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Exact solut'ons of the Dirac equation in spatially Hat Rohertson-~alker space-times
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Exact solutions of the Dirac equation (including the neutrino case, m =0) for three models of
expanding universes are given. Gordon decomposition of the current is discussed.

INTRODUCTION r (t)=ro,o

a (t)
(4)

The behavior of relativistic particles obeying the Dirac
equation in curved spaces, in particular in expanding
universes, is of considerable importance in astrophysics
and cosmology. Such investigations go back to Fock, '

Tetrode, Schrodinger, ' and McVittie. A general dis-
cussion of the I =0 neutrino case was given by Brill
and Wheeler.

Isham and Nelson have solved the Dirac equation in
the zero-momentum limit. They propose a quantization
and obtain a mass of the order of the mass of the
Universe, so the equation has a different interpretation
than the electron. We are interested in the behavior of
the electron and neutrino in curved spaces and shall
present an exact solution for arbitrary momentum and
mass.

We intend to apply the results to pair creation in ex-
panding universes. In this connection the Dirac equa-
tion has been studied approximately by Chimento and
Mollerach and by Audretsch and Schafer' for the
radiation-dominated universe. A study of pair creation
of spin- —,

' particles (massive and massless) in Robertson-
Walker universes was made by Parker. ' He showed
that for massless neutrinos, as a result of conformal in-
variance, there was no pair creation. There have been
other studies of spin- —,

' fields in such spaces. "

1 3 1r (t)= — r2 r (r) r3a (t) '
a (t)

[I,r"(x)]= +1",rt'(x),ar"(x)

where 1", are the Christoffel symbols for the metric (2)
which we first determine to be
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0
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where, from now on, y„(without arguments and lower
indices) denotes the standard (flat-space) Dirac matrices.

The spin connections 1 „(x) satisfy the equation

II. THE DIRAC EQUATION IN EXPANDING
SPACE- TIMES

The Dirac equation in a curved space is taken to be
r 3

VCT a/a 0
0 0

a/a 0
0 0

i y"(x) i y"(x)1—(x) Q=mit .a
Bx" P

Here y"(x) are the curvature-dependent Dirac matrices
and I „are the spin connections to be determined.

We consider the spatially flat metrics of the form

0

a/a 0

4r-.=
0

0 a/a
0 0

ds =dt a(t)(dx& +dx2 —+dx3 ) .

Thus,

g„=diag(1, —a, —a, —a ),

(2)
Then Eq. (5) can be solved for the spin connections I „

which we determine as

g" =diag(1, —a, —a, —a )
ar, =o, r, =—roti2

a a
2

'
2

(7)

with g" g =6". For this case we obtain immediately
from the defining equations y"y +y y" =2g"', so that the combination y"I „in Eq. (1) simplifies to
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3 Q
@PI y2 a

(7')
are obtained by

The Dirac equation (1), after multiplying it by i—y0, be-
comes

3a . k o.
f&& ———ia0t 8+ im f&2a

3 a 1—+ ————a V im—y0 /=0 .
Bt 2a a

(8)
Let

(17)

III. THE SOLUTIONS OF THE DIRAC
EQUATION then

Since a is a function of t only, we can set in Eq. (2)

;k x .ft(k, t)

/ f„(k t) (9)

and two-component spinors obey the coupled equations

3 +g„=—iapt 0 +——im g,—2i

i a 0 t———W + ( + )2im —W+ W — W
2 . 1 3 im
t3 t2 2t3 t2

3 Q . l
B, + ———im f, ——k of„=O,

3 Q . l
B, + ——+im f„——k of, =O.

(10) Now the Whittaker functions satisfy the identities'

(18)

Multiplying the first equation from the left by
ia (k.—o /k ) and inserting f,&

from the second equa-
tion, we obtain, after some more algebra,

1W p(z)=( —2'+p —K)( —,
' —p —K)—W, , „(z)

Z

+ ——— W. „(z),1

0, + ———+ — —im —+ +m h& ——0,1 a' 1a . a k
2 a 4 a2 a a2 W, „(z)= ——W„+, „(z)— W, „(z) .

