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The Everett-type interpretations of quantum mechanics and quantum cosmology proposed in-

dependently by Hartle, Geroch, and Wada are discussed. They essentially involve regarding a
strong peak in the wave function as a definite prediction. Wave functions in quantum cosmology
are usually peaked about correlations between coordinates and momenta, and methods for identi-

fying such correlations are introduced. The first method involves Wigner's function, a quantum-
mechanical analogue of the classical phase-space distribution. The properties of this distribution
are discussed and it is shown how it can be of use in describing the emergence of classical behav-

ior from quantum systems. The second method involves a suitably chosen canonical transforma-
tion. These methods are applied to harmonic-oscillator examples, which are of relevance to scalar
field fluctuations in inflationary universe models. These methods are also applied to WKB wave

functions in quantum mechanics and quantum cosmology. The manner in which the wave func-

tion becomes peaked about sets of classical solutions is elucidated. This is extended to include in-

homogeneous perturbations about minisuperspace in quantum cosmology, and the derivation of
the semiclassical Einstein equations, G, =8nG( T„,), from the Wheeler-DeWitt equation is con-
sidered. A condition under which they are valid is derived. It is essentially the requirement that
the distribution of T„, as a function of the matter modes, is strongly peaked about its average
value. Some situations in which this condition is satisfied are discussed.

I. INTRODUCTION

The problem of interpretation of the wave function in
quantum cosmology appears at first sight to be consider-
ably more difficult than that encountered in conventional
quantum mechanics. In conventional quantum mechan-
ics, one envisages an ensemble of identical systems, each
described by the state

~

0), and these systems are ob-
served by an external observer, described by classical
physics. It is then assumed that measurement of a vari-
able Q causes the wave function for each system to "col-
lapse" into an eigenstate of Q,

~
q ) say, where

Q ~ q ) =q
~ q ), and the measured value of the variable is

the eigenvalue q. It is further assumed that the relative
frequency with which a given value of q is obtained ap-
proaches the value

~

( +
~ q )

~

as the number of systems
in the ensemble approaches infinity. This is how the no-
tion of probability enters the theory —as a relative fre-
quency.

In quantum cosmology, on the other hand, the system
under consideration is the whole Universe, for which
there is no external observer, for which it is difficult to
accept the discontinuous change brought about by the
collapse of the wave function, and for which —since it is
a single system —the concept of probability has no
place. What appears necessary to do, therefore, is to re-
place the conventional "Copenhagen interpretation" of
quantum mechanics, with the interpretation variously
known as the "Everett, " "relative state, " or "many-
worlds" interpretation. ' There are a number of
di6'erent versions of this interpretation, but what they all
have in common is that they are based on formulations
of quantum mechanics designed to describe correlations
internal to an individual, isolated system. For this

There is an operator, called the relative-frequency opera-
tor f, , which corresponds to measuring the value of q
on each subsystem in turn, and then computing the rela-
tive frequency with which a given value, q =a say,
occurs. It can be shown that in the limit N~oo, 4' is
an eigenstate of this operator with eigenvalue

~

P(a)
~

(Refs. 2 and 3). That is,

f."e=
~

g(a) ~'q . (1.2)

reason, we shall refer to them generically as the quan-
tum mechanics of individual systems (QMIS).

QMIS begins by discarding all notions of external ob-
server, of collapse of the wave function, and especially,
of probability. Some of these notions, such as that of
probability, will arise naturally as a result of the formal-
ism of QMIS, but only in situations in which they are
appropriate. Now suppose we have an individual system
described by the state vector

~

4). In QMIS one as-
sumes only the following.

If
~

4 ) is an eigenstate of the observable Q, i.e.,

Q ~

4 ) =q
~

4 ), then observation of Q will yield the ei-
genvalue q, with certainty. If, however, Q is an observ-
able of which

~

+ ) is not an eigenstate, then there is no
prediction for the outcome of the observation.

Given the above postulate, it is obviously of
paramount importance to determine, for a given system,
the observables of which the state vector is an eigenstate.
One special case of particular interest is that in which
the individual system consists of N identical noninteract-
ing subsystems. Let us write the total wave function for
the individual system as
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In accordance with the above postulate, measurement of
the relative frequency returns the value

~

g(a) ~, with
certainty, in the limit of an infinite number of subsys-
tems. It is in this way that the familiar probabilistic in-
terpretation of quantum mechanics is recovered from
QMIS.

It must be emphasized that it is the subsystem wave
function P that is associated with the notion of probabil-
ity, not the individual system wave function %. The for-
malism of QMIS does not in any way associate 4 with
probability. Individual systems, such as those encoun-
tered in quantum cosmology, will not in general consist
of a large number of identical subsystems, in which case
the notion of probability does not enter the theory at all.

