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We propose to investigate whether the SO(N) nonlinear o. model is equivalent to the m ~ao
limit of the linear o. model by comparing the corresponding one-loop effective-action expansions

up to the four-derivative terms and including the symmetry-breaking term. For this purpose we

use a new background-field method to calculate the effective-action expansion directly. In the case
of the linear o. model, the renormalization procedure is implemented carefully before the m ~ ao

limit is taken. For the nonlinear o. model we introduce a new and intuitive covariant treatment
for the perturbation calculation of the field theory with nonlinear constraint. We do not find any
noninvariant terms in either case. We show that the divergent parts of the effective Lagrangians
due to m„~O, m ~ oo, or N~ oo are equivalent in the two models. However, the nonleading
finite parts of the effective Lagrangians are different. Therefore, the two operations, taking the
m ~ ~ limit and calculating the quantum corrections, do not commute. The origin of this
difference may be a violation of decoupling.

I. INTRODUCTION

The o. model has been extremely useful to provide an
explicit realization of spontaneously broken symmetry in
quantum field theory. ' In the strong-interaction sector,
chiral symmetry is spontaneously broken. The pions
emerge naturally as I =1 Goldstone bosons, while the
mass of the I =0 o meson can remain arbitrarily high.
The dynamics of this renormalizable model with quan-
tum corrections has been studied in detail. However,
even though this model realizes the SU(2) X SU(2)
current algebra, the partial conservation of axial-vector
current, and therefore the corresponding low-energy
theorem, the correct soft-pion limits of the physical am-
plitudes can only be obtained through the cancellation of
many terms. This problem has been circumvented by
the introduction of the minimal nonlinear o. model.
The role of the o. meson is thus eliminated.

Recently interest in the nonlinear o. model has been
renewed because of the prospect of describing baryons as
solitons in the Skyrme model. There is also the possi-
bility of a simplified effective dynamics of a gauged non-
linear o. model resulting from the strong-interacting
Higgs sector in the standard electroweak model. ' Su-
persymmetric nonlinear o. models have also played an
important role in recent theoretical investigations.

The minimal nonlinear o. model is conventionally re-
garded as the formal limit of the linear o. at m
While this idea may be correct at the tree level, there is
no compelling reason that the nonlinear o. model is com-
pletely equivalent to the linear o. model at m ~ oo

when quantum corrections are included. More precisely
one should integrate out the heavy o. field to obtain a
chiral-invariant effective action. Such a task turns out to

be nontrivial and has not been successfully carried out.
Since the decoupling theorem is not applicable in this
model, there will be observable consequences in the
light-meson sector at low energy from the one-loop
correction due to the heavy-o. -meson loop. The result-
ing nonlinear o. model is nonrenormalizable.

In the SU(2) X SU(2) cr model, Appelquist and Bernard
have reconstructed the effective Langrangian using sym-
metry principles from the one-loop Feynman diagram
and have demonstrated explicitly at leading order of the
asymptotic expansion for large m that the one-loop
effective Lagrangian of the linear and the nonlinear o.

model are equivalent provided that one makes the
identification I /e~lnm (Ref. 5). Akhoury and Yao
have generalized this result to the SO(N) cr model. A
surprising and disturbing result is the existence of ap-
parently noninvariant divergent terms in these calcula-
tions. These terms do not contribute on the mass shell.
The suggestion that these terms may be eliminated order
by order by a field redefinition involving space-time
derivatives is not very satisfactory, since such
redefinition would generate new terms arising from the
Jacobian in the functional integration. A recent calcula-
tion by Aitchison and Fraser also contains the same
noninvariant terms, but they also point out the difficulty
with the effective-action expansion from the infrared
problem as m„~0. However, a covariant approach to
evaluate the divergent part of the effective action of the
nonlinear o. model does not show any nonin variant
terms. '

Is the nonlinear o. model the m ~ ap limit of the
linear o. model? Are the noninvariant terms necessarily
the by-product of the m ~ oo limit of the linear o. mod-
el? Does the infrared problem prevent a meaningful
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derivative expansion of the o. model? These questions
can be answered more satisfactorily if a more complete
calculation can be performed. The recent progress on
the evaluation of the effective action expansion has made
such calculation possible. " ' In this paper we shall
present the complete calculation up to the four-
derivative terms of the SO(N) eA'ective action expansion
of the linear o. model before taking the m ~ op limit.
Similar to the calculation of the effective potential, the
calculation will be performed without any prior assump-
tion on the symmetry of the vacuum. ' ' The m ~ ao

will then be taken carefully and the effect of the counter-
terms and the renormalization will also be included.
The calculation contains all one-loop diagrams instead of
a small subset of Feynman diagrams. It includes all
finite terms as well as the divergent terms. An explicit
partially conserved axial-vector current type of
symmetry-breaking term has also been included in the
Lagrangian.

