
PHYSICAL REVIEW D VOLUME 36, NUMBER 12 15 DECEMBER 1987

Vacuum averages for arbitrary spin around a cosmic string

J. S. Dowker
Department of Theoretical Physics, The University, Manchester, England

(Received 4 August 1987)

The vacuum averages of the energy densities of massless spin- —,
' and spin-1 fields and of the time

component of the Bel-Robinson tensor are evaluated around a cosmic string. The results are tran-
scribed into the Rindler wedge and correlated with other calculations.

INTRODUCTION

In a previous work' we analyzed the vacuum average
( T„,, ) of the energy-momentum tensor of a massless
scalar field in a space-time of d +1 dimensions possess-
ing a conical singularity. We now wish to extend the
calculation to fields of arbitrary spin. In this case, d will
be restricted to three so that the standard higher-spin
theory can be employed. The space-time is then that of
a straight cosmic string.

The recent paper of Frolov and Serebriany is con-
cerned with spins 0, —,', and 1. Our method is different in

detail and we work with any spin.

ARBITRARY SPIN ON THE CONE:
GREEN'S FUNCTIONS

We can write the metric on the conical space-time '

in cylindrical coordinates as

dg =dt —dp —p d$ —dz

where the angle P runs from 0 to P. Introducing a phys-
ical angle P, which runs over the range 0 to 2', the
metric is

Weinberg" and described further by Williams. ' (See
also Refs. 7 —9 and 13.)

The covariant derivative V'„ is equal to 0„+I„. On
the cone the connection I is given by

r„=o, r, =o, I,= —i(PZ2~)J„r, =o, (3)

[y (x),y„(x')]+=0,

in polar coordinates and for polar tetrads. J, is the stan-
dard spin-j angular momentum matrix.

For spin —,', t"=a" and Eq. (2) is then the Weyl equa-
tion. For a spin-l, neutral field, Eq. (2) is equivalent to
Maxwell's equations. (In a Cartesian angular momen-
tum basis p =H —i E.)

In the spin-2 case, y is the self-dual Weyl conformal
tensor and Eq. (2) is the Bianchi identity. The quantity
cp t" ~ g is the Bel-Robinson tensor which obviously
generalizes to y t" p for arbitrary spin. This tensor
is covariantly conserved, by virtue of the equations of
motion (2), and in Ref. 9 we show that it generates mul-
tiple derivative transformations.

In Aat space, with Cartesian coordinates, the quantiza-
tion of the arbitrary-spin field results in the commuta-
tion (or anticommutation) relations'

ds =dt dr —(P/2'—) r dP —dz

=g„„,dx"dx' (p, =0, 1, 2, 3) .

When discussing spin, it is necessary, first of all, to set
up a system of local tetrads. In our earlier work we
used the polar system in which the tetrads are parallel to
the local (t, r, P, z) coordinate axes.

From now on we concentrate on just the (r, $) plane.
All rotations are about the z axis and we shall refer to
the coordinate system (1) as a polar one. Both $ and P
will be referred to as polar angles.

The formulation of arbitrary spin which we use has
been described before. There are many equivalent
(and inequivalent) ways of writing the equations of
motion. Most convenient here is the equation

(2)

first given in Ref. 10.
y is a (2j + 1)-spinor belonging to the (j,0) represen-

tation of the local Lorentz group and the t" ' are ex-
tensions to curved space of the matrices introduced by

where h(x, x') is the scalar commutator function and t is
obtained from t by reversing the sign of those com-
ponents having an odd number of spatial indices. " The
other Green's functions are obtained from the corre-
sponding scalar ones by action of the operator T. For
example, the Feynman Green's function 5 is given by

S(x,x )=i'z~-'~ &'a,„,D(x,x ), (4)

D being the scalar Feynman function.
For our case, and in our terminology, S is the Green's

function for P=2sr in Cartesian coordinates with respect
to Cartesian tetrads.

Our method of obtaining the scalar Green's function
of period P was to insert the flat (i.e., P=2sr) Green's
function D into a contour integral over a complex polar
angle. However, it is not possible simply to substitute
this form into (4) to obtain the corresponding spinor re-
sult because the transformation properties would not be
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v '(y)~~~'v, -„,v(y) =~ '"'a,., (6)

where the operator on the right is identical to that in (4);
i.e., it is of Bat-space, Minkowski form with Cartesian
coordinates x and y related to r and P (not P) in the usu-
al way. We indicate this by the superscript zero.