For those observables of which the quantum state of
the individual system is an eigenstate, there is no
difficulty in making predictions. However, it is quite
possible, if not most probable, that in situations of in-
terest the state is only an approximate eigenstate in some
sense. An important example is provided by the case de-
scribed above. The wave function (1.1) is an exact eigen-
state of the relative-frequency operator only in the limit
N~~. For the physically realistic case of large but
finite N, it will be only an approximate eigenstate. How
are we to interpret this?

Let us begin by elaborating on the notion of an ap-
proximate eigenstate. Suppose

~

4 ) is an eigenstate of
an observable Q, Q ~

4) =A,
~

+). Introduce a complete
set of eigenstates of Q, ~ q ) say, where Q ~ q ) =q

~ q ).
Then one may write

(1.3)

Since
~

'P) is an eigenstate of Q, (q
~

0') is a 5 function
5(q —X). If, however,

~

4) was only an approximate
eigenstate of Q, then (q

~
4) would be a smooth distri-

bution with a peak of finite height at q =A, . The ques-
tion of interpreting such distributions for individual sys-
tems has been considered by Hartle, Wada, and
Geroch. Hartle ofFers the following interpretation.

If 4 is sufficiently peaked about some region in the
configuration space, we predict that we will observe the
correlations between the observables which characterize
this region. If + is small in some region, we predict that
observations of the correlations which characterize this
region are precluded. Where 4 is neither small nor
sufficiently peaked, we do not predict anything.

The proposal of Wada is very similar. Geroch pro-
poses a version of the Everett interpretation in which all
predictions of quantum mechanics are expressed in
terms of "precluded regions" —regions in which the
wave function is "small. " It is then asserted that corre-
lations between the observables which characterize a
precluded region will not be observed.

These interpretations hinge very much on the rather
vague notions of "sufficiently peaked, " "small, " and
"precluded regions. " Naively, one might have thought
that in a region in which the wave function was very
small, but nonzero, observation of the correlations
characterizing this region is not totally impossible. In
response to this, I would say that such a belief is based

on an understanding of the meaning of the wave func-
tion gained from conventional quantum mechanics, in
which any configuration for which the wave function is
nonzero is not ruled out, since it has nonzero probabili-
ty. As has already been emphasized, however, one
should not in general attempt to associate the wave func-
tion with probability in QMIS. In the interpretations of
Geroch and Hartle, configurations for which the wave
function is "small, " even if nonzero, are ruled out. They
will not be observed. It is perhaps enlightening to quote
from Geroch's article at this point: "These precluded re-
gions become the sole 'reality' of the quantum world.
Our contact with the quantum world is entirely through
an innate understanding we have of precluded
configurations. "

To conclude this discussion of the interpretation, it is
worth remarking that this interpretation of quantum
cosmology, in which one takes a peak in the wave func-
tion to be a definite prediction, is in fact very much the
same as what one does in ordinary quantum mechanics.
For in conventional quantum mechanics, one has in
practice only a finite number of identical systems, and
thus the distribution of the relative frequency operator
in the above example is merely peaked about the value

~
1'(a)

~

. Therefore from the point of view of QMIS, in
asserting that

~
f(a)

~

is the probability, one is really
taking a peak to be a prediction.

The point of this paper is to apply this type of inter-
pretation to quantum cosmological models of the sort
that currently exist in the literature. We shall quite sim-

ply look for peaks in the wave function, or in distribu-
tions constructed from it. The question of how strongly
peaked a distribution has to be before we can regard it
as "sufficiently peaked" will not be addressed. The first
step in looking for these peaks is the identification of the
variables in which one expects the wave function to be
peaked, and this we now discuss.

In quantum cosmology the quantum state of the
Universe is described by a wave function V(q), which is
a solution to the Wheeler-DeWitt equation

(1.4)

where H is the Hamiltonian of the system. The "metric
representation" is almost always used, in which the vari-
ables q are taken to be components of the three-metric
h, and the matter field modes N on a three-surface. In
this representation, the wave function will not be peaked
around particular values of q, unless the model in ques-
tion possessed static solutions, which are not of cosmo-
logical interest. Nor will it be peaked at particular
values of p, the momentum conjugate to q, unless the
wave function is a plane wave, which is not usually the
case. Rather, one would expect that in certain regions
the wave function is peaked around a set of classical
solutions (in general nonstatic), i.e. , around some kind of
correlation between p and q. We will discuss methods
for identifying such correlations, and this will allow us
to see the manner in which the wave function becomes
peaked about sets of solutions to the classical field equa-
tions. Although the ultimate aim is to discuss quantum
cosmology, we will devote some space to discussing some
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simple examples from quantum mechanics.
We begin in Sec. II by introducing methods whereby

correlations between coordinates and momenta may be
identified, in the context of nonrelativistic quantum
mechanics. The main tool with which this is achieved is
Wigner's function, a quantum-mechanical analogue of a
classical phase-space distribution. This distribution
function has been used before in the literature, but pure-
ly as a mathematical device with which to calculate ex-
pectation values. Since it can be negative, it has not pre-
viously been interpreted as predicting correlations be-
tween coordinates and momenta. We show, however,
that it can be so interpreted, in certain situations of in-
terest. In order to back up the results derived from
Wigner's function, we show how a suitably chosen
canonical transformation may also be used to verify a
peak about a given region of phase space. These tech-
niques are applied to some simple examples in Sec. III.
They are the upside-down harmonic oscillator, the con-
ventional harmonic oscillator, and a set of many har-
monic oscillators. It is shown that the methods of Sec.
II yield peaks about sets of classical solutions, in the re-
gions where one would expect the behavior to be essen-
tially classical. These results are relevant to the study of
scalar field fluctuations in inflationary universe
models —they shed some light on the transition from the
quantum to the classical regime.

