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The factor-ordering problem must be regulated
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Three points are stressed concerning the factor-ordering problem of canonical quantum gravity.
First, the problem is real; dimensional regularization in the covariant formalism permits us to sys-
tematically ignore it, but does not provide a resolution. Second, no resolution of the problem is
possible until the naive constraint algebra is first regulated to remove divergences arising from
singular operator products. This point is underlined with an example from the literature. Third,
we argue that whatever regulation technique is employed should respect general coordinate invari-
ance or some analog of it. Although the traditional variables of canonical quantum gravity are
used, our conclusions apply with equal force to the new variables proposed by Ashtekar.

I. INTRODUCTION itself be a linear combination of constraints

In the hierarchy of problems connected with the
quantization of gravity, our inability to deal with ultra-
violet divergences' and our failure to explain the small-
ness of the cosmological constant relative to other mass
scales rank highest. Both problems show up in the co-
variant formalism which has become ubiquitous since
the advent of dimensional regularization' and the
background-field method. Far down the list of quan-
tum gravity disasters are the diKculties associated with
the less popular canonical formalism. Yet although
canonical problems are generally conceded to be less ur-
gent than their covanant relatives, they are real and a
small trickle of effort has been devoted over the years to
their resolution. Our contribution concerns what is
known as the "factor-ordering problem. "

This is not the usual issue of how to arrange noncom-
muting operators in the naive Hamiltonian, rather it
consists of ordering the gravitational constraints so that
they satisfy a condition known as "Dirac consistency. "
We will define what this means more precisely in Sec. II
but the basic idea is simple enough to sketch out. Con-
sider a constrained Hamiltonian system with coordinates
q, momenta p, and constraints P„(p,q)=0. Owing to
the presence of constraints not every wave function g(q)
corresponds to a valid state —quite apart from any ques-
tion of normalizability. The physical subspace of states
is defined by the condition that its elements are annihi-
lated by the constraints:

Obviously the consecutive action of two constraints also
gives zero and hence so does the commutator

(1.2)

Since relation (1.2) must hold for every state in the phys-
ical subspace, the commutator of two constraints must

(1.3)

The combination coefficients Cetic(p, q) may themselves
be operators but they must stand to the left of the con
straints. Failure to satisfy relation (1.3) either means
that there is a missing constraint or that the physical
subspace consists of the state it =0. Note that although
Dirac consistency is a necessary condition for the physi-
cal subspace to be nontrivial, it can, in principle, be
studied in the strong operator sense. This is significant
because one of the many things we do not know how to
do very precisely in quantum gravity is to take inner
products.

The above mathematics aside, there are two physical
reasons to care about Dirac consistency: (1) it ensures
that general coordinate invariance, which is no longer
manifest once canonical methods have been employed, is
present classically and survives quantization; ' (2) it
may impose very strong restrictions on otherwise un-
determined parameters in the quantum theory. Regard-
ing the first point, it is quite possible that the functional
integrals of the covariant formalism do not really
represent inner products of states which obey the
Wheeler-DeWitt equations. The phenomenon would
show up as dependence upon the choice of residual
gauge conditions (the usual Ward identities only prove
independence of the volume gauge). Saying that the pre-
dictions of a theory depend upon the gauge is just anoth-
er way of labeling the theory as nonsense. Thus Dirac
consistency is a necessary condition for the covariant
formalism to actually mean something.

As an example of the second point, note that enforc-
ing a very similar condition in the theory of bosonic
strings is responsible for selecting 26 as the only accept-
able dimension for spacetime. There are a number of
naively unconstrained parameters in quantum gravity-
the dimension of spacetime, the value of the cosmologi-
cal constant, the number and type of matter fields, and
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the internal matter-field symmetry group. Might it not
be that enforcing Dirac consistency can tell us some-
thing about them? The answer is that we simply do not
know. Though the classical constraints have long been
known to close under Poisson bracketing, no one has
been able to obtain a clear result on the quantum level.

Not that there has been any dearth of efforts. Dirac
cast the constraints in their present form in 1958,' how-
ever, his 1959 approach to quantization" was unsatisfac-
tory in that it merely transformed the problem to one of
defining suitable Dirac brackets. Similar results were ob-
tained by Arnowitt, Deser, and Misner. In 1959 Ander-
son reported that two particularly simple Hermitian or-
derings failed. ' [Actually Anderson reported "success"
but his criterion for this did not include the requirement
that the coefficient operators C„~c(p,q) of relation (1.3)
stand to the left of the constraints Pc(p, q). When this
point is checked it is seen that both of Anderson's exam-
ples fail —as he was to note three years later. ' The
search through more exotic arrangements reached an
abrupt and unpleasant end in 1962 with the announce-
ment, also by Anderson, that no Hermitian ordering
worked. ' The very next year Schwinger contradicted
this result by claiming consistency for the first of
Anderson's 1959 examples. ' The discrepancy resulted
from both author's heavy reliance upon distributional
identities of the form

While this relation obviously works for well-behaved test
functions, we will see in Sec. III that it fails for poten-
tially singular canonical operator products and that one
symptom of this failure is the ability to derive mutually
inconsistent results such as those obtained by Anderson
and Schwinger.

