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It is found that the equations of motion of a variety of two-dimensional bosonic and fermionic
models are a consequence of the constancy of the scalar curvature.

Models of field theory are very useful laboratories for
understanding the dynamics of fields in a relatively sim-
ple manner. But there are very many such models and it
will be very useful to find a common origin for them.
The bosonic models, Liouville, sine-Gordon, and non-
linear o. models in two dimensions, were previously ob-
tained from a common Lagrangian. ' Here we attempt to
obtain the equations of motion of both bosonic and fer-
mionic models when the scalar curvature is a constant.
In order to minimize the complexity of these various
models, we limit ourselves to two dimensions. Let gAB
(A, B =0, 1) be the metric on a two-dimensional mani-
fold, where the indices 0 and 1 refer to time and space,
respectively. We parametrize the metric as
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where the last term is a determinant and the subscripts
denote partial derivatives. In the models discussed in
this paper, the determinant term does not contribute.

We first obtain the well-known Liouville and sine-
Gordon models. We note that for
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the Liouville equation
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where P, Q, and R are functions of x and t The.
Riemann curvature tensor is given by
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results from Eqs. (5) and (6) for r = —2. For the metric
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one obtains, from Eqs. (5) and (8) when r = —2,
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where I is the affine connection given by
~AB

2 u—p cos
2

utt uxx +p sinu =0

2 u—p sin—2.
(10)

In two dimensions there is only one independent com-
ponent of the Riemann tensor that must be proportional
to the scalar curvature r. So we have

results from Eqs. (5) and (10) when r = —2.
The constant value of r can be adjusted. Crampin,

Pirani, and Robinson obtained Eq. (9) with r =0 and
Dolan obtained Eqs. (6) and (9) with r = —2. In the
case of two-dimensional gravity take
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The scalar curvature r can then be written after some
algebraic manipulations as

where e =ei is a component of a zweibein. We obtain,
from Eqs. (5) and (12),
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e/e = —r/2 . (13)

This is the equation of motion in the synchronous
gauge. When we compare Eq. (13) with the correspond-
ing equation e/e = —2X, we note that A. is proportional
to r.

Let us next consider another bosonic model that leads
to a one-dimensional Schrodinger equation. Take the
metric

02, +02. = t—eA'02

In order to obtain Eq. (20b), consider the metric
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We find, from Eqs. (5) and (18) with r =0,
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Equation (22) can be written for P =$2 as

in which case we obtain, from Eqs. (5) and (14),

g +2@,+u„+m ru =0 . (15)

Rotate the axis as follows:

x'=x cosO+t sinO,

t'= —x sinO+t cosO .
(16)

In order to remove the u, term, we take sinO

=cos8= I/&2 and obtain, from Eqs. (15) and (16),
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where C(t) and D(x), respectively, are functions of t
and x only. If we identify D (x ) = —ie A (x ), then Eq.
(23b) becomes identical to Eq. (20b) in the static case.

Now we want to show that there are several fermionic
models whose equations of motion can be combined to
give the same equation involving scalar currents. The
models we have looked at are the following.

(i) Free fermions. The Lagrangian density is

+m ru=p.
dx

(17) L (x) =g(i8 m— )g, — (24)

L (x) = —,'F„F~ +Q(x)[i8—ey"A„(x)]g—(x), (18)

where F„(x)=B„A (x) —B,A„(x) and A„(x) is the vec-
tor potential. In two dimensions we take
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p (19)

1

0 t)'2

and the equations of motion for the fermionic fields in
the axial gauge [A, (x, t)=0; Ao(x, t)= A (x, t)] are

For constant r, this is the one-dimensional Schro-
dinger equation with a constant potential. But if we al-
low a functional form for r, then Eq. (17) describes a
general one-dimensional Schrodinger equation. It should
be noted that we started in two dimensions, but ended
up with a dynamical equation in one dimension. This
phenomena might be more general and may be appli-
cable to higher dimensions. It should also be observed
that the potential and curvature become related in the
Schrodinger interpretation of Eq. (17).

So far, the previous models were all bosonic and,
hence, the equations of motion involved second deriva-
tives with respect to space and time. We now want to
apply the above methods to the fermionic models. These
involve equations of motion with only the first deriva-
tives. From Eq. (5) we expect to obtain derivatives of
these equations. In some special case it might be possi-
ble to obtain the equations themselves after one integra-
tion. We will show that such is the case with the fer-
mionic sector of the massless Schwinger model whose
Lagrangian density is given by

and the equations of motion are
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(ii) Massive Schwinger model. The Lagrangian densi-
ty is

L (x) = —,'F„,F"'+g(i—8 m —eA—)P,
and the equations of motion are
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is
(iii) Massive Thirring model. The Lagrangian density

L (x ) =P(i tl m)g — —(Py "g)(Py„g)—, (27a)

and the equations of motion are
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where

(27b)

(27c)

S, =g*, g„S2=$2/2 . (28)

(iv) Massive Thirring Schwinger model. The Lagrang-
ian density is

L (x ) =g(i 8 eA —m )g — (Py"—g)(gy„g) —,'F—„F~", —

(20a) (29a)
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and the equations of motion are

1'&,
—p&„—— —i [2ASzp, +mgz+e(AO —3, )p, ], (29b)
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This equation is integrated to give

2Q —R, =E (x)Q, (37)

where E(x) is an integration function independent of t.
When E(x)=0 we obtain

(v) Gross-Neveu model (single flavor). The Lagrang-
ian density is 2Q, —R, =O. (38)

L (x) =ttt(i8 —m)g — (Pg—)(Pg),
2

(30a) Specifically, for the metric
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Eq. (38) yields precisely Eq. (34). If we define

(40)
All these models give the same scalar current equation
which is derived here for the massive Thirring model.

Take the equation of motion for g, and its complex
conjugate,

then Eq. (34) is nothing but

a~~=0, (41)
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Similar operations with $2 equations give

Szi +S2„™( g f $2 Qz pi ) . —

Comparison with Eq. (32) immediately gives
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All the models considered above lead to this equation.
Now consider generally the metric with P =0,

0
gAB g (35)

Equations (5) and (35) with r =0 give

Q, (2Q —R, ) —Q(2Q —R, ), =0 . (36)

Multiply the top equation by tt*, from the left, the bot-
tom equation by P, from the right, add both terms, and
make use of the anticommutation relations of g, and 1(2.
Then we obtain

which is the statement of current conservation. What
has been shown here is that Eq. (41) can be related to
the vanishing of the scalar curvature in a certain two-
dimensional manifold.

It can be shown that a general expression consistent
with 8J"=0 is given by

+l (f,P, +f3/2)=0

$2, +$2» +i (f2/2+ f3P) ) =0 .

When we assign diff'erent values to the functions f, ,

fz, and f3, the equations of motion for diff'erent models
can be recovered. Unlike bosonic models, the equations
of motion for fermionic models cannot be directly ob-
tained from the metric.

Recently it has been pointed out that many equations
in physics have a geometrical integrability origin. It is
expected that the present approach will provide an alter-
native method for gaining a deeper understanding of
these nonlinear equations.
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