In Sec. IV WKB wave functions —wave functions of
the form e ' —are considered. It is shown that these
wave functions are peaked around the hypersurface in
phase space p =aS/ax. These wave functions are close-
ly related to the minisuperspace wave functions of quan-
tum cosmology, which are discussed in Sec. V. The gen-
eral formalism of these models is presented. It is shown
that a particular solution to the Wheeler-DeWitt equa-
tion is peaked around a subset of solutions to the field
equations. It is in this way that boundary conditions for
the Wheeler-DeWitt equation lead, in the classical limit,
to initial conditions on the classical solutions. In Secs.
VI and VII we consider perturbations about minisuper-
space. The main point of this is to consider the deriva-
tion of the semiclassical Einstein equations,

G„,=8~G( T„,)
from the Wheeler-DeWitt equation. Using the interpre-
tation described above, we derive a condition under
which the semiclassical Einstein equations are valid. It
is essentially that the distribution of T„, as a function
of the matter modes, is strongly peaked when T„ is
equal to its expectation value. Some situations in which
this condition is satisfied are discussed. Our conclusions
are presented in Sec. VII.

II. CORRELATIONS BETWEEN COORDINATES
AND MOMENTA

As already discussed in the Introduction, wave func-
tions in quantum cosmology, in which we are ultimately
interested, will be peaked not about particular values of
x or p, but about some kind of correlation between them.
In this section, therefore, we introduce methods for the

identification of correlations between x and p. These
methods will be discussed in the familiar context of non-
relativistic quantum mechanics, described by the
Schrodinger equation

+ V(x)% .
2m

(2.1)

The generalization to quantum cosmology will be con-
sidered in later sections.

A. Wigner's function

The first method we will use to identify the correla-
tions between x and p in the quantum state %(x, t) in-
volves the introduction of a quantum-mechanical analo-
gue of the classical probability distribution on phase
space. A candidate for such a distribution is the joint
probability distribution of Wigner. It is given by

F(x,p, t)= f du %*(x —
—,
'A ut)

Xe '~"%(x + —,'fiu, t) . (2.2)

It has the properties

f dp F(x,p, &)=
~

'Il(x, t)
~

f" dx F(x,p, t)=
~

'Il(p, t)

(2.3)

(2.4)

where 4(p, t) is the Fourier transform of %(x, t) It fol.-

lows that F may be used to obtain the correct expecta-
tion values of any function of the coordinates or momen-
ta. For example, (x ), the expectation value of x, nor-
mally given in terms of the usual inner product by
(%,x4), is given in terms of Wigner s function by

(x ) = f dx f dp xF(x,p, t) . (2.5)

Wigner s function can give incorrect results for quanti-
ties of the form (xp ), unless care is taken with operator
ordering, but this will not affect any of the results of this
paper. Using (2.1), one may derive the following equa-
tion for F:

dF p dF dV dF A' d'V d F
dt m Bx dx Bp 24 dx (jp

In deriving (2.6), it was assumed that V(x), the potential
in the Schrodinger equation, could be expanded in a
Taylor series. The ellipsis indicates higher-order terms
in this series, involving higher powers of A and higher
derivatives of V and F.

The existence of a quantum-mechanical probability
distribution on phase space may be a little surprising at
first sight, bearing in mind that one cannot measure x
and p simultaneously. However, although F is real, it
may take negative values, so it is not a genuine probabil-
ity distribution. It is because of this property that previ-
ous authors have declined to interpret Wigner's function
as a physically significant probability distribution on
phase space. Rather, they regarded it merely as a
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mathematical object in terms of which one could develop
an alternative formulation of quantum mechanics. Con-
sider however, the equation for F, (2.6). If either (i) the
third and higher derivatives of V were identically zero,
or (ii) terms of order fi were neglected, then (2.6) would
be precisely the continuity equation for a classical proba-
bility distribution on phase space. In this paper we will
be considering quadratic potentials, for which (i) is cer-
tainly true, or we will work in the WKB approximation,
for which (ii) is true. Moreover, F will turn out to be
positive in the cases we consider. It follows therefore,
that in these cases, one can regard F as a physically
significant joint probability distribution on phase space,
and this is indeed what we shall do here.