1

(19)

where we have set

h, (t)=f, (t)a' . (12)

We use the first identity for ~=+ —,', and the second
identity for tr= ——,', to show that Eq. (17) completely
simplifies to

We shall consider three special models for expansion:
(a) a =aDt, a model considered by Schrodinger, (b)
a =a~+t, a model of a radiation-dominated universe,
and (c) a =e ', an inflationary universe. Equation (11)
for these three cases becomes

ik2 1
grt = W &/2;k/, ( —2tmt),

ap

1
gq~ ia0 —W——&/2;k/, (2imt) .

(20a)

(20b)

a'+
3

t'
k /ap —im /2

+m h&
——0, (13b)

k /ap + —,
'

+m hq ——0,2 Finally, if we denote the constant spinor components of
f& by (0) and (&), the four independent solutions of the
form (9) are, with k+ ——k, +ik2,

[8, +k e '+(m —iH/2) ]h, =O . (13c)

+2
+

dz2 4 z

—' —(+ik /a 0)
+

Z
h, =0 (14)

Case A. a =apt. Changing the variable from t to
z = —4m t or z = +2imt, we get, from Eq. (13a), ik.x

(2 )3/2 2t2
0

1

0 Wl /2 ik /a

k3
W ~/2 k/ ( 2lmt)'

Qp

ht (z)=W+l/2 k/ (+2imt) . (15)

Having obtained the upper components of the wave
function in (9), f, , using (12), the lower components f&&

and recognize the Whittaker differential equation which
has two independent solutions:

ik.x

(22r) a t

0
] ~1/2, ik /a0( —2im1)

k

/2, k/ ( —2imt)
0

'
(21)
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i k..x

(2 )3/2 a 2t2

1 '
i/2, k/. , (+2im

k3
Wl /2, ik/a ( +

k +

N, =N2 ——(ap/2m)'

N3 N4————k /( 2m a p )
'

(24)

Case B. a =a p 3/t . Again with the new variable
z = + 2i mt, Eq. (13b) is transformed into a Whittaker
equation

i k.x +4
(2m)3/2 a 2t2

0
(+2imt)

k
„2,„,. (+2imt)

d 1
2+ ——+

+—,'(1+2ik /ap m)

—,
' —( —,

' )'
+ 2

Z
h, =o. (25)

It is interesting to see the asymptotic form of these solu-
tions for large times. Since W„„(z)~z "e ', for
—3ir/2 &argz & 3n. /2, we obtain

The two independent solutions are

1 1 2ik 2 1

gz = W+ 1/4( +z) K= 1+
i 4 ao2m

z =2imt .

e'" * V' —2im
)3/2 2 t 3/2

0
T

3 ]

2moa k+

imt

The lower-component spinors satisfy

(26)

e'" " 3/ 2im —N2

(2 )3/2 a 2 t 3/2
0

0

imt

(22)
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1 1 1

2im 0 t
r

iao k3

k' k+

—imte 7
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(27)
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(2&)3/2 a 2 t 3/2
ap

0

—k3

—imte

Again using the identities (19) we can eliminate W to ob-
tain

2k 1

3/2 WK 1/4(mao

We can determine the normalization constants N, in
such a way that asymptotically, i.e., in the flat-space lim-
it, we have the usual 5(k —k') normalization of the
electron's wave function. The norm of zt/ is defined by

(yk qk') I d3 3(t)q k Pyk'

d x ap t Pkl/Jk
3 3 3

t

and

1—1

8

k 1
—a, 1/42map

ik
W~ —i, 1/4(

mao

3 3/2lm —21m N~5(k —k')ap t
ao ao t

(23)
2lmap

+ 2
W —K+1 1/4(z)

k

This procedure gives Hence, the four independent solutions are
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ik x
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ik x
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0
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1 1 2l ma p, 1/4(z)+ W, +, , /4(z)

2mao k

(28)
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04= (2~)3/2 a
N4

0
W &. 1/4( 21mt)'

k
1 2lmap

~ 2

W —v, 1/4( z) + W, +1,/4(z)k2

which behave asymptotically as
($, , 1t, ) =6(k —k') e ' N,

ap

e '"'"
( —2im )'

(2~)' ' a

0

2 3 1

ma, k+ v't

imt
)

and so

2 N 2 —~k ™a2
1 2 V'2m

e ap

N =N k 1 —ak /2m 2

a, (2m)'"