It is curious and unfortunate that neither author
seems to have been aware of the other's work and that
no one else thought the discrepancy worth understand-
ing. (In a 1968 review lecture Dirac did take note of
the fact that Schwinger's result suffered from the ambi-
guity associated with products of coincident 6 functions.
He did not, however, comment on Anderson's work or
conclude that the problem was hopelessly ill defined in
its unregulated form. ) Indeed, the decade's only other
original contribution to the factor-ordering problem was
the suggestion by DeWitt in 1967 to ignore it altogeth-
er. ' DeWitt noted that since all ordering ambiguities
are formally proportional to 6 (0) and its derivatives,
any dynamical effects from such terms can easily be
segregated. Furthermore, if one assumes that these iso-
lated terms can be separately regulated and renormal-
ized, simple invariance considerations make it plausible
that their net contribution to any renormalized physical
result must be zero. Thus the whole program of field
theory could be carried out as if the offending terms
were never present in the first place. Put simply,
DeWitt argued that 5 (0) and its derivatives should be
regarded as zero and this is, in fact, exactly what dimen-
sional regularization does. '

The weakness of DeWitt's argument lies in his need to
assume that ordering ambiguities can be renormalized
away. This may not be possible. Or perhaps it can only
be done for certain values of otherwise undetermined pa-
rameters of the theory. It is important to understand
that the theory is no better off in the functional formal-
ism than in the canonical. If one does not set 6 (0) and
its derivatives to zero in the functional formalism, then
the factor ordering problem appears in three guises: (1)
the functional measure (2) order-fi terms in the ac-
tion and (3) residual gauge dependence. It is not
known how to deal with these matters any more than it
is known how to order the canonical constraints. Claims
to the contrary, for example, those by Fradkin and Vel-
kovisky, ' are based on unregulated formal manipula-
tions or noninvariant point splitting. Covariant tech-
niques using dimensional regularization ignore the prob-
lem, they do not resolve it.

The last decade has witnessed a modest revival of in-
terest in the factor-ordering problem, though without
any improvement in the reliance upon singular-6-
function identities. In 1975 Christodoulou claimed a re-
sult in the context of the functional formalism. Komar
argued on general grounds that Hermiticity had to be
abandoned ' and in 1979, exhibited a supposedly con-
sistent non-Hermitian ordering which we will study
later in Sec. III. More recently new claims of a resolu-
tion have been made by Christodoulakis and Zanelli.
Undoubtedly more will come.

Given the incredible difficulties which already beset
quantum gravity in the covariant formalism and the fact
that dimensional regularization at least permits us to ig-
nore the factor-ordering problem, it is debatable whether
we should attempt a resolution at this time. On the oth-
er hand, the analogy with string theory suggests that
Dirac consistency may imply drastic restrictions on how
we can quantize gravity. Recent history makes it
clear that the factor-ordering problem will continue to
be studied. Given this, we feel that the effort should at
least be made properly. In particular, the problem can-
not even be meaningfully discussed until the singular
operator products which invalidate previous formal ma-
nipulations are first regulated.

Our paper consists of six sections of which this Intro-
duction is the first. Section II summarizes the gravita-
tional canonical formalism and defines the problem.
Section III explains why singular operator products
make regulation essential. As an example we examine in
detail the proof of Komar and show its inconsistency.
Section IV treats the necessity of employing an invariant
regulator and the problems with known techniques. In
Sec. V we discuss the implications of our results for
Ashtekar's new formulation of canonical quantum gravi-
ty. A brief conclusion comprises Sec. VI.

II. DEFINITION OF THE FACTOR-ORDERING
PROBLEM

The fundamental classical field of pure gravity is the
real, symmetric tensor g„,(x) with signature (+ ———).
Greek indices run from 0 to 3 while Latin ones run from
1 to 3. The points x comprise a four-dimensional space-
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time manifold ' 'M. It will be assumed that the action
functional S[g] is invariant under one-to-one mappings
which carry the coordinate label set of ' 'M onto itself.
Although the conclusions of this paper apply to any
coordinate-invariant metric (or vierbein) theory of gravi-
ty, we shall often use the Einstein-Hilbert action as a
concrete example:

5S[gl
5g J(x =O, x) p "(x =O, x)ax'

initial values by evolving with the canonical Hamiltonian
H[p, g]. Six of the Euler-I. agrange equations are thereby
realized through the definition of how to time evolve the
conjugate momenta

SFH[g]= f„, d x[ —' 'g(x)]' ' 'R(x) . (2.1) + [p '~(x), H [p,g ] ] =—0 . (2.6)

Here G is Newton's constant, ' 'R (x) is the Ricci scalar,
and ' 'g(x) is the determinant of g„,(x). By varying
S&H[g] the usual Einstein equations emerge:

[(4)R Pv( )
] )]v( )(4)R ( )]5g„(x) 16m.G

The other four variations of the action,

C, (x)—=2 [gl
5g '(x =O, x)

T( ) 2 5S[g]
5g (x =0 x)

(2.7a)

(2.7b)

X [(4) ( )]]/2 0 (2.2)

A well-defined initial-value problem requires eliminat-
ing local, time-dependent, general coordinate invariance.
We shall do this by imposing the synchronous gauge

g„a(x)=r1„0, (2.3)

where g„ is the Lorentz metric. There will generally be
coordinate singularities in this gauge but they should not
trouble invariant operators or invariant states. It is sim-
ple to show that any volume gauge condition such as
(2.3) leaves a certain amount of residual coordinate in-
variance; for the synchronous gauge one has the freedom
to perform time independent transformations of space
and time. Infinitesimally the most general transforma-
tion of this type can be written as the product of two
basic ones which we shall refer to as C (for "3-
coordinate"):

0 Up=0,
5 X":—'

8'(x) &@&0
(2.4a)

and T (for time)

r(x) Vp =0,
o—f ds g "(s,x)r, (x) V](4&0 .