The natural way to interpret this joint probability dis-
tribution is as follows: if F is of the form Fi(x, t)Fz(p, t),
then we shall say that the wave function predicts no
correlation between x and p; if, on the other hand, F is
strongly peaked about some region of phase space,
p =g(x) say, then we shall say that the wave function
predicts this particular correlation between the coordi-
nates and momenta. The expression p =g(x) typically
turns out to be a first integral of the equations of
motion.

III. SIMPLE QUANTUM-MECHANICAL EXAMPLES

A. The upside-down simple harmonic oscillator

The first example is the upside-down simple harmonic
oscillator (USHO), i.e., a particle moving in one dimen-
sion with the potential

V (x ) = —
—,
' kx, k & 0 . (3.1)

This model has previously been used by Guth and Pi to
discuss the "slow roll down" of the scalar field in
inflationary universe models. " The Schrodinger equa-
tion for the model is

(3.2)

It may be solved by the ansatz

%(x, t)= A (t)exp[ B(t)x ] . — (3.3)

In order to fix ideas and demonstrate the usefulness of
Wigner's function, we apply the methods of the previous
section to some simple exactly soluble models, with a
quadratic potential.

B. Canonical transformation

A second method for showing that the wave function
is peaked about a particular region of phase space is to
perform a canonical transformation. Classically, one
may transform from the variables x,p to new canonical
variables x,p using the generating function GD(x,p ):

BGDp=, x=
x

BGD

Bp
(2.7)

X(p, t)= f dx exp ——G(x,p) O(x, t) .
oo

(2.8)

In quantum mechanics the transformation from the
wave function %(x, t) to the new wave function X(p, t) is
given by

The wave function is taken to be a Gaussian at t=0,
centered at x=0; thus B (t) is real at t=O The n. ormal-
ized solution satisfying this initial condition is

( mk )
' sin2$ i sin—h2cotB(t =

2irt cos2$+ cosh2cot
1/4

A (t)= [cos(((l —i cot) ]
(mk)'~ sin2$

2~%

(3.4)

(3.5)

where P is an arbitrary real constant and co=(k/m)'
P is restricted in such a way that sin2$ & 0 for ReB & 0
and so for (3.3) to be square integrable.

Before looking for the peaks in this wave function,
consider first the classical solutions. Classically, x(t)
satisfies the equation x —m x =0 which has solution
x (t) =De ' for t »0, for some constant D. Since
p =mx, this corresponds to the path in phase space

p =(mk)' x . (3.6)
The quantum-mechanical generating function G may be
determined by demanding that X(p, t) satisfies the
Schrodinger equation derived from the new variables
x,p, given that iII(x, t) satisfies that derived from the old
variables x,p. One thus finds that G =G0+ AG

& +
where G0 is the classical generating function. We will
work only to leading order in A when using this method,
so G, will not be required. '

The idea now is to choose the new canonical variables
so that the region of phase space of interest is given by
p=O. The new wave function (2.8) will then indicate the
extent to which there is a peak about this region. This
method is less powerful than the previous one, in that it
is necessary to anticipate the correlation in advance in
order to choose correctly the canonical transformation.
It will be used merely to back up the results obtained us-
ing Wigner's function.

We now calculate Wigner's function for the USHO.
Inserting (3.3) into (2.2), one obtains

F(x,p, t)=exp
—p —4irt

~

B
~

x +2i h'(B B' )xp-
B+B*

(3.7)

2

F(x,p, t) =exp B+B*
4A' iBi x

Q exp B+B' (3.8)

Here, the normalization (%,~p) = 1 has been used to elim-
inate A (t). Since the exponent is real, F is positive.

At t=O, B (t) is real, hence
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The distribution is thus a product of a function of x and
a function of p. It follows that there is no correlation
between x and p. For t ~&0, on the other hand,

r

(mk)i~~ l
sin2$e

2
(3.9)

and Wigner's function is then given by

2' t
F(x,p, t) =exp

2iri(mk)'~ sin2$

X [p —(mk)' x] (3.10)

p=p —(mk)'~ x, x =x . (3.1 1)

This transformation is generated by the generating func-
tion Go ——xp+ —,'(mk)'~ x . Inserting (3.3) into (2.8) and
taking B to be given by (3.9), one finds that the term
proportional to x in Go cancels the imaginary part of
B. To leading order in A, one thus obtains

X(p, t)= dx exp ——xp-i (mk)' sin2$

As trop, therefore, the distribution becomes progres-
sively more peaked about the trajectory p =(mk)' x,
the classical trajectory in phase space.

From (3.7) one can see the condition that must be
satisfied for F to be peaked around the classical path in
phase space. It is ~ReB

~
&&

~

1mB ~. This property of
Wigner's function —that it allows one to see the condi-
tions under which one may use classical physics —is an
advantage over the distribution used by Guth and Pi."
They wrote down the distribution

~

4(x, t)
~

5(p
—(mk)' x ) and then justified its use afterwards. They
also needed to invoke other arguments to establish its
range of validity.