Perturbative calculations for field theories with non-
linear constraints are nontrivial. The best treatment for
the noncovariant method requires the use of the covari-
ant constraint equation to eliminate a certain component
of the irreducible representation in a noncovariant
manner. This asymmetrical procedure is compensated
by using a field-dependent metric g(vr, )in curve"d space.
In Sec. V we present a new manifestly covariant formu-
lation on the perturbation calculation of the nonlinear o.

model.
We shall show that the divergent terms corresponding

to 1/e~lnm ~ oo and also N~ op are equivalent be-
tween the linear and the nonlinear o. models. However
the finite terms are completely different. We shall also
give a brief discussion on the insight we obtain from this
calculation on the infrared problem.

(2.4)

The commutation relations for the operators are

[H„,X, ]= [P„,X.]= —' fi„„ (2.S)

and

[H„,Q(x)]=[X„,Q(x)]=0 .

The covariant derivatives defined by

n„O(X)= i [H„,O (X)]

and

F„,, (X)= —[H„,H„]
1

1

(2.6)

(2.7)

(2.8)

TrQ ln[H + U(X)]

f TrQ ln[(H„+p„) + U(X)],
6 (0) (2ir)

where

(2.9)

are functions of X only. Because of the short-distance
singularity of the field theory, it is not possible to carry
out a straightforward derivative expansion of the expres-
sion in Eq. (2.1). Previously and recently proposed
schemes are too complicated and the algebras are too
tedious for the evaluation of the four-derivative terms.
Recently observing that Eq. (2.1) is invariant under the
momentum translation, H„—~H„+p„, we proposed that
the average over the arbitrary internal momentum can
be implemented at the very beginning stage without dis-
turbing the full character of the operators and the trace
structure. Thereby it provides a natural regularization
function'

II. COVARIANT DERIVATIVE EXPANSION

dD
fi (0)=

(2~) (2rr)
(2.10)

X, „,„=—TrQ (X)ln[H + U (X)], (2.1)

where U(x) is a function of background fields and is a
matrix in coordinate space and internal-symmetry space,

(II„),, = o,,P„—V„'(X)r,', (2.2)

is the generalized momentum, and V„' are the gauge
fields while t,' are the generators of the gauge group.
The coordinate matrix elements are

(x U,"(X)
~ y ) = U; (X)5 (x —y) (2.3)

In this section we shall briefly review recent results of
the covariant derivative expansion. ' It will be general-
ized slightly so that it can be applied directly to the non-
linear o. model. In most cases the one-boson-loop con-
tribution to the effective action can be cast into the fol-
lowing form in D-dimensional Euclidean space:

is exactly the infinite factor required for the regulariza-
tion to work. The expression in Eq. (2.9) is the generat-
ing functional for the n-point vertex functions. p„ is the
loop momentum while H„carries the momentum of the
external fields.

In addition to satisfying the regularization function,
the introduction of the momentum integration without
disturbing the full trace operation offers the needed free-
dom for manipulations, such as cyclic permutations of
the operators and integrations by parts, in order to bring
Eq. (2.9) into the trace of a function of the covariant
derivatives in the covariant derivative expansion. The
procedure for the covariant derivative expansion be-
comes exceedingly simple.

(1) Expand Eq. (2.9) in a power series of H„.
(2) Average over the momentum angular dependence

so that the integrand becomes a function of p only.
(3) Perform integration by parts in the momentum in-

tegration when necessary in order to manipulate the ex-
pression into a form such that the power of the momen-
tum in each term matches exactly the number of factors
of H. Equation (2.9) now becomes
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1 22222Trg ln(II +U)= f Trg ln(p +U)+ —p (b, H —b. H"b, H„)
5 (0) (2~) D

4
p [2dl, H b, H +6 II 5 II —2b H"b H &H

D (D +2) P

—2xrr~x'n„Srr' —2xn&err„x'n'

+2(SH~aH„)'+(aH~aH )'] (2. 11)

(4) Use the freedom of making cyclic permutation of the operators within the trace operation to regroup each term
in the power-series expansion so that the dependence on the operators H„only occurs through the commutators of
H„, or equivalently the covariant derivatives, and no other dependence on any isolated operator II„. Therefore the ex-
pansion becomes the expansion of covariant derivatives which is a function of the operators X„only. For example,

Trg (b, H —AH"b H„)= ——,
' Trg [H",b] = —,

' Trg (ZPb ) (2.12)

Since Q commutes with H„, it is clear that Q becomes a bystander throughout the entire algebraic manipulation and
would not alter the form of the final result of Ref. 18.