(2.4b)

[g;, (x),p "(y) j = —,'(5,"5;+5;5," )5'(x —y) . (2.5)

One determines the fields at anytime x in terms of these

In these and all succeeding formulas a comma denotes
di6'erentiation and the Einstein summation convention is
in force. It will be assumed that the coordinate label set
of each constant-time, three-dimensional, spacelike sur-
face M in ' 'M is identical and topologically closed. This
may impose constraints on the noninfinitesimal descen-
dants of (2.4).

The canonical theory of classical gravity is formulated
on any spacelike surface M we shall use x =0. The
fundamental canonical field variables are the six g,"(x)
and their conjugate momenta p'~(x) at each point x&M.
These variables obey the usual Poisson-bracket relations

C, (x) = —2g,, (x)p'".„(x), (2.8a)

T(x) = —16mG [—,'g, , (x)g„,(x) —g,„(x)g,, (x)]1

—g(x)

Xp'~(x)p"'(x)+ &—g(x)R (x) .
16+6 (2.8b)

[In these and all subsequent expressions we shall follow
the usual canonical convention of working "covariantly"
on the 3-surface M. Thus, the semicolon in (2.8a) refers
to covariant diff'erentiation on with respect to the affine
connection formed from g,"(x);R(x) is the corresponding
Ricci scalar and g(x) is the related determinant. ] What-
ever action is used, the constraints (2.7) generate the re-
sidual symmetry group (2.4) which is of course why we
have been calling them C; and T. To be explicit, if we
consider the integrated forms

C[8]—= f d x 8'(x)C;(x), (2.9a)
M

T[rJ
—= f d x r(x)T(x), (2.9b)

and act them by Poisson bracket on a general functional
of the dynamical variables h [p, g]

5ch [p,g l= [C[8],h[p, g]],
5rh [p,g ]= [ T[r),h [p,g ]I,

(2.10a)

(2.10b)

then the resulting quantities are the infinitesimal C and
T transforms of h [p,g]. Applying this to the constraints
themselves it is straightforward to show

[C[8]],C[8~]) =C[8].V8~ —8i V8, ],
[C[8],T[r]]= T[8.Vr],

[ T[r] ],T[rz] I
=C[8]2],

8]2(x)=g (x)[ri (x)r2(x) ri(x)r2 (x)]

(2. 1 la)

(2.11b)

(2.11c)

(2. 11d)

do not vanish in this manner. A consequence of this
fact is that not all initial-value field configurations g;, (x)
and p'~(x) correspond to solutions of the theory. Since it
is really the Euler-I. agrange equations which express the
physics of gravitation, we must restrict attention to field
configurations for which the constraints (2.7) vanish.

For Einstein's theory these constraints work out to be
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(2. 12a)

(2.12b)IC, (x), T(y)I =5, (x —y)T(x),

IT(") T(y)I = —5;(x—y)lg "(x)C (x)+g "(y)C (y)] .

(2.12c)

In the corresponding quantum field theory g, (x) and
p'J(x) become field operators which commute in the usu-
al way:

[g;, (x),p"'(y)] = —(5,"5,' +5';5,")5'(x—y) . (2.13)

We shall usually be able to avoid being very precise
about the space of states A upon which they act, but the
general idea is easy enough to sketch in a highly formal
sense. States are represented by their wave functionals
V[g]—:&g I

+). The operators g,"(x) and p'~(x) act upon
them by multiplication and functional differentiation, re-
spectively. The inner product between two states is
defined by the functional integral

&q'i
I
q'z) = f [d—p][dg]F[p.g]q'i [p]

Xexp i f d x p'~(x)g, "(x) 4'2[g],

(2.14a)

4[p]—:f [dg]exp i f d x—p "(x)g,, (x) +[g] .

(2.14b)

The quantity F [p,g] represents the T and C gauge-fixing
functionals and their associated Faddeev-Popov deter-
minants. The functional measures are (very formally)

3

[dp]- g Q (d' )' 'dp "( )/2
xEMi & j=l

3

[dg] —g Q (d'x )
~ dg, (x) .

xEMi &j=i

(2.15a)

(2.15b)

This is sometimes summarized by saying that the vector
space of constraints forms an algebra under the multipli-
cation defined by the Poisson bracket. Because the com-
bination coe%cients on the right-hand side are them-
selves dynamical quantities, the gravitational constraint
algebra is said to be "open". However, we have been
unable to resist spoiling the terminology slightly by
referring to the fact that the constraints span an algebra
as "closure. " For our purposes it will often be more
convenient to work with the constraint algebra in its
unintegrated form

IC;(x),C, (y)I =5', (x —y)C, (x)+5' (x —y)C;(y),

ing. As our result is negative, they merely permit us to
study ambiguities of the problem which are independent
of the space of states.

Along with g,"(x) and p'~(x), quantization promotes
the constraints into operators. However, the precise ar-
rangement of the various noncornmuting factors which

comprise them remains to be specified. Whatever con-
vention is applied, it will not be the case that all states in
0 are annihilated by the constraints —any more that it
was that all initial value field configurations obeyed the
classical constraints. The set of states for which

C;(x) ql ) =0,
T(x)

I

ql) =0,
(2.16a)

(2. 16b)

comprises the physical subspace Az. Since it is only on
Bp that all the Euler-Lagrange equations are realized as
operator relations, Ap is the proper arena for quantum
gravity. The factor-ordering problem concerns whether
we can devise a convention for ordering the constraint
operators such that 0& has a chance of being nontrivial.