The result that the wave function predicts the peak
about a path in phase space may also be derived using
the canonical transformation

V(x ) = + —,
' kx, k & 0 . (3.13)

Normally one solves the Schrodinger equation for this
model by expanding the wave function in eigenfunctions
of the Hamiltonian. Here, however, for simplicity, we
will again use the ansatz (3.3). This ansatz is appropri-
ate to the situation in which one has a time-dependent
SHO which starts out in its ground state, a situation
which arises when considering the functional
Schrodinger quantization of a scalar field in an

inflationary universe model. "'

The general solution for B (r) is

( m k )
i ~i sinh2$ —i sin 2'�(t —to )

B (&)=
2A' cosh2$ —cos2o~(t —to )

(3.14)

ApF(x,p, t)=exp — exp[ —fi(mk)' x ] .(mk)'"

(3.15)

x and p are therefore uncorrelated, and there is no peak
about a trajectory in phase space. For /=0, on the oth-
er hand, one finds that the wave function is in a superpo-
sition of excited states and Wigner's function is then
given by

where P is again an arbitrary real constant and
oi=(k!m)'~ . We restrict P to be positive, for ReB&0.
In the case of the USHO, the correlation between x and

p changed in time —the wave function became progres-
sively more peaked about a superposition of classical
paths as the particle rolled down the potential. In this
case, however, B(t) is oscillatory in t, and the wave
function does not change over long time scales t ~&co
For each value of the arbitrary constant P, it is in a par-
ticular superposition of energy eigenstates. The precise
relation between P and the coefficients of the superposi-
tion may be determined by expanding (3.3) in energy
eigenstates. For P»0, one finds that the wave function
is essentially in the ground state and Wigner's function
is given by

Qe "x F (x,p, t) =exp
2iri sin co(t —to)

(mk)'~ sinh(b

2') t

=exp —
&&2 p4iri(mk)'~ sin2$

(3.12) X [p —(mk)'~ cotco(t to )x]—
This wave function becomes progressively more peaked
about p=0 as t~~, so once again we see the peaking
around the classical trajectory p =(mk)' x. Note that
although the wave function is peaked about a single path
in phase space, this corresponds to a set of classical solu-
tions in configuration space. The wave function is there-
fore regarded as corresponding to a superposition of
classical solutions satisfying the first integral (3.6).

B. The (rightway-up) simple harmonic oscillator

Our second example is the conventional harmonic os-
cillator, i.e., a particle moving in one dimension in the
potential

F is therefore peaked about the correlation

p =(mk)' coto~(t —to )x,

(3.16)

which is a first integral of the equations of motion. Un-
like the previous case, this first integral involves the ar-
bitrary constant to, because we did not impose an initial
condition on the wave function.

C. Many identical harmonic oscillators

In the previous examples, it was shown that the wave
function could become peaked around the region of
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+1v(x, , . . . , x1v, t) =%(x„t) . 4(x~, t), (3.17)

where each wave function 4( xt) is taken to be of the
form (3.3), with A (t) and B (t) independent of i; thus,

N

%1v(x, , . . . , x1v, t)= A (t)exp B(t) g—x, (3.18)

Again the probability of finding the particle between
(x; ] and [x, +dx; I

at time r is

I P1v I

'«1 dxx, (3.19)

which is peaked at x, =0. However, the wave function
depends not on the individual x s, but only on the vari-
able r, defined by

r =x) + '''+x~2 2 . . . 2 ~ (3.20)

thus it is of interest to ask for the distribution of r.
Change variables, therefore, from jx, ) to spherical po-
lars [r,e„.. . , 01v, ), where the 0's are angular vari-
ables. The probability distribution of r is then given by

phase space corresponding to a first integral of the equa-
tions of motion. On integration, this corresponds to a
set of paths in configuration space, e.g. , the set x =De ',
for the USHO case, parametrized by the arbitrary con-
stant D. In the region where the wave function exhibits
this behavior, one can then interpret

I

4
I

as a proba-
bility measure on this set of solutions:

I
%(x, t)

I
dx is

the probability that one of the classical trajectories will
pass through the surface t=const between x and x +dx
(Ref. 13).

This measure on the classical paths is not very in-
teresting unless it is strongly peaked at some value of x,
at each time t. In the previous examples,

I

4
I

is a
Gaussian peaked at x =0, but the peak is not very
strong. A much more interesting case is that of N iden-
tical harmonic oscillators (either SHO or USHO), for
large N. The total wave function for this system is

One therefore has

(bM1v) 1 (M'& —(M
(M &'

(3.26)

and this tends to zero as N~ oo. It follows that the dis-
tribution of M& becomes progressively more peaked
about its average value as N becomes large.

