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Derivative expansion and the induced Chem-Simons term
at finite temperature in 2+1 dimensions
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We apply the method of derivative expansion of fermion determinants to compute the induced
Chem-Simons term in (2+1)-dimensional field theories. The temperature dependence of the
Chem-Simons term computed using real-time and imaginary-time methods is shown to be compa-
tible with gauge invariance.

I. INTRODUCTION

Derivative expansion of the fermion determinant had
been extensively used in recent literature' to study the
low-energy properties of various theories. It has been
used for example, to study Skyrmions, to rederive the
amplitudes for various anomaly-induced decays such as
tr ~2Y (Ref. 3), to find out the temperature dependence
of pion mass and decay constants, to analyze the
strongly interacting Higgs sector of the standard model,
to study ordinary and supersymmetric nonlinear o. mod-
els, supergravity models, and most recently the super-
string models. In the context of (1 + 1)-dimensional
field theories, it has been recently employed to demon-
strate the solubility of various two-dimensional models
and to establish the temperature independence of the
Abelian chiral anomaly. In this paper, we apply this
method to compute the induced Chem-Simons term at
zero temperature as well as at finite temperature, for
Abelian and non-Abelian gauge theories in 2+ 1 dimen-
sions.

Recently, (2+ 1)-dimensional gauge theories having a
Chem-Simons term have attracted much attention in the
literature. In the presence of a Chem-Simons term the
gauge fields are massive and in case of a non-Abelian
gauge theory, gauge invariance under the large gauge
transformations implies quantization of the mass param-
eter. To be explicit, in Euclidean space (our metric is
given by g» ——gzz ——g33 1) the Chem-Simons (CS) part
of the action is given by

Scs iM f d x e""——~tr(A "t)"At' ——', igA "A At' ), (1)

where tr stands for trace over the internal indices and g
for the gauge coupling constant. Under a large gauge
transformation

3„' = U 'A„U+ig 'U 'B„U

4aM /g =integer . (3)

This is the origin of mass quantization.
These topologically massive gauge theories also have

been considered at finite temperature" and for the non-
Abelian gauge theories it has been argued using topolog-
ical gauge invariance that the mass parameter should be
temperature independent. However, for Abelian gauge
theories the Chem-Simons term does not have any topo-
logical significance and hence a priori its temperature
dependence is unknown. Furthermore, it is well known
that in gauge theories with fermions, such a topological
mass term is induced by their interactions, ' and the
long-distance effective gauge theory contains a CS term.
In light of these results, it is interesting to see if the CS
term is temperature dependent or not. We show that
the induced CS term depends on temperature in such a
way that the topological gauge invariance of the total ac-
tion can be maintained.

The paper is organized as follows. In Sec. II we de-
scribe the derivative-expansion scheme and apply it to
compute the induced Chem-Simons densities at zero
temperature, for Abelian as well as non-Abelian theories.
Then we proceed in Sec. III to establish their tempera-
ture dependence using techniques of finite-temperature
field theory. Finally we have some concluding remarks
in Sec. IV.

II. DERIVATIVE-EXPANSION SCHEME
AND THE INDUCED CHERN-SIMONS TERM

AT ZERO TEMPERATURE

W= f d x e„, tr(t)„U)U '(t) U)U '(t) U)U
24m

is the winding number which is an integer. ' Hence for
the path integral to be well defined,

and

4aM
Scs ~Scs+2'

q
8 (2)

Let us consider the case of a massive fermion field in-
teracting with an external gauge field in three space-time
dimensions. For convenience we will work in Euclidean
space throughout this paper. The Euclidean action is
given by

where U=e', T"s are the generators of the gauge
transformation, and 5= f g(x)(i8+gA+m )ttt(x)d x . (4)
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The corresponding generating functional is

Z[A„]=fDQ(x)DQ(x)

&& exp —f P(x )(i8+g A +m )g(x )d x

S,g( 2„)= —Tr ln(p'+m +gg )

= —Tr ln(P + m ) —Tr ln 1+ gg
p+m

(10)

A„stands for 3„'T', where T"s represent the genera-
tors of the gauge transformations in the representation
of the fermions. We will choose to work with two-
component Dirac spinors. The (Euclidean) Dirac alge-
bra

Throwing away the uninteresting gauge field-
independent first term, we concentrate on the
Matthews-Salam determinant. ' The new effective ac-
tion can be expanded in a power series. Denoting

S (p)=f 2+ 2

we have

is then satisfied by the matrices

V] ~1 X2 ~2 ~3 3

where o.
, are the Pauli matrices. Furthermore, they

satisfy

7p'V v
= ~pi ~pimp&p

We shall use the identities given below to disentangle the
x and p traces. In general, for any function P(x), we
have

Tr(y„y, ,) ) =2e„,

Tr(1 „X.)',)'~1'. ) = —2(&„,~,~.+&,~~„..
y(x)p„=p„y(x) i a„y(x),

[p, (5(x)]= P(x)+2ip„B„Q(x),
(12)

—&..&p~„+&„.&p~, .

where we have written down the trace identities needed
for future calculations.