A constrained theory of canonical variables p and q is
said to be Dirac consistent if its constraints P„(p,q)
obey two conditions:

[4 A (p 'q ) PB(p q )] CABc(p q )4c(p, q»

[P~ (p, q ), H [p, q ]]=C~~(p, q)$~(p, q),

(2.17a)

(2.17b)

III. WHY THE PROBLEM IS ILL DEFINED

From the classical constraint algebra (2.12) it is clear
that the quantum result we are seeking is

where the coefficient functions C„~c(p,q) and C~~(p, q)
are nonsingular on the constrained subspace. The first
condition is a requirement for the existence of nonzero
states which are annihilated by the constraint operators.
Note that the coefficient C„sc(p,q) must stand to the
left of the constraint Pc(p, q) in (2. 17a). The second
condition merely implies that the constrained subspace is
preserved under time evolution. Since the Hamiltonian
of quantum gravity is one of the constraints (recall that
we are assuming M to be compact) condition (2.17a) im-
plies (2.17b). The failure of a general theory to be Dirac
consistent either means that the set of constraints is not
complete or that the physical subspace is limited to the
state 0. Because the constraints generate residual sym-
metries, with which it is inconceivable that quantum
gravity is more richly endowed than its classical limit,
we regard either situation as a disaster. The factor-
ordering problem consists of specifying an ordering for
the constraint operators so that this disaster is avoided.

The space A consists of the completion of the set of
states for which the norm given by (2.14) is finite. A
consequence of the nonrenormalizability of Einstein's
theory is that no one knows how to actually define this
inner product, and hence 0, very precisely. For this
reason we shall entirely avoid taking expectation values
and seldom bother identifying the states upon which our
operators act. Were we to announce a resolution to the
factor-ordering problem these omissions would be damn-

[C,(x), T(y)]=i5, (x —y)T(x),

[T(x),T(y)]= —i5 (x —y)[g~"(x)Ck(x)+g~"(y)Cr(y)] .

(3.lc)

(3.1b)

Of course we are actually going to conclude that the

[C (x), Ck(y)] =i 5(x—y)Ck(x)+i5 k( yx)C (y),
(3. la)
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whole problem is meaningless prior to regularization but
our method of seeing this will be to proceed to a con-
tradiction by following the usual, unregulated analysis.
Since the C constraints form a closed subalgebra we
shall begin with them and for definiteness we may as
well work with the Einstein theory.

From (2.8a) it is apparent that C;(x) is a sum of prod-
ucts of a single metric with a single momentum. Thus
the extent of the ordering ambiguity is a single commu-
tator. Whatever ordering we start with, we can always
write the constraint as

C;(x)= —2[g; (x)pj" k(x)+I,"k(x)p "(x)]+a5,(0),

(3.2)

where the number e depends upon the initial ordering.
Now the appearance of an ill-defined quantity such as
5, (0) in (3.2) ought to give one pause. However, the
usual statement at this point is that the final term is,
after all, a (t. number, and so drops out of commutators.
Thus it is asserted that the integrated C constraints gen-
erate conventional C transformations of operators, just
as their classical ancestors did:

5C/ [p g ]= i [C[~],—/ [p g ]] (3.3)

This implies (3.1a) and (3.1b), no matter what the value
of a is or how the T operator is ordered. We feel there
are grave problems with this line of reasoning. Arguing
that a divergent constant has no eft'ect on commutation
relations is just the sort of thing that can fail when the
theory is properly regulated. The reason is that the need
to preserve symmetries may result in the "constant"
becoming an operator in the regulated theory. We
should also point out that same logic used to conclude
that the C-T commutator of quantum gravity agrees
with its classical Poisson bracket also works for the C-T
commutator of bosonic string theory. Nonetheless it is
precisely this commutator which harbors the anomaly of
bosonic string theory. But as the issue stands out more
clearly for the T constraint we will face it there.
Opinion is divided as to whether the parameter a should
be determined by demanding "Hermiticity" (which gives
a = —3) or by requiring that C [8] generates a C trans-
formation on states

5,%[g]:— iC[0]4—[g]= f d'x 5,g~(x)
5g,, x

(3.4)

(which gives a=0). Although both conditions are naive-
ly plausible, neither is very well defined. True Hermiti-
city is formulated in the context of an inner product
such as (2. 14)—which must remain highly formal until
some sort of nonperturbative renormalizability is
discovered for gravity. Nor does an equation such as
(3.4) actually mean anything. The reason is that it can
only be defined for smooth field configurations g,"(x)
which form a set of measure zero in the usual function
spaces of quantum field theory.

From (2.8b) it is apparent that T(x) can be written as

T(x) = —16~6 —( —,'g, ,g„,—g,„g., )p 'Jp"

&—gz1

16~6

+P5'(0) g,~p "+) [5'(0)]'—g
(3.5)

where the IL numbers P and y parametrize the ordering.
Because the constraint contains terms quadratic in the
momenta there is no analog of (3.4) to determine these
parameters:

5r+[g]—= iT[r)—4[g J&f d x5rg, (x)
5g;, (x)

(3.6)

f(x)g (y)5'(x —y) =f(x)g(x)5'(x —y), (3.7)

have to be invoked in order to assemble the various field
operators which result from a typical constraint commu-
tator back into more constraints. Such identities are val-
id enough when f(x) and g(x) are smooth test functions
but ambiguities can arise when they become field opera-
tors. In particular if f(x) and g(y) commute to give
another 5 function (or a derivative of one) then (3.7) is
hopelessly ill defined.