The simple models of this section are relevant to sca-
lar field theory in inflationary universe models, not only
for the homogeneous mode —as discussed by Guth and
Pi"—but also for the inhomogeneous modes. Close to
the maximum, or the minimum, of an inflationary poten-
tial, the scalar field modes will behave, respectively, like
a USHO or an SHO. The above results then allow one
to determine the conditions under which it is permissible
to replace the quantum-mechanical evolution with classi-
cal evolution. Moreover, the results of Sec. IIIC indi-
cate why one can take (4,„& as the initial value for 4,
where N, is the operator-valued quantum field and + is
its classical counterpart. As we shall see in Sec. VII,
when expanded in harmonics, N decomposes into sets of
n identical harmonic oscillators, where n is the mode
label. For large n, the distribution of the modes will be
peaked very close to their rms value. This quantum to
classical transition is discussed further in Refs. 13 and
14.

IV. WEB WAVE FUNCTIONS

Suppose also that one has a system again with a wave
function of the form (3.17), but here with no assump-
tions made about the wave function for the identical
subsystems +(x, , t) .Then (M1v & =X(M & with (M &

independent of the subsystem label i. Now let us consid-
er the deviation of M~ from its average value. This is
given by the variance hM~. Now

(aM„)'=(M '& —(M„&'

=X(M &+(N —X)(M & 1V (—M & . (3.25)

I p1v
I

" d" df11v »— (3.21)

where d Q,~, is a measure over the angular variables on
which the wave function does not depend. It is easy to
show that the distribution (3.21) is peaked around

1/2

In this section, to make the link with quantum
cosmology, we apply the methods of the previous section
to WKB wave functions, that is, to wave functions of the
form

r=r = N —1

2(B +B*)
(3.22) 1P =C(x, t)exp —S (x, t) (4.1)

The significance of this may be seen by computing the
rms value of r. It is

j/2

( 2&1/2 '2 ( 2& '1/2 N
2(B +B') (3.23)

M~(x1, . . . , x1v ) =M (x, )+ +M (x~ ) . (3.24)

For large N therefore, the distribution of r is strongly
peaked around a value very close to r = ( r &

'/ .
This result, first outlined by Wada, is a special case of

a more general result which is essentially the central lim-
it theorem. Suppose rather than r, one has a more gen-
eral quantity Mz of the form

as
at

as
2m Bx

2

+ V(x) . (4.2)

Similarly, the order-A' terms yield an equation for C:

1 aSac ac
m Bx Bx Bt

+
a's

2m
(4.3)

Wave functions of this type emerge when one solves the
Schrodinger equation using the WKB approximation, re-
garding A as a small parameter, as we now show. Insert-
ing (4.1) into the Schrodinger equation (2.1), one finds
that the order-A' terms yield the Hamilton-Jacobi equa-
tion for S:



3632 J. J. HALLIWELL 36

Solutions to the Schrodinger equation of the form (4.1),
with S real, typically arise in regions in which the behav-
ior is essentially classical. We will show that (4.1) is
peaked around the region of phase space described by
the equation p =OS/Bx. This equation defines a first in-
tegral to the classical equations of motion, as may be
shown using the Hamilton-Jacobi equation (4.2).

Strictly speaking, one cannot apply the methods of the
previous section [i.e. , calculate Wigner's function or per-
form the canonical transformation (2.8)] for wave func-
tions of the form (4. 1) because they are not in general
square integrable. However, we are assuming that (4.1)
is an approximation to a square integrable wave func-
tion, valid in some region, and that there are small imag-
inary corrections to S which will make (4. 1) square in-

tegrable. In the harmonic oscillators of the previous sec-
tion, for example, the wave functions are of the form
(4.1) for t »0 in the USHO case and for /=0 in the
SHO case. In the exact wave functions for these cases
there are extra terms in the exponent which would not
be noticed by the WKB approximation if S is taken to
be real, and these terms are indeed sufficient to make the
wave functions square integrable. These extra terms
merely spread out the peaks we are looking for —they
do not alter their location.

We begin by calculating Wigner's function for (4.1).
Inserting (4. 1) into (2.2) one obtains

guarantees that this probability is independent of the
choice of surface t=const, i.e., it expresses conservation
of probability.

One can derive the same result by performing a
canonical transformation to new variables p, x defined by

p=p—as
X =X

c)x
(4.8)

g(p, t) =6(p ); (4.9)

hence there is a peak at p=o. The prefactor C is not in-
cluded here because it contributes at the same order as
the quantum correction G, to the classical generating
function, and we have not calculated G, .

It is also of interest to consider the case when S is
purely imaginary, iS = —I say, where I is real and posi-
tive. This situation arises in regions which are normally
regarded as classically forbidden, such as tunneling re-
gions. Wigner's function is then given by

F(x,p, t) = f du C*(x ——,'A'u)C(x + —,'iriu)

1
X exp —i up — I (x ——'A—'u )

This transformation is generated by the generating func-
tion Go(x,p)=xp+S(x, t). To leading order, (2.8) then
yields

F(x,p, t)= f du C*(x —
—,'iriu)C(x+ ,'flu)—

)& exp —i up ——S(x — fiu )—1

2

(4.10)I(x + ,'fiu)——1

+ —S(x + —,'A'u) (4.4)