(30a)

(30b)

e'" "
( —2im )'

2 3/2(2~) ao

e'"'"
( —2im )

)3/2 2

imt

(29)
D„(z)=2 +' ' z '

Wv/2+1/4+1/4(z /2) . (31)

For this purpose we make another change of variable in

Eq. (13b), setting t =y and scaling h, ~t '/ g, to obtain

It is interesting to note that the solutions for case B can
also be given in terms of parabolic cylindrical functions
because of the relation'

—2map

k

0

k3

k+

—imt

2

( ——,
'

(3 —2m y )g, =2 —im /2 g, .
ap

(32)

This is a Schrodinger equation for a unit mass moving in
potential V = —2m y with "energy" E =2(k /ap

—lm /2). The solution is

e'"" ( —2im)
4 3/2 2 4

(2~) ao

0

—imte with

g,+—=D„(23/2m e ' /4v't )—(33)

V+ = —l v = —1+ik /map
map

Using these asymptotic forms we can determine the
normalization constants N, as in Eq. (23): we obtain

Case C. a =e '. Here we introduce the new coordi-
nate z by
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z= —e
k —0
H

then Eq. (13c) becomes the Bessel equation

z, +z +(z —v ) h, =O2d' d 2 2

dz2 dz

(34)

(35)

IV. MASSLESS CASE, NEUTRINO SOLUTIONS

We now give for the three models, Eqs. (13), the four
independent normalized solutions in the m =0 limit.

Case A. a =apt:

with v=——,'(I+2im/H), and we have the solutions

J~ (z)=J~ —e -Hs (36)

k3

k+

0

3lap

4k

. k
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ik.x

)
3/2

n.k /2H

Cos

Proceeding as before, the four independent normalized
solutions are
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nk/2H
i m.m

Cos

—Hs

(37) Case B. a =ao&t:

0
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where

. 2k
exp i— &t

ao

For our metric (3) we use (7'). Furthermore, we
have y ~=0, [y, y"&]=[yo,y„]5„a/a and o.
=(i/2)[r' y "]= (i/a)roy& ~ "=(i/ &)I y y"]
=(i/2a')[y, , y, ]. Then

i-(/ "g),— g p —a, —a, y

ik.x 18=
(2 )'" &z,'" '"

Case C. a =e

71 a
, &„,W[ro r„l&4m a

or, in components,

1
m

0 1/2 H
g o

—+ V'g Py k y oP g——8 —e A
2ma 2m 2

2
——C

k3

k J —e a~—1/2

0 k H
1 1/2

1
J—1/2

—e Ht

H

k
aiJ 1/2

and

l 1—
a, qr„—rA +,a, (g[r, , r„]0)2m a 4ma' '

1 1 7I a
, 4(& —,'~k —e~k W+ Wr ~r oP .

2m a 2m a

Writing jo =V.P+p„„„„„„and j =OP/Bt +V & M
+j„„„„„„+7(a/a)P, the polarization density is given
by

3
——C

k3

+ 1/2+ .
—Hf—e

H

Py&rA'

and the magnetization density by

4
——C

k
L

-+

where
—ik. x

C= e 2H1

(2~)

—Hte
H

k —H

i 1

, Ry, r~]4.4m a'
Note the factor 1/a in front of P and the factor 1/a in
front of M and j„„„„„„„alsothe new term 7(a /a)P in
the current j as compared to the Hat-space case. Thus,
these physical quantities are all time dependent. The
current j"=gy" g is conserved because y"„=0 in our
metric and, using Eq. (l) and its conjugate,

V. GORDON DECOMPOSITION
OF THE CURRENT

For further interpretation of the theory it is useful to
consider the Gordon decomposition of the current. Us-
ing Eq. (l) in an external field A„and its conjugate we
can express the current as folIows:

q" =qy"q= q(~ a~r'r" ~ r "r'~. '

2m

r r~ =my.
Bx„

Note that y y~ y =@~, but y I „yo———I „. Hence, the
scalar product can be defined by the integral over a
spacelike surface

«i 42) = f, &—g 4ir "Ada,

which we have used to normalize our solutions.
—i [y I z, y")+eA zg ")g . ACKNO%'I. KDGMENTS
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