Before considering the phenomenon as it applies to
the gravitational constraints we have found it useful to
study it in the much simpler, albeit somewhat artificial
context of a canonical scalar system in one spatial di-
mension:

[P(x ), 7r(y ) ]= i5(x —y) .

The one-dimensional analog of (3.7) clearly implies

(3.8)

Nor does Hermiticity give a unique answer. Rather one
must (attempt to) choose /3 and y so as to enforce (3.1c).
As (3.5) reveals, the T constraint is even more poorly
defined than the C one. In addition to 5 (0) it also con-
tains the doubly meaningless expression [5 (0)] . Furth-
ermore, both quantities multiply operators and so do not
drop out of commutation relations. Nevertheless, it
might be argued that once a given orderihg is selected
we can absorb the /3 and y terms by writing T according
to this convention. If the constraints are Dirac con-
sistent then they act as the zero operator on a nontrivial
physical space of states. Since zero is certainly a well-
defined operator, the ill-defined expressions which result
(supposing /3 and y to be nonzero) from commuting all
the p's to the right would be compensated by the fact
that the reordered operator was similarly ill defined
when acting on physical states. We shall not actually at-
tack this argument, though we feel it to be incorrect.
Instead we will demonstrate that it is not possible to
realize its premise, a Dirac consistent ordering, without
regularization.

To be more specific one can not prevent the appear-
ance of ill-defined expressions in checking Dirac con-
sistency. The reason is that distributional identities such
as
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+i/'(y)5(x —y) =0 . (3.12)

Two further applications of (3.9), once to shift the argu-
ments of the (now) rightmost P's (at which point we
have succeeded in reordering the original expression)
and once to shift the arguments of the vr's yield

(3.10)=5'(x —y) j [2$(x)ir'(y)+P'(x)~(y)]P(x)+x~y j .

5'(x —y )[f(x )g(x)+f(y)g(y)]

=5'(x —y)[f(y)g(x)+f (x)g(y)], (3.9)

for test functions f(x) and g(x). Recklessly applying
this relation to the expression

5'(x —y) [P(x)[2$(x)m.'(x)+P'(x)~(x)]+x~y j (3.10)

(which we might imagine as the result of commuting two
unspecified constraints) we easily obtain an inconsisten-
cy. First employ (3.9) to shift the arguments of the left-
most P's:

(3 1o)=5'(x —y) IP(y)[2$(x)m'(x)+P'(x)m(x)]+x~y j .

(3.1 1)

Now commute these fields to the right using the identity

[P(y), 2$(x)m'(x)+P'(x)~(x)]+x~y

=2ig(x)5'(x —y)+i/'(x)5(x —y) —2i P(y)5'(x —y)

=5'(x —y)[4ig'(x)5(x —y)] . (3.15)

%'hile this argument might be proclaimed as a proof that
5(x)5'(x)=0, it seems obvious that (3.10) was ill defined
to begin with and that our entirely formal manipulations
have merely served to expose this.

Let us now return to quantum gravity. In 1979 Ko-
mar announced a proof of consistency for the following
ordering:

C, = —g;, (p' „+I'„,p"') —(p' „+p"'I „, )g;, ,

T= —16~« g) '"I—"(—g)(-,'g„g„—g„g„)i "'

&—gR.1

16~G

(3.16a)

(3.16b)

Though even the C-C commutator could be criticized on
the general grounds we have raised, the argument be-
comes really compelling for the T-T commutator. To
get this Komar first defined

Upon subtracting (3.13) from (3.14) and simplifying, we
are left with an expression of highly dubious mathemati-
cal pedigree

0=5'(x —y ) [ [(5(x ), 2$(x )~'(y ) +Q'(x )~(y ) ]+x ~y j

=5'(x —y) [ —2i(h(x)5'(x y—)+i P'(x )5(x —y)

+2ig(y)5'(x —y)+i/'(y)5(x —y) j

(3.13) K(x) =—[—g(x)] T(x) (3.17)

However, starting from (3.10) we can use (3.9) to shift
the arguments of the ~'s, giving

(3.10)=5'(x —y) [P(x)[2$(x)m'(y)+P'(x)~(y)]+x~y j .

and then wrote

[T(x),T(y)]=[—g(x)] ' '[ —g(y)) 'i'[K(x), K(y)] .

The K-K commutator gives

+ [ —g(y)]'g "(y)C, (y)+ C, (y)g "(y)[ —g(y)]' j

(3.14)
I

—i[K(x),K(y)]= —
—,'5, (x—y)I [ —g(x)] g'~(x)C (x)+C (x)g "(x)[—g(x)]

(3.18)

(3.19)

and the problem reduces to commuting the second and fourth C's to the right. To accomplish this Komar applied
(the three-dimensional analog of) (3.9) to the troublesome terms of (3.19):

5, (x —y)[C, (x)g"(x)[—g(x)] +x~y j =5', (x —y)IC, (y)g "(x)[—g(x)]'+x~y j .

He then used the relation

[[—g(x)] g'"(x), C„(y)]=i5 „(x—y) [[—g(x)] g'"(x)+x~y j,
to perform the desired commutation

(3.20) =5;(x—y) [g'J(x)[ —g(x)] C, (y)+x~y j

=5, (x —y)[g'(x)[ —g(x)] C (x)+x~y j .