The important di(ference between (4.10) and (4.4) is that
the two terms involving I in (4.10) have the same sign,
whereas in (4.4) the two terms involving S have opposite
signs. To order A', (4. 10) yields

C*(x —
—,'Au)C(x + —,'fiu)=C (x)+O(fi ) . (4.&)

Similarly,

where the dependence on t has been suppressed. The in-

tegral can be evaluated approximately by expanding the
integrand to order A . Since S is real, it follows from
(4.3) that C is also, and thus the expansion of the terms
involving C in the integrand yields

F (x,p, t) =
~

C (x) 'exp — I (x ) 5(p—) . (4.1 1)

The important feature of this expression is that it is a
product of a function of p and a function of x. It follows
x and p are uncorrelated. There is therefore no peaking
about a set of classical paths, which is consistent with
regarding the region under consideration as classically
forbidden.

S(x + —,'irlu) —S(x ——,'ih'u) =iriu (x)+O(& )
dS 3 (4.6) V. QUANTUM COSMOLOGY:

MINISUPERSPACE MODELS

Equation (4.4) may thus be evaluated to yield

F(x,p, t)=
~

C(x)
~

5(p —BS/Bx )

plus terms of order A . There is therefore a peak on the
first integral p =OS/Bx. The prefactor C gives a proba-
bility measure on the set of trajectories in configuration
space for which mx =p =OS/Bx:

~

C(x, t)
~

dx is the
probability that a trajectory x (t) will intersect the sur-
face t =const between x and x +dx. Equation (4.3)

The examples of the previous sections have paved the
way for the discussion of peaks in the wave function in
quantum cosmology, to which we now turn. Quantum
cosmology involves the quantization of gravity coupled
to matter using the as-yet incomplete formalism of quan-
tum gravity. One represents the quantum state of the
Universe by a wave function 4[h,",&0], a functional on
superspace, the space of all three-metrics h, and matter
field configurations on a three-surface, normally taken to
be compact. ' The full superspace formalism of quan-
tum cosmology is very difficult to deal with in practice



36 CORRELATIONS IN THE WAVE FUNCTION OF THE UNIVERSE 3633

ds = —(N N; N')dt —+2N; dx 'dt

+h,,dx'dx', (5.1)

where i,j=1,2,3. N is the lapse function and N; is the
shift vector. It is most common to take N to be homo-
geneous N =N(t) and N; =0. We shall do that here.
For the case in which the matter source is bosonic, a
wide range of minisuperspace models are described by an
action of the form

since it involves functional differential equations—
differential equations in an infinite number of variables.
Attention has been concentrated, therefore, on simplified
models whose configuration space is a finite-dimensional
approximation to superspace called minisuperspace. A
minisuperspace is defined by restricting the metric and
matter fields to a particular functional form in such a
way that all but a finite number of modes of the fields
are frozen. In a minisuperspace model, therefore, the
state of the system is described by a finite number of
variables q'(t), say, where a =1,2, . . . , n. There are
clearly many ways in which minisuperspace approxima-
tions to the full superspace can be constructed. ' The
most common way is to restrict the fields to be homo-
geneous. For example, q'(t), with a = 1,2, could
represent the scale factor of a Robertson-Walker metric
and the homogeneous mode of a scalar field. We begin
by describing the general formalism of minisuperspace
models.

The standard 3 + 1 form of the metric is

2N
f,bq'q + U(q) =0 . (5.5)

It is important to note that the general solution to the
system (5.3),(5.5) will involve (2n —1) arbitrary parame-
ters. Equations (5.3) and (55.) are equivalent, respective-
ly, to the space-space and time-time components of the
Einstein equations.

Canonical momenta are defined in the usual manner:

Ba'
(5.6)

The Hamiltonian is then given by

II =p, q' —L =N f' p,pb+M U(q) . (5.7)
2M

Since N is arbitrary, the Hamiltonian vanishes. One
thus obtains the Hamiltonian constraint

(5.8)

which is just the phase space form of (5.5). Strictly, one
ought to use the Dirac procedure for constrained Hamil-
tonian systems to analyze this system, but this is very
straightforward and leads to the same conclusions. The
Hamilton equations derived from (5.7) lead to the
phase-space form of (5.3), which is

term in minisuperspace. Variation with respect to N
yields the constraint

I= L dt + I a + bp c+M2yab 01 d '
1 aU

N dt b
(5.9)

1=M dt N 2,b
q' q'q" —U q (5.2)

+ I b q q'+fNdt N b
(5.3)

where f ' is the inverse metric and

r;, = ,'f'(f,„,+f„,—f„,)—. (5.4)

Equation (5.3) describes geodesic motion with a forcing

where f,b is a metric on minisuperspace and M is the
Planck mass. q'(t) represents certain components of the
three-metric h, and certain modes of the matter fields.
This action is obtained by inserting the minisuperspace
ansatz for the metric and matter fields into the full ac-
tion for the gravity-plus-matter system. The gravitation-
al action may be the usual Einstein-Hilbert action but
may also include higher derivative terms. [It must be
remarked that the field equations derived by varying the
action (5.2) will not in general be the same as those ob-
tained by varying the full action and then inserting the
minisuperspace ansatz. In most of the minisuperspace
models constructed so far, however, this problem does
not arise. ] The remnant of general covariance in (5.2) is
reparametrization in variance, which expresses itself
through the arbitrariness of the lapse function N(t)

Variation with respect to q' yields the field equations

Here the indices on the momenta are raised and lowered
using the metric f,b.

