see that P(x) obeys the correct canonical (equal-time)
commutation relations

jg (x),gp(y)jEi ——5 p5(x' —y'),

j &.(x» &p(y) j ET

(5.17)

(5.18)

where a, P= 1 or 2. In addition, P(x ) commutes with
3„,8, and 8 (at equal times), which are the fundamental
fields appearing in the aboriginal fermionic form of the
model. On the contrary, P does not commute with P;
this fact poses no problem since P appears only in the
bosonized version of the model.

Equations (5.10)—(5.15) yield a compact expression for
the field product

:i'(x +e)y"( I+y')g(x):

Iz (x,y ) =:exp [i &m[ —2( P(x ) —P(y ) ) + ( Y(x ) —Y(y ) ) ]j:,
(5.15)

with g=(a —1)/a; 0(g( —,'. The f2 propagator there-
fore has no pole in momentum space. It behaves like
(p +p')/(p )'+~ for p ~—0. Thus, Pz is confined (at
long distances) but is asymptotically free (at short dis-
tances). On the other hand, the right-handed fermion g&
remains a massless free field, as implied by the field
equation (5.9). The P, propagator is given by Eq. (5.20)
with (z +z')~(z —z') and h ( —z )~1.

The fermionic form of the model defined by the
Heisenberg field equations (3.2) —(3.8) is now solved. The
massless physical field g in the bosonized theory is used
up to form the chiral fermions and never shows up as it
is in the fermionic form of the model. The left-moving
combination g+g makes up the free right-handed fer-
mion p i. The il —ri combination controls the short-
distance behavior of it&, although it is confined, as seen
from the D D term—in Eq. (5.14). The (positive-norm)
physical spectrum of this fermion model consists of a
massive boson V and a free chiral fermion (plus a
confined chiral fermion). The 8 field, being gauge vari-
ant, does not contribute to the physical spectrum.

VI. GLOBAL U(1)g SYMMETRY

In this section, we examine the U(1)R symmetry of the
model. The apparent nonconservation of the U(1)R fer-
mion current in Eq. (2.4) does not imply the (explicit)
breakdown of global U(1)R symmetry. Indeed, one can
define a conserved current as

[QR, il(x ) ]= —&a [QR,X(x ) ]=ie . (6.1)

As a result

Jg=Jg —e (g"'+e~ )A„= e(g"—+e" )BP

without spoiling its self-duality, where 7=q 1a ' B0.
Accordingl, the conserved right-handed charge is given
by QR —— dx 'JR (x ). This QR commutes with the

asymptotic fields V and B, but fails to commute with g
and X:

(g""+e" )(—e, /e )I, (x,x+e) . (5.19) [QR 4(x)l=[QR, —,'(&+&)l=ie . (6.2)

For the left-handed combination, replace (g"'+e" ) by
(g"' e" ) and I, by—I2.

It is enlightening to calculate the fermion propagator.
The propagator of the left-handed component gz takes
the form'

(0
~

&$2(x)gz(y)
~

0) =8(z )r, (z) —0( —z )~z( —z)
~ 0 1z+z

h 2

2' z2 —l p

h(w)=exp[(e /m )[2ND(m&w )+ln( —,'e ~m w)]j

(5.20)

(5.21)

h( —z )~[—,'e ~m ( —z )]~ as z ~—ao (5.22)

where z"=x"—y" and z =(z ) —(z') . Since
h ( —z )~1 as z ~ —0, the short-distance behavior of
the P2 is the same as a free propagator. On the con-
trary,

It is now easy to show that QR correctly generates' the
U(1)R transformations of p, A„, and 9:

[QR Pi l = 2e &~&, —
(6.3)

[QR 42l = [QR ~„]= [QR 0]=o

Equation (6.1) implies that the U(1)R symmetry is
spontaneously broken in this model and that
11=(1+a) '

( —&a il+X) is the associated Nambu-
Goldstone boson. We have already seen that X is the
Nambu-Goldstone boson associated with the spon-
taneously broken U(1)L symmetry. Thus the spontane-
ous breakdown of the U(1)R symmetry offers an explana-
tion why g is massless. More precisely, the left-moving
combination (ri+ri) is regarded as the associated U(l)R
massless mode since [QR, (il —il ) ]=0 holds. In this
sense, the right-handed fermion P, is the Nambu-
Goldstone mode associated with the spontaneous break-
down of the U(1)R symmetry.
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VII. SUMMARY AND DISCUSSION

In this paper we have studied the quantization of the
chiral Schwinger model with a Wess-Zumino term in a
manifestly covariant operator formalism with emphasis
on the fermion and symmetry contents of the model.
The relevant features of this (modified) chiral Schwinger
model are summarized as follows.

(1) The model restores local U(1)i gauge symmetry at
the quantum level.