(5) Perform the trace operation by using the diagonal basis of X:

Trf(X)= f d x(y
~

f(X) ~x) i, .=5 (0)f d x f(x) . (2.13)

It is now clear that the infinite factor 5 (0) from the trace operation exactly cancels out the same factor in Eq. (2.9),
as the regularization is expected to work. The final expression for the covariant derivative expansion is

Ej
Trg(X)ln[ —H +U(X)]=i f d x f trg(x) In[pz +U(x)]——pz (Xl b, )(2' )

P

D(D +2) p~ (2[4(23 b, )] +[(X)"b)(2) b, )]

2[(g)v.g )(Q Q ) ]2 FP~+2F Q2

4iF""b (2)„b,)—b, (2)„b, ) ] (2.14)

where b, (x)=1/[pz + U(x)]. The trace tr is for inter-
nal symmetry and spin spaces only. The space-time
coordinate has been rotated back to Minkowski space
while the momentum pE is kept in Euclidean space. As
can be seen clearly the dependence on the background
fields appears only through the propagator function.
Only the method of Ref. 18 leads naturally to this com-
pact expression with the conventional momentum-space
and Feynman-diagram interpretation.

In D =4 dimensions, the first term gives the well-
known contribution to the effective potential and is qua-
dratically divergent. " The other logarithmically diver-
gent term is the 0(F„, ) term. All other terms in the
derivative expansion are finite.

If U is not a multiple of the unit matrix, then U has
more than one distinct eigenvalue U, (x). It does not
commute with 2)„U, F„, or other higher covariant
derivatives. Therefore, with the exception of the first
term in Eq. (2.14), ig will not be possible to combine all
factors of 6 into a single power to perform the momen-

—tr( U ——,'F„),
(4~)' E

(2.15)

which is identical to the well-known result of 't Hooft. '

III. THE SO(1V) LINEAR cr MODEL

The SO(N) linear-cr-model Lagrangian is

X(N) = —,'(B„C ) —V(N )

turn integration in a trivial manner. It is necessary to
project out the eigenmodes b, =g, b, ,P, and then col-
lect various factors of 6, for the momentum integration.

For the purpose of isolating the divergent contribution
one can safely ignore the noncommutativity of U with
the covariant derivatives since the commutator
[b, ,F„]=6,[F„„U]b,contains an extra convergent fac-
tor. Therefore, the momentum integration can be per-
formed easily. The logarithmically divergent term is
given by
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with (3.1) b, =b, r (o )P +Dr(o )P

V(N ) = —'m 4 +—A(@ ) —e.4,

+ —Tr In[ P+—U(X)] .
2

(3.2)

The matrix elements of U are most conveniently ex-
pressed in terms of the SO(N) spherical variables
cr=

~

0&
~

=(N )' and P=@/~ 0& such that P =I:
$2

6%, (x)N (y

where the last term is the symmetry-breaking term. The
e6'ective action is given by'

J d x X,a(@)=J d x X(@)

with

A~(cr ) = 1
and Az. (o )= 1

p +uc (o. ) p + ur( rc)

(3.5)

The effective Lagrangian can be obtained by substituting
these explicit forms into Eq. (2. 14) with the gauge fields
set equal to zero and combining the result with Eq. (3.2):

X,~=X(N)+X„(4)+Ms(ur )

+ (N —1)Xs(u r ) +EM, (3.6)

where X(N) is the Lagrangian in Eq. (3.1) and can be
expressed in terms of the new variables cr and P:

X(@)= —,'cr (a„p) + —,'(a„o. ) —
—,'m o'

= [uc ( cr )W + u (ro. )P;, ]6 (x —y ), (3.3)
1 4——

A, o +E Pcr ..
4!