Setting this back into (3.19) gives

i [K(x),K—(y)] = —5;(x—y) [ [ —g(x)]'g "(x)C,(x)+x y j,

g(x)—i [T(x),T(y)] = —5;(x—y) g'J(x)C (x)+x~y

whereupon substitution into (3.18) and a further application of (3.9) produces the desired result
3/2

(3.20)

(3.21)

(3.22a)

(3.22b)

(3.23)

(3.24a)

= —5;(x—y)[g "(x)C,(x)+x~y ] . (3.24b)
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As noted, the problem with such manipulations is that products of noncommuting operators (or any operators) do not
constitute valid test functions. For example, in obtaining (3.20) it was necessary to use the distributional identity (3.9)
with

g ( —g)'g'.
(3.25a)

(3.25b)

By choosing f and g differently one can obtain contradictory results. For example, let us split the C; s into sums of
g,"—p"' products and then apply (3.9) separately to each term with f taken to be the p""s. Instead of (3.20) we obtain

5, (x—y){C (x)[—g(x)] g'~(x)+x~y } = —5', (x —y){[g~k(x)p"',(y)+I,k&(x)p"'(y)+p"', (y)g „(x)
+p"'(y)l, kl(x)][ —g(x)]'g "(x)+~ y } . (3.26)

After many tedious commutations and applications of (3.7) and (3.9) this can be written as

(3.26)=6, (x —y){[—g(x)] g "(x)C,(x)+x~y }
—i6 (x —y)5, (x —y)[ —g(x)] [5g'J, (x)+g'J(x)g '(x)g„, , (x)] .

(3.27)

Hence, Komar's K-K commutator is equal to

—i[E(x),K(y)]= —5, (x —y) {[ —g(x)] g'J(x)C~(x)+x~y }

+ —5 (x —y)6;(x —y)[ —g(x)] [5g' (x)+g' (x)g"'(x)gki J(x)] . (3.28)

The first term is Komar's result (3.23) so we have just
"proved" that the second term vanishes. Except, of
course, that the second term, and hence the whole ex-
pression, is ill defined by virtue of the fact that it con-
tains a product of coincident 6 functions.

Let us conclude by reviewing the logic. In order to
prove Dirac consistency it is necessary to employ 6-
function identities such as (3.7) and its derivatives for
test functions which include products of noncommuting
operators. Once this is asserted to be a valid step one
can use the identities difFerently to introduce meaning-
less distributional products [like 6(x)5'(x)] and produce
contradictory results. The ability to access meaningless
expressions and derive contradictory results by seeming-
ly legitimate applications of the stated (and in this case
necessary) rules is the hallmark of an ill-defined system.
Thus we conclude that the factor-ordering problem is ill
defined.

IV. REMARKS ON REGULARIZATION

The problems of the previous section obviously derive
from the need to use distribution theory identities such
as (3.7) with "test functions" which include ill-defined
products of noncommuting, local operators. Two points
deserve additional notice. First, problems with operator
products are not specific to quantum gravity. Thus one
might hope that techniques which work in other quan-
tum field theories can be applied to the gravitational
constraint algebra. Second, even commuting operators
generally have singular products in the presence of phys-
ically interesting states. Our concentration in Sec. III on
noncommuting products was only to avoid having to ac-
tually produce a physically interesting state for quantum
gravity.

Both facts are su%ciently illustrated by considering
the operator P (x) in free scalar field theory. In the

I

same spirit that we might argue the C;(x) constraints are
well defined with a=0 (because they act on wavefunc-
tionals by infinitesimally transforming the metric) so too
we would have to accept that P (x) makes sense. After
all it acts by simple multiplication in the position repre-
sentation. Yet the vacuum expectation value of this
operator is better known as the coincidence limit of the
free propagator and it diverges in two or more dimen-
sions. Thus even the nicest possible operator product,
with no noncommuting factors, in the nicest possible
theory, acts upon the simplest possible state of that
theory in an indisputably singular manner.

The general procedure for dealing with ill-defined ex-
pressions in quantum field theory is regularization and
this is obviously what should be done with the gravita-
tional constraint algebra. First regulate the theory to
make sense of all operator products, then attempt to en-
force Dirac consistency. It is clearly simplest to imagine
doing this with an invariant regulator; a little thought
leads one to the conclusion that it is also necessary. To
see this, note that the closure of the gravitational con-
straints is a consequence of general coordinate invari-
ance. Thus the regulated constraints are not expected to
close with a noninvariant regulator. For renormalizable
theories this is no more than a nuisance. One merely re-
normalizes the operators under study and then attempts
to enforce Dirac consistency in the now well-defined un-
regulated limit. For the Einstein theory we do not know
how to renormalize so there is no unregulated limit.
The only sense in which we can study Dirac consistency
for the Einstein theory is with the regulator on. But the
regulated constraints do not close —even classically—
when the regulator does not respect general coordinate
invariance. Hence an invariant regulator must be used.

Unfortunately no known regularization scheme is both
invariant and capable of removing the sort of diver-
gences one encounters in studying the canonical con-
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straint algebra. Dimensional regularization is sometimes
held up as a counter example but this is incorrect. It is
of course somewhat dificult to envisage the method in a
strong operator sense —what does the metric mean for a
nonintegral number of dimensions? —but even in the
weak sense there is a problem. The issue is how to inter-
prete the various 5 '(0) terms which are routinely pro-
duced in reordering products of coincident operators.
One argues that these are zero in dimensional regulariza-
tion by first introducing a mass, computing the desired
inner product, and then letting the mass vanish. ' This
procedure obviously breaks general coordinate invari-
ance and one is left to worry about potential anomalies.
Presumably these would arise in the covariant formalism
as violations of the Ward identities associated with
changing residual gauge conditions [F[p,g] in expression
(2.14a)]. Their absence, which has never been shown, is
equivalent to obtaining a consistent canonical factor or-
dering.