Our expression for the spinor propagator is then con-
tained in

Sp(x, x')—:U '(P)Sp(x, x') U(P')

(p) P
=i'2J 'i '&'a„D (x x')

where the matrix Dp is given by

(7)

Dp(x, x')= f D(P —P' —a)U( —a) . da .
2i sin era/

(8)

Equation (7) is as close as we can get, formally, to (4).
Because the scalar Green's function has only simple

poles, D& can be evaluated easily by residues, exactly as
in Ref. 18. The resulting expression is a little long and,
since it is not needed in the calculation of the vacuum
averages, wi)1 not be given here. For spin —,

' it agrees

with the formula of Frolov and Serebriany.

correct. We have to ensure that the integrand is taken
with respect to the appropriate tetrad system. The ex-
plicit expression for the spinor propagator on the cone
with respect to polar tetrads is

S&(x, x')=i J 't "'V~
) D(P P' ——a)v(P —P' —a)

exp(2vria5/P) dX de
2Pi sin(ma/P)

where U(P) is the standard spin-j representation matrix
for a rotation through P about the z axis, U(P)
=exp(iPJ, ). D is the massless, scalar propagator in
Minkowski space. We have indicated its polar angle
dependence only. The contour 3 is as in our earlier pa-
pers 1 1 7 1 8

We have included a general phase factor in the con-
struction of Sp. For neutral fields, which are our main
concern here, just set 5 equal to zero for half odd-integer
spin and equal to a half for integer spin.

If P', say, is increased by P then we see from (5) that
S& undergoes a phase change of —exp(2vri 5). The spin- —,

'

field, for example, changes sign (if 5=0). This is correct
since the polar tetrad performs a complete 2m. rotation.

S& thus has the correct periodicity and it can be
checked that it has the desired singularity when x =x'.

It is easy to prove the following basic result:

where S is given by (7). For simplicity we calculate
( 7 00 ),

( T~) = —[TrBDSp]= —[TrBDSp], (9)

the coincidence limit being indicated by the angular
brackets.

This limit diverges. Our general procedure for elim-
inating the divergence is to deform the contour A into a
loop around a =0, which by residues, gives the Aat
Green's function S2, and into a remainder I .

The divergence resides in the S2 part which is dis-
carded leaving an integral which is finite in the coin-
cidence limit.

Substitution of (7) into (9) thus yields

( T00 ) = —2ic}080 f D(a) cos(a/2) . . da,cos( 2vra5 /P )

r 2 i sin ~a/
where we have used cr traces and have already set P'=P,
r'=r, and z'=z. [Only the cosine part of the exponen-
tial in (8) contributes because the cr traces associate the
sine part with 3/Bz and this coincidence limit vanishes. ]

If the time derivatives are taken and t' set equal to t
we find, after the product of the two cosines is written as
a sum,

( T00) = [W4(1/2B+5)+ W~(1/2B —5)] .B
3277 f'

We have set B =2m /P.
Wz(5) is given by the loop integral

W (5) .
( 2) ~gp y

cos(2~a5/f3)
sin(a/2) sin(7ra/P)

which we have evaluated earlier' in terms of Bernoulli
polynomials. A few examples follow:

B 2

DBW, (5)= 2vr—1

3

BW4(5) = —n
11 B2 B4

3 14
D2+ D4

the y fields. Potentials are necessary and then there is
the question of gauge invariance. For these higher spins
we shall be content to evaluate the vacuum average of
the Bel-Robinson tensor ( g t '"'p ) for (p ) = (0) or,
equivalently, of (y g).

For spin —,, in our conventions, ( T, ) is given by

( T„)= ——,
' lim Tr[o~„(V i

—V„'i)S(x,x')],
X ~X

VACUUM EXPECTATION VALUES BW6(5) = +— 191
2 945 15 24 720

For spins 0, —,', and 1 we can find a loca1 expression for
the energy-momentum tensor T„as a bilinear function
of the fields and so can evaluate the vacuum average
('r„) by the standard method using the Green's func-
tion S. The calculation will be given shortly.