(3.7)

where P, =P;P and P, =6, P, P ar—e"the longitudinal
and the transverse projection operators with multiplici-
ties n~ =TrP = I and n r =TrP =N —I, respectively.
The corresponding eigenvalues of U are

L„ is the counterterm contribution:

X„=—,'6Z[cr (ag)'+(acr ) ]——,'6Z m'cr'

4'I
——6Z~A, cr +6Z e.Po

1 4
E (3.8)

uc(o. )=m + —o and uz. (o )=m + —o.2 ~ 2 2 ~ 2

2 T

Similarly we can express the propagation function

(3.4) Ls(u) is the one-loop correction for the neutral scalar
field as calculated in Refs. 11 and 13. In four dimen-
sions it is given by

Xs(u)= u ——ln + —,'u '(au)'+ —,', u '(a'u )' —
—,', u (au) (a u)+ „',u (au )

1 2 2 u

4(4~ e p
(3.9)

L~ represents the contribution from two distinct eigenvalues uz and uz- propagating in the same loop and is finite in
four dimensions:

d
X =(,~)~f" ". I„~~, ~,'o'(ay)

(27r )

+ D(D+2) a, '-) '(a„y a~y)'+4a, 's, 'o'(a„y a,p)'

+2S,'S, 'o'(a'y)'+2S, S,(a, —3a, )(a, ' —3a, ')a.o'a,o'(a y. a&y)

—4h b, (6 3b, )cr'a„o'(a"p. a'p)+24 b—, (b, 3A )o'a o (ap)'—
—2—6 6 (b, ' —9A ')o'(ao')'(aP)'

3

6 '6 '(9A ' —3b, 'b, '+& ')o'(acr')'(ap)'
2 3

(3.10)

We have used dimensional regularization with

+ ——y —ln
2 2 3 p

4—D 2 4~
(3.1 I)

and y =0.5772 is Euler's constant.
Up to this point this background field calculation has

been performed without any prior assumption on the
symmetry structure of the vacuum or any restriction on
the ranges of the parameters m and A. .
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IV. THE SPONTANEOUS-SYMMETRY-BREAKING
m ~ ao LIMIT v =f I+ u,2=2 2

M
(4.5)

When the condition for the spontaneous symmetry
breaking is satisfied, (cr )&0, Eq. (3.4) gives the masses
for the two orthogonal particle states:

m. '=m, '=m '+ —(~ )2,

(4.1)

m '=mr'=m'+ —(o )' .

The parameters m and k can be determined by

3 2 2(m —m ),
(4.2)

where

we have defined

2 3M

and

Ur = (c)P) + —e P

(4.6)

(4.7)

(4.8)

cT(c)p) o. —m cr —A6—'cT+,e.P=O .

We choose the mass scaling factor in Eq. (3.8) to be

(4.3)

The m ~~ limit corresponds to A, ~op and m ~ —oo

such that f =( —6m /A, )'~ ~(cr ) is kept finite. In this
limit one would like to eliminate the 0. field completely.
To one-loop order it is sufficient to use the field equation
derived from the Lagrangian Eq. (3.7):

Since, from Eqs. (3.4) and (4.4),

uL ——M +3ur, (4.9)

it is clear that uz- is of the order 1 while uL is of the or-
der M . In the large-M limit, the tree Lagrangian Eq.
(3.7) becomes the nonlinear o model Lagrangian:

2 —2m2~ ~
cr(x) can be solved iteratively using the equation

(4.4)

For the one-loop contribution

(4.10)

&s(us. )~
2

(6M ur+9ur ) 3M ur ur, (N —l)Ls(ur)~(N —l)Xs("r) ~

1 2 2 2 27 2

4(4~) 2
(4.11)

1
+M

4(4m. )
2u ln +M +4ur (c)p)'+ —,'(c) p) + — ln + [(c)p) ] ——ln

2 + (c)„Q.c)„Q)
M 3 M' 3 3 M'

(4.12)

(4.13)

can be removed completely by a suitably chosen counterterm Eq. (3 8).

The effective I agrangian is divergent as 2/e'z ——2/e In@ /M— or as M~ oo. The divergent parts (excluding ™)
3 —1 M ur+ (N+8)ur +M (dP)

4(4vr)

V. COUNTERTERMS AND INFINITE RENORMALIZATION

Since we do not know exactly how the unknown coefficients of Eq. (3.8), the 5Z's depend on M, we have to take
special care in taking the large-M limit. We rewrite Eq. (3.8) by first eliminating the e P term through the use of Eq.
(4.3) and then use Eq. (4.5) to express o in terms of ur.