Integration over the fermion fields yields

SaZ[A ]=Det(p'+m+gA )=e

P(x)
1

p +m
P(x),

(p iB) +m—
(13)

where the operator 0 acts on P(x). A similar integral
representation for the 6 function yields

where p =p„p„and =B„B„. Using these identities
and writing a heat-kernel representation for the propaga-
tor it can be proved that

Since the field 3„ is external, no Legendre transforma-
tion is required to go from the connected vacuum func-
tional to the effective action. Here

P(x)5(p +m')=6[(p —iB) +m ]P(x) . (14)

S,fr( 3„)= —ln Det(p'+m +gg )

= —Tr ln(p'+ m +g A ) .

S,~ —— d xL,ff (9)

Here the trace stands for the trace over Dirac matrices,
trace over the internal space as well as for the integra-
tions in momentum and coordinate spaces. This expres-
sion for the effective action cannot, in general, be evalu-
ated and written as

We will use these results later for our calculations. Us-
ing the above identities, each term in the expansion can
be written in the form

f d p F(p') f d'x G(A„(x)),

and hence the momentum integration can be carried out
yielding the effective action. Analyzing the effective ac-
tion, it is clear that the contributions to the Chern-
Simons term will come from terms quadratic and cubic
in 3„.

Consider the terms quadratic in 3„. The correspond-
ing action is given by

A„(x)'s being position-dependent variables do not com-
mute with functions of momentum and it is not at all ob-
vious how to separate out the momentum- and space-
dependent quantities, and carry out the integration in
respective spaces formally indicated by the trace opera-
tion. To that end we will use the techniques of deriva-
tive expansion' and proceed as follows:

p™
ea. =

p +m p +m

The terms having two and four y matrices contribute to
the wave-function renormalization of the gauge boson
and hence are not relevant for the present purpose.
Evaluation of the other two terms linear in mass yields
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g(2)CS ) 2
eff

p +m p +m p +m p +m

mg
2

TrD ypy.y ptr p'+-' p'+-' '+p'+-' "p'+-' ' (16)

where TrD stands for trace over Dirac y matrices. Commuting the 3„'s past the momentum operators to the right,

2

S,ff ——— TrDypy yptr
(2)cs mg

2
1 1

, (P„A,+P„A„—ia„A„A, )

p +m (p iB—) +m
(17)

Since the Dirac trace is antisymmetric in p and v, the only nonzero contribution is from the 8 A „3 term. Carrying
out the momentum integration yields

~ 2

8m m
(18)

We note here that a mass term in (2+ 1)-dimensional field theory violates parity' and hence its sign is crucial in the
e6'ective Lagrangian.

The additional contribution to the CS term coming from the terms cubic in A„s can be written as

gl&)

p+m p+m p+m
Noticing that the terms having even number of y matrices do not contribute to the CS term, we have

(19)

S",,'"= —,mg'Tr 1

p +m p +m p +m p +m p +m p +m

p+m p+m p+m p+m p+m p+m
(20)

Furthermore, using the identity

+ Ip' 4(x)~ + lp' lp' 4«)ii +. . .
p+m p+m (p+m ) (p+m )

(21)

and noting that only the first term will contribute to the CS term (all other terms have at least one derivative in them)
we get

g(3)CS
eff

mg' pppp p'pp z pvpx

3 Dykey ypy~y 2 23 ~ 2 23 p 2 23 P p(p+m ) (p+m ) (p+m )

+m TrDy„y y tr
P

( 2+ 2)3 P ~ P
(22)

The momentum integrals are all finite and hence can be evaluated easily. Keeping terms without any derivatives, we

have

3

S',s' = — TrDy„y, y yzy 5„ tr f d x A„AqA +5„&tr f d x A„A
96~'

I

m
I

+6,&tr f d x A„A A +2tr f d x e„A„A„A

tr f d xe„A„A„A
12m m

(23)

Combining the above expression with Eq. (18) we have the induced Chem-Simons term as

2

8m. m
(24)
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in agreement with the standard results. The Abelian Chem-Simons term corresponds to the first term in the above
expression.

III. INDUCED CHERN-SIMONS TERM AT FINITE TEMPERATURE

We will make use of both imaginary-' and real-time' formalism to consider the finite-temperature effects. ' In the
imaginary-time method, the finite-temperature generalization is given by replacing the integration over the continuous
variable p& by a summation over the discrete values p&

——(n+1/2)2m//3, where P= 1/kT and n is an integer. Consid-
ering the quadratic and cubic terms in A separately, we have for the quadratic term

2 oo d2
(25)„P (2~) p +m (p —iB) +m

Furthermore, noticing that the 0 in the denominator of the above expression would not contribute to the CS term, Eq.
(25) simplifies to

oo d2

P „„(2~)(p +m )