If j is bigger than 1 the expression for T„ is conten-
tious. One cannot find a local expression in terms of just

where the D polynomials are given by

D2(5) =45 —
—,
'

D4(5) = 165 —85 + —,',

D6(5) =645 —805 +285 —
—,",
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Then for ( Tpp& we obtain, if 5=0,

(Tpp&= —(5760m r ) '(B —1)(7B +17), (10)

and

Turning now to spin 1, the energy-momentum tensor
of a massless Geld is —2y t" p. We therefore might as
well discuss the spin- j generalization and attempt to
evaluate the average

t, q tt'"'(i) & = i [Trt—(("'S$(x,x')]

i( —1—)J[Trt (")t '"
d( )Dp(x, x')] .

Some technicalities are now necessary.
D& is given by (8) and contains the matrix factor

exp( iaJ, )—. The required traces can be evaluated but,
for simplicity, we restrict ourselves to the totally tem-
poral case, (p, ) = (0). If j = 1 this yields the average of
the energy density (E +H )/2.

Since t ' '=1 we need the coincidence limit

which agrees with the result of Frolov and Serebriany,
who use the four-component formalism. The other com-
ponents of ( T„,& follow from symmetry arguments.

We note the polynomial relations

BW2 ( 1/2B ) = ——,
) BW2 ( —,

' ),
BW4(1/2B) = —', BW4—( —,

'
) —) BW~( —,

' ),

The fact that the coincidence limit is independent of
the angle a in the exp( i—aJ, ) term of (11) can be shown
to imply that only one component of y contributes to
the average (13); i.e., (()() ((o & = (q)()))()p&, where we are us-

ing a standard, spherical angular momentum basis so
that g= [y } with —j & m &j.

If j = 1 we quickly read off from (13) that

( Tpp & = —(720m r ) '(B —1)(B +11), (14)

if 5= —,', again agreeing with Ref. 2. Our method avoids
questions of gauge.

The vacuum average of T„ for a conformal scalar in
a wedge with Dirichlet boundary conditions has been
known for over ten years. The expression is given in
Ref. 20, for example. The method of calculation was
similar to that of the present paper except that the for-
mula for the Green's function in the wedge was used and
the Minkowski value subtracted explicitly. This Green's
function was originally calculated by Lukosz ' who as-
sumed that the angle of the wedge was an integer frac-
tion of ~ and used the method of images. Our pro-
cedure was the complex contour one, valid for all angles.

A slightly different method, involving modes, was used
by Deutsch and Candelas who also discussed the
Maxwell Geld.

Periodic boundary conditions are easier to apply than
Dirichlet ones and the corresponding vacuum averages
on the cone follow as simple modifications of the wedge
expressions given Eq. (14) for j=1. For j =0 we get

i( —1)—J[Trt ' 'exp( iaJ, ))3( —)D (t)x, x')] ( 7 pp & = —(1440vr r ) '(B 1)— (15)

and, if use is made of the results of Ref. 19, it is easily
shown that this reduces to

i ( —1—)'2 ' a acosa —+i sine D&
Bt Bz

(12)

when we impose the massless condition (3"B„Dt)(x,x')
=0 (x&x').

We now allow the differential operator in (12) to pass
through the integral in Eq. (8) and act on the Minkowski
Green's function D. ())' can be immediately set equal to

P and r' to r so that the relevant coincidence limit is

2J

cosa —+i sina [(t —t') —(z —z')2 2

Bt az

+2r (cosa —1)]

3~2J +2 (13)

for j integral. If the Geld is neutral, 5= —,'.

which is easily reduced to

( —1)"(2j))
(2r )'+'( —1+cosa)J+'

for j integral, and to zero if j is half odd integral.
If all the factors are combined, the required vacuum

expectation value is given by

(cf. Brown, Ottewill, and Page ).
This formula has been obtained directly by Helliwell

and Konkowski using the method of Ref. 22. Other
calculations have been performed by Smith and Li-
net."

THE RINDI. ER CASE

If )))) is reinterpreted as an imaginary time U and other
adjustments made to the coordinates, the metric for the
cosmic string (1) becomes that of the Rindler wedge:

ds =g du —dg —dx —dy

(g playing the role of r). Thus the vacuum average of
T„ in the Rindler wedge can be found from that around
a cosmic string. For example, the identification

(Tp &Ri dl r=n(eTp &,)„(„s= 3(Tp &,),(„s

can be made where the last equality follows from sym-
metry and tracelessness.