2

L„=—,'(5Z —25Z) f 1+ ur (c)P) +
M M 21+ u~

M

(Bur) + —,'(5Z —5Z2+25Z, )f ur

—
—,
'

( 5Z z —45Z, ) u r (5.1)

Since every divergent term in Eq. (4.13) is contained in Eq. (5.1), they can be absorbed by rewriting the parameters
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5Z's such that

2 M(5Z —25Z, )+
(4ir) f ~

, (N+8)
2

1

(4' )'
1

2(4vr )'(5Zi —46Z, )

3 M 4=Cf, (5Z —5Z~+25Z, )+
2(4~) f ' —1 =2C, ,

(5.2)

We assume that the physical parameters, such as f and m should be independent of M . We will show later in
Eqs. (5.9) and (5.10) that the parameters Cf and C, can grow at most like lnM . Therefore if there is no conspiracy,
the counterterm parameters 6Z's must increase at most like M and C approaches a constant at large M . Among the
four linearly independent parameters only three linearly independent combinations are actually necessary to render
finite renormalization. We are free to choose 6Z =0 so that there will not be any ambiguity whether the parameter
M = —2m ~ oo should be the renormalized or the unrenormalized one. However such a choice should have no conse-
quence.

The Eqs. (4.13) and (5.1) combine to yield

+x„=—,'cf 1+ u f (ap) +c,f u — [2u (ap) +cu ] .
M 4(4~)

(5.3)

After removing all O(M ) terms we can now safely take the large-M limit and replace ur by Ur which has been
defined by Eq. (4.8). We obtain the effective Lagrangian

,' f '(1+Cf ——2C,)(ap)'+(1+ C, ) UT+X,

—( c +—", ) U + —', [5( ap ) —17(a,y.a.y )'] ~.y v,—+—,
'

( a'y )'—

(N —3)U ' ——(ap) + —(a p a p)'+ —e pv ln
3 3 " f (5.4)

where

', [,[2v, -'(a'v, ) —v, '(av, )'](ay)'
4(4ir )

+(N —1)[-,' v, -'(av, )'+ —,', v, -'(a'v, )' ——,', v, -'(av, )'(a'v, )+—„',v, -'(av, )']~ . (5.5)

It can readily be seen that the effective Lagrangian is
manifestly invariant except the explicit symmetry break-
ing due to the e. There is no other noninvariant term of
the type suggested in Refs. 5, 8, and 9. Except for the
noninvariant term, one can recover the answer of Ref. 9
from our result of Eq. (5.4) (Ref. 22).

The pion fields may be defined as the component of
the P orthogonal to e:

e(e p)
2

(5.6)

and

foe"a=0, 0. =
1/2

= 1-, (5.7)

e=f m (5.8b)

A natural procedure for renormalization is to choose
that counterterm such that the physical parameters

(5.8a)

in the tree Lagrangian acquire no higher-order correc-
tions:

m~ M
C&

—— N +2C +24 —2(N —2)ln
4(4~) f 2m

(5.9)

r

C,=, , (N —1} 1 —ln, + C+m. ' M' 27
4(4~) f m 2

(5.10)

The effective Lagrangian in Eq. (5.4) is a partial but
not complete derivative expansion, since UT
=( I/f)E p (+a/) contains a derivative term and can
be further expanded. However (1/f )e.P is a small
symmetry-breaking term and vanishes in the symmetry
limit. Furthermore the effective Lagrangian is nonana-
lytic at UT ——0. The expansions in powers of (ap) and
of ( 1/f )e P are incompatible. Therefore the limits
( ap ) ~0 and ( I /f )e.p ~0 are noninterchangeable

If the expansion in powers of (ap) is performed first,
the part of the contribution from UT must be in the
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combination of (BP) /(1/f)e P. Thus the expansion is
only valid for large symmetry breaking and it is not pos-
sible to recover the symmetry limit. Disregarding this
limitation can lead to misleading conclusions. For ex-
ample, if one removes the term —,

' UT '(BUT) from Xl,
then Xl is homogeneous in UT with degree zero. The
leading terms of the expansion, which can be obtained
with setting (BP) =0 or UT ——(1/f)e. P, would therefore
be completely independent of the symmetry-breaking pa-
rameter e. This can be illustrated by one particular
term:

U, 4(aU-, )4-(~.y) '(a~ -y)'
—2

1—f 2

1/2 4

1—f 2

It appears as if there would be noninvariant terms sur-
viving after the limit @~0. However the expansion is
only valid for large e and @~0 limit is not allowed. In
the reconstruction of the effective Lagrangian from
Feynman diagrams, it is not possible to keep track of the
symmetry-breaking effects and to identify the source of
the nonanalyticity. These terms would appear as anom-
alous noninvariant terms but in fact they are induced by
the external symmetry-breaking term and the
nonanalyticity in UT.