Other regulators are similarly unsatisfactory. The /-
function method does not really eliminate the necessary
divergences. To be more explicit, it will produce an
effective action from which finite Green's functions can
be computed as long as the fields are evaluated at
different points. However, as soon as the points are al-
lowed to coincide, which must happen to form nonlinear
constraints, divergent expressions result. Pauli-Villars
regularization can be made invariant through the use of
higher derivative actions but the resulting canonical
theory has a fundamentally different structure from the
original one. Furthermore, products of coincident
operators are still singular, just as with the g-function
method.

Point splitting certainly regulates everything but it is
very hard to formulate invariantly. The reason is that
general coordinate invariance requires that the separated

I

points have a geometrically meaningful relation to one
another. For example, we might require that they be
joined by geodesics. This is easy enough to do with
respect to a given background geometry, but it is of
course the full quantum geometry which must be used.
One then has to entertain the notion of evaluating opera-
tors at coordinates (the geodesic endpoints) which are
themselves operators. In itself this is not fatal, it at least
makes sense in perturbation theory —the real problem is
that any geometrically meaningful separation scheme it-
self introduces products of local operators. It might be
thought that point splitting can at least be used to regu-
late products of noncom m u ting operators in a C-
invariant (but not T-invariant) fashion. However, even
this is false, although the reason is rather subtle. Since
the point is potentially significant we shall go through
the argument.

Define the geodesic operator by the equations

X'(&)+1,' [X(&)]X'(t)X(t)=0,
X'(0) =X',
X '(0) =e,' (x ) V' .

Here e,' is the vierbein field operator on M:

g'J(x) =e,'(x)e](x)rj'"

(4.1a)

(4. lb)

(4. lc)

(4.2)

and the Lorentz index a runs from 1 to 3. Parallel
transport is accomplished by means of the operator

M'( V,X)=P exp + f dt X "(1—t)I' [kX(1 —t)]
0

(4.3)

where the symbol P denotes path ordering. The putative
regularization method consists of replacing the canonical
momenta of the operator under study with the smeared
expression

P'J(x)~P',~(x):—(2~e )
~ f d V exp 2

V'V r),& M/, M&P [X(1).] .
1

26'
(4.4)

One does nothing to the g,"(x)'s since parallel transport would carry them into themselves anyway.
The analog of (3.2),

C, (x,e)—= —2[g,,(x)P',"(x)]k+g)„, (x)P',"(x)+ I
—2[g,, (x),P', (x)] k+[g,„;( )x, P ~(x)]I, (4.5)

is well defined, at least as regards products of coincident,
noncommuting operators. On the other hand, the com-
mutator of two such constraints no longer gives a third
constraint. The reason has nothing to do with ordering;
even the classical Poisson bracket of two C;(x, e)'s is not
resolvable into more C, (x,e)'s. The real problem is that
the theory is still C invariant but the regulated con-
straints do not generate the symmetry. Therefore, they
do not close. Indeed we would not want them to do so
since this would imply the existence of a new symmetry.
To find the true C generators one must regulate the
gauge-fixed action and apply Noether's theorem. This
produces an unpleasant result: the old C constraints.

Actually we should have seen this corning. As long as
the theory is based on the fields g,"(x) and p'J(x) and is

t

C invariant, the old C constraints will always generate
the symmetry. It follows that what we really want in a
regulated theory is fewer degrees of freedom and a
different symmetry group which only approaches general
coordinate invariance in the unregulated limit. The
ideal procedure for regulating operator products is to
reduce the theory to a finite quantum mechanical sys-
tem. Latticization is the epitome of such methods; an
ultraviolet cutoff in a finite spacetime box is another ex-
ample. In such a system one could actually do some-
thing, freed from the crippling restriction of not even be-
ing able to take an inner product. Of course the catch is
finding a suitable symmetry group but this may not be as
impossible as it seems. Recently one of us (R.P.W. ) has
had success in discretizing the Virasoro algebra of bo-
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sonic string theory. As the two constraint algebras are
closely related one might hope to extend the method to
canonical quantum gravity.

V. NEW VARIABLES

It is important to understand that we have been dis-
cussing a very general problem of unregulated, local con-
straint algebras. The basic problem is that typical con-
straint commutators do not automatically assemble
themselves into more constraints. Instead it is almost al-
ways necessary to shift the arguments of certain fields

I

from x to y and vice versa using identity (3.7) or one of
its descendants. Once this is allowed the cataract of
disasters (3.10)—(3.15) cannot be avoided. A corollary is
that no change of variables can possibly eliminate the
need to regulate the constraints of quantum gravity be-
fore studying Dirac consistency.