. 2tr f d xe„B,A„A
img P 1

16' m p(n + —,
' )'+

im g /m/Ptanh tr f d'x e„.,a„~,g, .
m

I
8~ (26)

The cubic term in 3 can be considered in a similar fashion and we have

S a' = TrDy„y„yzy&y — g tr d x g(3)CS ~g 1 " d'p p

happ

3

(2~)' (p'+m')'

d2

(2~)' (p'+m')'

d2

(2~) (p +m )'

OQ d2
Dykey yp g f 2 ~

tr f d x A„A(2~)' (p +m 2)' (27)

where we have neglected the 8's in the denominator because they would not contribute to the Cs term Proceeding as
in the T =0 case we have

(~)cs 2mg I d p 1 3
2 2 22 IP V(2') (p +m )

(28)

Following the evaluation of the Abelian term we perform the momentum integration and sum the infinite series to get

g(3 jCS
eff

mg' 1 fm /Ptanh trf d xe„A„A„A
m 12m 2 (29)

Hence, at finite temperature,

~ 2

8vr m 2 (30)

It is gratifying to see that the quadratic and cubic terms in 3 have the same temperature dependence essential for
gauge invariance.

It is worthwhile to prove the above result using the methods of real-time formalism. In this formalism, one intro-
duces the so-called tilde particles' to properly take into account the higher-loop effects and the finite-temperature
propagators are obtained by a Bogoliubov transformation. For fermions

S(p)= UF(
i pq i

)So(p)UF(
~ pq ~

) =So(p)+Sp(p), (31)
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where S(p) is the propagator at finite temperature and So(p) is the zero-temperature propagator. Here, the unitary
operator

1

(
Pl&) 3 I i))yp

p I(ip3 j
/2

e 1

~ I ip3 1~2
e

(32)

and

Sp(p) = 2m—i 5(p + m )(P —m ) [f(p, ) ] .

Because of the presence of tilde particles the distribution function is a matrix and is given by

(33)

1 1

(f(P3))= ~I;, I
PI P, In

e '+1
P[ ip3

e
(34)

It is worth mentioning that at one-loop level tilde particles completely decouple and do not contribute to the physical
processes. Neglecting 8's from UF(

I p3 I
) and the denominator for the present purpose, we find the quadratic term to

be

2 d3
S",,"'=— ' Tr ~„~„),f p, U, (lp, I ), , U,'(lp, I)UF(lp3I), , U'(lp3I)( i)f—«d-'x&. A„A,

d3
img —f UF( I p, I

) UF(
I p3 I

)tr f e„, B„A,, A d x .
(2') (p +m )

To avoid terms having a product of 5 functions, we used the following procedure:

d=img
2 3UF p3 2 2UF p3 tr d xe„, B„A

Bm (2' ) p +m

d=img f —2mi5(p +m )f(p3) tr f d x e„„B„A,A
Bm (2m. ) p +m

(35)

d3 2

img —f tr f d xE„B„A,A + f d p5(p +m )f(p3)tr f d xe„, B„A,A
(2m. ) (p +m ) (2~)' am'

(36)

Since we are only computing the one-loop contribution, we have dropped the contribution of the tilde particles from
the above expression.

The integral involving the 5 function can be calculated in a straightforward way and we get

f d p 5(p +m )f(p3)=2vri
I

m
I

— In(e™+1) . (37)

Substituting the above expression in Eq. (36) we have

g(2)CS
eH'

&mg

Im I8vr

img

lm I8n.

img e~ I
m

4~~m
~

e +1Pl I

trfdxe„, B„A A

e~ I
m img Plm

I tr f d xe„, B„A„A
m 8' 2

(38)

A straightforward calculation similar to the above one yields for the cubic term

S,~ = — tanh(3)CS &Im I tr e„A„A A dx.
m 12m 2 (39)

Combining the quadratic and cubic terms in A,

tanhig m glml tr d x E'p p(BpA Ap lgA A Ap)
3 2

8m m 2
(40)
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The real- and the imaginary-time methods yield the
same answer as they should.

IV. CONCLUSION

Our analysis yields a temperature-dependent Chern-
Simons term in both Abelian and non-Abelian gauge
theories. While temperature dependence of the Abelian
CS term has been noticed earlier' the results for the
non-Abelian theory are new. The temperature depen-
dence of the non-Abelian CS term needs some
clarification. As has been noticed earlier' the effective
action for gauge fields due to fermions is not invariant
under topologically nontrivial gauge transform ations.
The change in the action is given by +w

i
n i where n is

the winding number of the gauge transformation. This
is true for a theory having an odd number of fermions.
To restore gauge invariance one adds a parity-violating

CS term to the action and the renormalized effective ac-
tion is given by

5",tr =S,tt ( finite )+Scs, (41)

where Scs is the induced CS action calculated earlier.
Hence, although it appears that the CS term is not gauge
invariant under a large gauge transformation and has
developed a temperature dependence, in the context of
the above discussion the total action can be made gauge
invariant by choosing the minus sign in front of Scs.
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