If instead one expands the effective Lagrangian in
powers of e.P first, one immediately displays the in-
frared problem explicitly. While the expansion does not
contain infinite divergent parts, the infrared nonanalyti-
city manifests as an unconventional form of the effective
Lagrangian containing terms such as

VI. THE NONLINEAR o. MODEL

The SO(X) nonlinear o model is defined by the La-
grangian

XNL(N) = —,
' f (8@) +fr (6.1)

cia +2' P =0 (6.2)

In the functional path-integration formulation the quan-
tum displacement co is to be integrated over the N-
dimensional sphere with unit radius. co is not necessari-
ly small and cannot be ignored. It is convenient to
decompose co into the longitudinal and transverse com-
ponents by the projection operators 'Pl ——PP and

PT ——1 —pp:

col 'Pl co=/(P. co——) =/cur

coT ——PTa)=co —P(P ro) .
(6.3)

Dyadic notation will be used in this section. Equation
(6.2) becomes

with the constraint N =1. In this section we shall in-
troduce a new and intuitive method to calculate covari-
antly the effective Lagrangian for field theory with con-
straint ~

In the background-field calculation the standard pro-
cedure is to expand the Lagrangian Eq. (6.1) in a Taylor
series around the classical background field
@=i)('i+ro. Since the classical background field P must
also satisfy the constraint P =1, the quantum displace-
ment co must be constrained by

4 +MT +2ML =02 2 (6.4)

(BP) ln(BQ),
(ay)'

~~(ay)21', . . .
The constraint Eq. (6.4) can be used to eliminated coL:

which cannot be subjected to the usual treatment of per-
turbation calculation. Conversely one would not be able
to find such an effective Lagrangian from the reconstruc-
tion from the Feynman diagrams.

coL ———1+Q 1 —coT ~ —&cilT +0 (ror )
2 4 (6.5)

In terms of the independent mT the Taylor expansion of
the Lagrangian is

XNL(/+co) =XNL(P) f co. 0 P ——e —' f—co B—co.f 2

2 2 1 2 2 2f co 8 P ——e ,f—co 8 +(BP) +———e.P co„+O(co ) .4 (6.6)

The requirement of the vanishing of the linear term
gives the field equation for P:

Pz. 8 P ——e =8 P+Q(BP) e+ P(e P)=——0 —.f f f
(6.7)

In the presence of the external source J(x), the right-
hand side of the equation is modified to be PTJ(x) and
the equation can be used to express P as a function of J.
The introduction of the external source J(x) allows the e, .P=O, (6.&)

classical background field to be arbitrary. For any
choice of P, one can always find a proper J(x) so that
the classical field P is at the stationary point.

It is essential that one put in the proper projection
operator PT associated with every factor of coT to pro-
ject out the independent components. A more proper
way is to introduce a set of N —1 orthonormal basis vec-
tors e,-, i = 1, . . . , N —1 for the transverse space with
the conditions that
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E = 6;~. )

ge, e, =Pr .

(6.9)

(6.10)

PTP PT=PT(P'+[P', PT])PT
r

=P, p'+2ayay —a„—gyp~ P, (6.21)

We can then define the X —1 orthogonal transverse vec-
tors

6); = e; '6) T (6.11)

The Green's function in the presence of the background
is given by

and

p II~p =p p~+ asap 2 a—„pp—p" p, (6.22)
l

we deduce the identity

'(x —y)=e;.[a'+(ap)'+ fe.p]e, 5(x —y) . P,p'P, =P,(II'+ayay) . (6.23)

(6.12)

To one-loop order, the effective action can be obtained
by performing the Gaussian integration:

e '= D co; exp i dx NL +m

e, =PTe; . (6.24)

Therefore we can write

Since [Pr, asap]=0 the extra PT on the right-hand side
of the equation is omitted. It follows from Eq. (6.8) that

=exp i f d xXNL(i)(i) det[G '(P, x)]

where

(6.13) with

G," '(P, X)=e, (X).G '(II,X).e (X),

G -'(II,X)= 11'+—e y(X)+(ay)'(X)1

(6.25)

G; '(P, x)=e;(X). P +(a t)ii(X)+ —e i))(x) e, (X) . —ay(x)ay(x) . (6.26)

(6.14)

The operators P and X are defined in Sec. I. The one-
loop corrected effective action is then given by

Since [G ', PT]=0, we can diagonalize G ' and Pr
simultaneously. The trace operation in Eq. (6.13) can
then be evaluated:

Tr lnG '(P, x)=g e;.lnG '(Il, x) e;

f d x X,zL(P)= J d x XNL(P)+ —Tr lnG '(P, x) .

(6.15)
=TrPTlnG '(II,X) . (6.27)

The calculation of the derivative expansion can be great-
ly simplified and the unwanted dependence on the e, can
be completely eliminated by the following observation.