As an example consider the spinorial variables recent-
ly proposed by Ashtekar, whose notation we shall fol-
low. Of course Ashtekar was very careful not to claim a
proof of Dirac consistency because of the problems we
have been discussing, but suppose we disregard his
caveat. The analog of (3.1c) for the spinorial system is

[Tr[& '(x)cr (x)*F,&(x)),Tr[cr '(y)cr (y) —F,d(y)]]= 6, (x —y) [q
' (x)Tr[cr '(x) F&, ( x)]+—x++y j (5.1)

It is tedious but straightforward to check that this fol-
lows from naive commutation, without the need to move
any of the q

'"'s to the left of the C constraint
Tr(o. ' Fb, ). O—ne might thus argue, as Ashtekar was
careful not to do, that this result is more valid than
Komar's. That such an argument would be nonsense
follows from the fact that one still has to use (3.7) [in its
derivative form (3.9)) in deriving (5.1}. It was this, not
the need for reorderings, that invalidated Komar's proof.

In fact the very same ambiguity we found in (3.15) is
easy to obtain for the spinorial system. Consider a sin-
gle one of the many terms on the right-hand side of (5.1):

6, (x —y) [q
' (x)Tr[o '(x) —+3, „(x)]+x~y ] . (5.2)

If (3.9) is regarded as valid —and we remind the reader
that this is the only way to derive (5.1)—then we can
rewrite this as

Commuting the q
' 's to the left, inside the bracketed ex-

pression, gives zero:

[q
' (y), Tr[cr '(x) A, b(x)]]+x~y

—6 b(x —y)Tr[& "(y)o '(x)+cr '(y)cr (x)]v'2

—6 b(x —y)Tr[o. "(x)o '(y)+cr '(x)o "(y)]=0.

(5.4)

Hence we have

(5.2)=6, (x —y)[Tr[cr '(x)—3, b(x)]q ' (y)+x~y ) .

(5.5)

Two further applications of ('3.9) result in the expression

(5.2)=6, (x —y)[Tr[o''(x) —3, b(y)]q ' (x)+x~y] .

(5.6)

However, by applying (3.9) differently to (5.2) we obtain

(5.2)=6, (x —y)[q ' (y)Tr[o '(x) —&, b(x)]+x~y } .

(5.3)

(5.2) =6, (x —y) [q
' (x)Tr[o '(x) 3, b(y)]+x~y )

(5.7)

Subtracting the two versions gives the same sort of para-
dox that we encountered in expression (3.15):

0=6, (x —y)[&2A'q ' (x)6 ~(x —y)

—&2fiq ' (y)6 „(x —y)]

=6, (x —y)[ —&2fiq ' ~(x}6(x—y)] .

(5.8a)

(5.8b)

VI. CONCLUSIONS

We have shown how the constraints of quantum gravi-
ty are hopelessly ill defined prior to regularization. The

Thus expression (5.1) is not one bit better defined than
the analogous result claimed by Komar.

It is perhaps worth pointing out that Ashtekar in-
tegrated his constraints up against smearing functions
while we have used the unintegrated form. This in no
way weakens our objection. The problem with using dis-
tributional identities such as (3.7) and its descendants up
against local operators is that products of noncommut-
ing operators are not valid test functions. Multiplying
the whole ill-defined expression by a smooth, nonzero
function and integrating does not change this. To obtain
a well-defined expression one would have to separately
smear each operator in the product first, before using
the product as a test function. This can be done of
course —it amounts to a noninvariant form of point
splitting —but then general coordinate invariance is lost
and the constraints consequently fail to close.

We conclude that no change of variables, Ashtekar's
included, can eliminate the need for regulating the con-
straints of quantum gravity. However, it does not follow
that changing variables cannot make the theory more
amenable to regularization and here Ashtekar's system
may have an advantage. In particular it has been sug-
gested that the SU(2) structure of Ashtekar's system per-
mits a natural lattice formulation. We refer the reader
to the so far unsuccessful but ongoing work of Renteln
and Smolin.
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problem is that examining Dirac consistency inevitably
involves using distributional identities such as (3.7) for
test functions which include products of noncommuting
operators. The ambiguities thus engendered are respon-
sible for the contradictory claims which have appeared
in the literature. ' ' ' Though we illustrated the prob-
lem using the T-T commutator, the C-T and C-C com-
mutators are also poorly defined and further problems
may exist because of products of commuting operators
which act singularly on physically interesting states. Fi-
nally, no change of variables can remove the need for
regularization.

Because the Einstein theory is nonrenormalizable its
unregulated limit is not presently definable (though one
might hope for some sort of nonperturbative renormal-
izability in the future). Thus the only context in which
one can currently study the Dirac consistency of quan-
tum gravity is a regulated theory with the regulator on.
This requires general coordinate invariance or some ana-
log of it. Existing methods either fail to regulate prod-
ucts of coincident operators or else sacrifice general
coordinate invariance in doing so. The most hopeful ap-
proach seems to be reducing to a finite-dimensional sys-
tem (for example a lattice) which possesses a symmetry
group that plausibly approaches general coordinate in-
variance in the (ill-defined) continuum limit.

Because ours is basically negative result we wish to

stress again that the problem of whether or not quantum
gravity is Dirac consistent is both real and potentially
important. A definitive answer must reach one of the
following conclusions.

(1) The gravitational constraints are Dirac consistent
for any choice of spacetime dimension, coupling con-
stants, and matter couplings.

(2) Dirac consistency follows only for certain values of
these parameters.

(3) No choice of parameters gives Dirac consistency.

Any of these results would be exciting, (2) most of all.
We stress again that this sort of thing can happen; ob-
taining D=26 for the spacetime dimension of bosonic
string theory is an example.

Note added in proof Afte. r this work was completed
we were apprised of a paper by Friedman and Jack in
which many of the same results are independently ob-
tained.
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