If we set p= co, ( Tp &~;„d„„will be the average in the
Rindler vacuum minus that in the Minkowski one. [In
our work' we considered (as is well known) the Min-
kowski vacuum to be a Rindler state at the finite (local)
temperature I /2vrg and so computed the Minkowski
average minus the Rindler one. ]

From the previous results we have, therefore,
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( To )a;„d„,=m. T /30 —1/480m. g (j =0)

=7m T /120+/ T /48 —17/1920vr g

(j =-,')

=sr T /15+$ T2/6 11/—240m. g (j =1),
where we have set T equal to 1/Pg.

The zero-temperature values agree with the calcula-
tions of Candelas and Deutsch. Some comments on
these values will be found in Refs. 28 and 29.

The finite-temperature correction (the T-dependent
terms) can be obtained by conformal transformation
from that on the open Einstein universe. The fact that
the correction is a finite polynomial in T reflects the cir-
cumstance that the relevant short-time ("heat kernel" )

expansion terminates on the three-dimensional pseudo-
sphere, and is exact (I.t terminates on all odd-
dimensional spheres. )

The Planck T term corresponds to the Weyl volume
term ao and the T term to the a& coefficient, which
vanishes for spin zero. The remaining a„coefficients all
vanish in the massless case.

Similarly, the polynomials in P occurring, for even di-
mensions, in our earlier paper' on the conformal scalar
in conical space-times, are directly related to the ter-
minating short-time expansions on the odd-dimensional
pseudospheres. (If we did not wish to make the con-
tinuation to Rindler space we would have to speak of a
"short-angle" expansion. )

Clearly the conformal sphere coefficients can be ob-
tained easily from the cone expressions and vice versa.

The nontermination on even-dimensional pseudo-
spheres shows up in the nonpolynomial nature of the
relevant vacuum averages in Ref. 1.

The energy thermal distribution on the open Einstein
universe was given in Ref. 28 and the arithmetic errors
were corrected in Ref. 29. The formula can also be
found in Brown, Ottewill, and Page. It is supposed to
hold for all spins but an explicit field theory derivation is
lacking for spins greater than 1. When added to a corre-
sponding zero-temperature form, and translated into
conical space-time, it gives Eq. (4.6) of Ref. 23, which
subsumes (10), (14), and (15).

At the moment we have no corresponding analysis
concerning the Bel-Robinson tensor for j & 1. Hacyan
has considered some properties of arbitrary spin fields,
involving the Bel-Robinson tensor, along an accelerated

world line. Work on spin- —, fields is contained in Ref.
31. A discussion of the Unruh-Rindler effect can be
found in Takagi.

We note that retaining a flux parameter 6, which be-
comes imaginary in the Rindler case, is equivalent to in-
cluding a chemical potential. Of course, for massless
particles we would expect the chemical potential to be
zero.

CONCI. USEON AND COMMENTS

Using a particular form of the higher spin massless
equations we have evaluated the vacuum average of the
time component of the Bel-Robinson tensor around a
cosmic string, Eq. (13). For spin 1 this is the average of
the energy density. We have also rederived the spin- —,

'

expression for (T„,). The formalism allows for the
effect of a magnetic flux through the singularity axis.

In our previous calculation' we also encountered the
Wz(5) polynomials but there the N index increased with
the dimension of space-time whereas here it increases
with spin. Calculationally this is because the higher-spin
theory (in four dimensions) involves higher derivatives
and the spin-zero Green's functions in higher (even) di-
mensions are obtained by differentiating the four-
dimensional one.

Finally we must mention a problem we have ignored
so far. We refer to the well-known difficulties arising
when massless particles are coupled minimally to gauge
fields. Problems with coupling to gravity possibly
occur if j &2 but for j &1 with electromagnetic cou-
pling. In the present instance, because the curvature
and flux are confined to the axis of the string, so are the
difficulties.

For example, for a massless spin-1 field y coupled to a
magnetic flux through the string, the consistency condi-
tions require that, at r =0, y be perpendicular to the
string. This is satisfied because, if there is a nonzero
flux, the field actually vanishes on the string.

To see why, go to the gauge in which the field under-
goes a phase change exp(2rri 6) on circling the singulari-
ty axis. ' ' The usual argument of shrinking the circu-
lating contour to zero shows that y must vanish on the
axis. (This result applies also to twisted fields on orbi-
folds. )

The gravitational case is not so easily dismissed and
needs further work.
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