We defined a vector gauge field

.„=—ate V
—aO

1 1
(6.16)

and the corresponding generalized momentum operator

H =P —vp

It follows that the field strength has a simple form

F„.= —[II„,II.]=i (a„ya.y —a.ya„y) .
1

l

(6.17)

(6.18)

[II„,P, ]= [II„,P, ]=0,
and F„ is purely transverse:

F„=F„P'L ——0

PTF pv=F &&PT =F
&

By comparing the two expressions

(6.19)

(6.20)

Note that v „ is not the pure gauge field. The pure
gauge field is in fact equal to 2v „and the corresponding
field strength is equal to zero. The unique advantage of
our choice of v „ is that ?I„so defined commutes with
the projection operators PT and Pl,

Therefore we have succeeded in eliminating the entire
dependence on the orthonorrnal basis e, . The resulting
trace has the same form as that of the Eq. (2.14) with the
identifications

Q (X)=Pr = 1 —$(x)$(x),

II„=s,—.„(x)=~„——(a„yy —ya„y),1

l
(6.28)

(6.29)
we obtain the nonlinear a. model effective Lagrangian up
to the four-derivative terms:

U(x) = 1 e.y(x)+(ay)2(x) ay(x)ag(x)

The momentum integration of Eq. (2.14) can be more
easily evaluated if we further expand the expression in
the powers of asap according to U(x)= UT(x) —alai)(i
with UT(x) =(ai)('i) +(I /f)e. p as defined in Eq. (4.8).
Using the identities Pra„/=a„p and trPr =N —1 and
the integral formula

f
dD 2s

(2ir) (p~'+ U)"

D D
I —+s I n —s ——

2 2
(4 )

—D 2 /s U—n+D/2

I —I (n)
D
2
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,' f'-(1+C~ )(ap)'+(1+C, )f~.p+~

U ——e pU —2(a„y a„y)'+ —,'(ay)'
4(4~)' ' f

(N —3)v, ' ——(ay)'+ —(a y a.y)'+ ~.yv,2 1 4 4 2 2 T

3 3 " f p,
' (6.30)

where 2/eN ——2/e and Li is the same as defined in Eq.
(5.5).

We have also carried out the corresponding calcula-
tion using the nonmanifestly covariant method of Ref.
10 and obtained the same result. It is interesting that
one can actually identify the corresponding expressions
and contributions such as those in Eq. (6.28) between the
two methods. The details of that calculation will be
published elsewhere.

VII. COMPARISON BETWEEN THE LINEAR AND
THE NONLINEAR a MODELS

Now we are ready to make a direct comparison of the
results between the M~ co effective Lagrangian of the
linear cr model, Eq. (5.4), and that of the nonlinear cr

model, Eq. (6.30). They are in many ways very similar
and yet there exist few terms which are distinctly
different. The —,'(a p) term in Eq (5.4). cannot be gen-

I

lnp2+
~N

(7.1)

where I| is a finite constant independent of M.
The difference between the two effective Lagrangians

becomes

crated from the nonlinear cr model. Since the parame-
ters occur in different ways in both cases, fair compar-
ison requires a careful analysis.

(1) The basic nonlinear o model Lagrangian with the
counterterms and Xl, the first three terms in Eqs. (5.4)
and (6.30) are the same. The coefficients of lnUT are
also identical. Therefore both effective Lagrangians con-
tain the same infrared structure and divergence.

(2) The ultraviolet divergent terms of the linear o
model, the lnM term in Eq. (5.4), can be matched by
the nonlinear o. model, Eq. (6.30), by identifying

L N

4(4~)
—(c+—", )U e QU——+ .

—,'„'(ap) ——", (a„p a,p) + —,'(a p)

+K (N —3)U —,'(aP) +——', (a„P.a P) + —e.gv (7.2)

Equation (7.2) remains finite as M ~ co or @~0.
(3) One can further eliminate the growing N dependence by defining

C+ —", =K(N —3)—A .

Equation (7.2) then becomes

(7.3)

4(4m. )
~ pv + —,'(a'p)'+ —'„'(ap)' ——", (a„p.a,p)'

+ ~v, '+z ,'( ya)' —+',—(a„ya,y-)'+ . ~ yv, . (7.4)

The parameters 3 and K are strictly finite constants in-
dependent of N and M .