(2) The restored U(1)I gauge symmetry gets spontane-
ously broken. The gauge field becomes massive. In the
present covariant formalism, the Nambu-Goldstone bo-
son appears in association with this spontaneous symme-
try breakdown but it becomes unphysical.

(3) The left-handed fermion it&, which interacts with
the gauge field, is confined while the right-handed fer-
mion P, is a massless free field.

(4) The global U(1)~ symmetry of the model also gets
spontaneously broken. This explains why the right-
handed fermion itj& remains a massless field; f& is the
Nambu-Goldstone mode associated with this spontane-
ous U(l)z -symmetry breakdown.

The observations (3) and (4) regarding the fermion are
the central results of our analysis. The fermion spec-
trum found here (especially the confinement of one of
the chiral fermions) could hardly be inferred from the
particle spectrum of the bosonized version of the model
alone.

The right-handed fermion it, is a free field in the origi-
nal Lagrangian (2.1). Its free-field nature, however, is
not quite obvious since the left- and right-handed fer-
mions get coupled through the quantum gauge anomaly.
Indeed, the coupling between the left- and right-handed
sectors of the model is explicitly seen either in the bo-
sonic Lagrangian (4.1) or in the fermion operator (5.5).
Thus it is a nontrivial fact that i(, behaves like a free
massless fermion.

This free chiral fermion is characteristic of the present
chiral Schwinger model. The "interacting" sector, com-
posed of the gauge field and the left-handed fermion, on
the other hand, shares the same features (gauge-field
mass generation and fermion confinement) as the
Schwinger model. It is intriguing to observe that, for
the special value a =2 of the paraineter a, the it& propa-
gator in Eq. (5.20) becomes identical in structure to the
corresponding fermion propagator in the Schwinger
model. The gauge fields then share the same mass
(m =4e ) in both models. (For a =2, the exponent g

attains the maximum value —,'.) It will be interesting to
ask whether this maximal resemblance may reveal a pos-
sible connection between the two models.

APPENDIX

[f ' '(x ),g ' —'(y) ]=cD ' —'(x —y),
If —(x),g -'(y)]=o

(A2)

The D' —I(x) is defined by Eq. (4.14) and its explicit form
is given in Eq. (A5) below. For the massive field V, re-
place D~ —'(x —y) by 6' —'(x —y;I ) in Eq. (A2).

Every massless free field has its dual defined by Eq.
(5.1). Dual fields obey the commutation relations of the
form

[f(x),g(y)] =icD(x —y),
[f(x),g(y)] =ic[D(x —y)+ —,

' ], (A3)

where D(x)—= ——,'e(x ')0( —x ). For [f,g], replace —,
' by

in Eq. (A3). The f' (x) are defined by Eq. (4.13)
with f~f. It is clear from Eq. (A2) that f ' and g
obey the same commutation relations as f' —' and g' —'.

Note, however, the commutation relations

[f '(x),g'+ (y)l=c[D' '(x —y)+i-,'],
[f +—'(x),g' '(y)] =ic—,

' .
(A4)

Here D (x) and D' (x) are given by

D'+'(x)+D'+'(x) = —(2~) 'Iin[p(x +x ' —iO)]+i ~ rr],

(A5)

DI '(x)+D' '(x)=(2ir) '[ln[p(x +x'+iO)] i ,'ir], ——
where p—:~e~ in terms of Klaiber's infrared cutoff ~.
(y is Euler's constant. ) Note that iD (x) =D'+ (x)
+D (x); analogously for D, D +, and D'

In this appendix we summarize the commutation rela-
tions among the asymptotic fields. The commutation re-
lations among the massless fields g, X, and Bo in Eq.
(4.7) are generally written as

[f(x),g (y)]=icD(x —y), (A 1 )

where c =+1 and D(x)= —
—,'e(x )8(x ). Their positive-

and negative-frequency parts f' 'and g—' +—' defined by
Eq. (4.13) obey the commutation relations of the form
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'~Without the phase factors (i.e. , I ~= I ~ =1), Jg(x;e)
—

—,
' e(g"'+ e" )B,(1'+7); see Eq. (5.19). Thus it is

through the phase factors that the massive-field contribution

ccrc

to the right-handed current is introduced; the phase fac-

tors are indispensable for a correct definition of the currents.
'4In general, the positive-frequency part f '+' of a dual field f

does not annihilate the vacuum, f +'(x)
~

0)
Of '

~

0 )+0, where O~ is a constant operator; see Ref.
7 for details. However, the difference [I I+ ~(x) f '+—'(y)]
does annihilate the vacuum. For this reason,
(0

~

I (x,y)
~

0) = 1 (a= 1,2) for I (x,y) defined in Eqs.
(5.13) and (5.15).

~sThe nonconserved original charge operator Q~ = f dx 'J~(x)
does not commute with all asymptotic boson fields. It turns
out, however, that the commutation relations in Eqs. (6.2)
and (6.3) hold with Q~ ~Q~ (at equal times).