(4) Apart from the obvious term —,'(a p) which cannot
be eliminated by any choice of parameters 2 and K,
there are four linearly independent terms but only two
free parameters 3 and E. Therefore at most only two of
the four linear independent terms can be eliminated.
For example, one can eliminate the two invariant terms
at the symmetry limit @~0by fixing

Then, there is a net difference between the effective La-
grangian of the linear o. model at m ~ oo and the
effective Lagrangian of the nonlinear o. model,

—,(a'y)'+ ~.y(ay)'
4(4m. )

and
+,(~ p)'3

(7.5)
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which is finite at M ~ oo, @~0, and N~ ~. In short
the nonlinear cr model gives correctly the divergent parts
of the effective Lagrangian of the linear o. model at
m ~ ~ up to the four-derivative terms in one-loop per-
turbation calculation.

(5) The unique term [1/12(47r) ](8 P) generates the
meson-loop contribution to the pion vector form factor
[I /6(4n) ]q /f, for the linear cr model, while the
nonlinear o model has no meson-loop contribution to
the pion vector form factor. In the SU(2) X SU(2) or
SO(4) o model with the Yukawa coupling with quarks,
the counterpart of the quark-loop contribution is
[I/(4~) ](N, /3)(B P), where N, is the number of
colors. The quark-loop contribution to the pion vector
form factor is [2/(4~) ](N, /3)(q /f ).

(6) We have demonstrated by explicit calculation of
the effective Lagrangians of the o. model that the two
processes, (1) taking m ~ oo and (2) calculating the
quantum corrections, do not commute. It is natural to
ask what has been lost by taking the m ~ oo limit first
to obtain the nonlinear o. model and why.

Fundamentally these two processes commute if and
only if the decoupling theorem is applicable, which is
definitely not the case for the linear o. model with spon-
taneous symmetry breaking. Consequently the loop con-
tributions in which the heavy o. propagator forms part
of or the entire loop cannot be absorbed completely by
the renormalization of the physical constants and remain
finite in the m ~ ~ limit. By taking the rn ~ ~ limit
first, one has essentially thrown out these contributions
completely. From the dimension of the operator (8 P),
it is clear that this term is a natural and unique candi-
date for the decoupling violation.

From a more naive point of view, the M
= —2m ~ oo limit of the linear cr model Lagrangian
Eq. (3.1) yields the nonlinear cr model Lagrangian Eq.
(6.1) plus 0(l/M ) terms such as —(f /M )(BP) . The
one-loop contributions of these terms are linearly diver-
gent. If one uses a reasonable cutoff M, the infinite fac-
tor cancels out to yield finite result, which is the origin
of the ( 8 P ) term.

VIII. CONCLUSION

Is the nonlinear o. model the m ~ oo limit of the
linear o. model? We have proposed to investigate this
question by comparing the one-loop effective action ex-
pansions for both cases with the SO(N) symmetry group.

For this purpose we have introduced completely new
background-field methods for the linear model and the
nonlinear model. The calculation is manifestly covariant
at all stages and it is not required to introduce formally

the pion fields. The reduction to the pion fields is op-
tional, only for the purpose of applications and compar-
isons, in contrast with the earlier works where the asym-
metry has been introduced at the beginning stage in the
definition of the pion fields. It is difficult to see how any
noninvariant term can appear and therefore no nonin-
variant term is present in either model.

We have verified the substitution rule of Appelquist
and Bernard 1/e~~lnllf for the nonlinear o. model to
reproduce the logarithmically divergent term of the
linear cr model and have generalized it to include the
symmetry-breaking term for arbitrary N. For N =4 and
neglecting the symmetry-breaking effect, our results are
in agreement except the noninvariant terms.

In addition to the divergent terms our calculation also
includes all finite terms and the symmetry-breaking
effects. The latter is important for the infrared problem.
Our results show that both models exhibit the identical
infrared behavior.

The leading large-N contribution can also be matched
by appropriately chosen renormalization constants.
Therefore the only differences between the two effective
Lagrangians are the nonleading finite terms. Nonethe-
less the differences are real. They may be interpreted as
the consequence of a violation of the decoupling.
Whether the significance of these differences carries
beyond the perturbation calculation is not very clear.
However there may be some subtle difficulties not antici-
pated in the construction of the effective action for the
nonlinear o. model due to the constraint, such that Eq.
(6.30) may not be valid even to one-loop order Lagrang-
ian. The investigation of this aspect is presently in
progress.

For the time being, the linear o. model and the non-
linear 0. model are the only viable models to provide the
spontaneous symmetry breaking urgently needed to un-
derstand any unified picture in particle physics. Even
with the limited scope of applicability, our new method
and analysis have taken a new small step toward the un-
derstanding of this fundamental problem.
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