Using the substitutions p, ~—i 0/Bq, the Hamiltoni-
an constraint is quantized to yield the Wheeler-DeWitt
equation:

1
V +M U %(q') =0

2M
(5.10)

(in this and the next section we use units in which fi= 1).
We have chosen an operator ordering in (5.10) such thatf' p, pb is replaced —by V, the Laplacian in the metric
f,b. Other operator orderings are possible, but this one
seems to be the most natural, having the virtue of being
invariant under changes of coordinates in minisuper-
space. One can also include a curvature term IR, the
curvature constructed from f,b. These choices relating
to operator ordering will not affect the conclusions of
this paper. f,b is almost always of hyperbolic signature,
in which case the Wheeler-DeWitt equation has the form
of a Klein-Gordon equation in an n-dimensional curved
space-time, with a space-time-dependent mass term.

On solving the Wheeler-DeWitt equation, one in gen-
eral finds that there are regions in which the behavior of
the wave function is predominantly exponential and re-
gions in which it is predominantly oscillatory. We shall
interpret the exponential regions as classically forbidden
regions, since, as argued in the previous section, a wave
function of this type does not indicate a strong correla-
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tion between coordinates and momenta —it is not
peaked about a particular path in phase space. It has
been argued elsewhere that an exponential wave function
corresponds, in the classical limit, not to a Lorentzian
four-geometry, but to a Euclidean four-geometry. ' This
argument is in turn based on the assertion that the
Wheeler-DeWitt equation is the same if the canonical
quantization formalism leading to its derivation is in
terms of a Euclidean four-metric rather than the usual
Lorentzian one. Not all authors are in agreement on
this point, however. '

To interpret the wave function in the oscillatory re-
gion, one may use the WKB approximation, in which
one writes

F(q', p, )= f d "u[ f (—u)]' 'P*lq' ——,'u')
a

&(e '4(q + —,'u'), (5.18)

where f =det(f, b ), and (2.8) becomes

X(p, ) = f d "q[ f (q)]'~—exp[ iG (—q', p, )]+(q'),

be able to show that this wave function predicts correla-
tion between coordinates and momenta of the form
(5.14). This can be done by introducing appropriate gen-
eralizations of Wigner's function (2.2) and the canonical
transformation (2.8). Equation (2.2) becomes

%(q)=exp[iM So(q) +i S(q)+O(M )], (5.1 1) (5.19)
where So is real and M is regarded as a large parameter.
Inserting (5.11) into (5.10), the order M terms yield the
Hamilton-Jacobi equation

, .„Bso iso
,'f' —+U(q)=0.

Oq' aq'

The order-M terms yield an equation for S, :

„as, as,—i 7' So+2f'" =0 .
aq' Oqb

(5.12)

(5.13)

So is real, so S& is purely imaginary and the WKB pre-
iS(factor C =e is real.

As in the previous section, we shall argue that the
wave function (5.11) is peaked around the hypersurface
in phase space

, as,+2
Bq'

(5.14)

Before doing this let us show that (5.14) is a solution to
the field equations. Clearly the p, defined by (5.14) satis-
fy the constraint equation (5.8), by virtue of (5.12). To
show that (5.12) satisfies (5.9), differentiate (5.12) with
respect to q'. One thus obtains

as, os, , as, a's,
,'f'", , +f'—, + =0 .

Qq Qq Qq Qq Qq Qq
(5.15)

The form of the second term in (5.15) invites the intro-
duction of the vector

„as,ab
a

~

bd'T Bq Bq
(5.16)

dPe 1,b 2 9U+ f',p,pb+M =0 .
2M2 Bq'

(5.17)

Using f'" to raise the indices on the momenta, after
some rearrangement one obtains (5.9), as required.

Consider now the interpretation of the wave function
(5.11). As in the previous section, one would expect to

for some parameter ~. When operated on q' it implies,
via (5.14), the usual relation between velocities and mo-
menta (5.6), provided that r is identified with proper
time JÃdt. Using (5.14), (5.15) may now be written

where G =q'p, +So(q). As in the previous section the
WKB wave functions (5.11) are not square integrable.
In the case of nonrelativistic quantum mechanics, dis-
cussed in the previous section, however, it was argued
that this presented no problem because the WKB wave
functions were approximations to square-integrable wave
functions. Indeed, there is a very good physical reason
why they should be square integrable. Nonrelativistic
quantum mechanics is the theory of point particles
which are localized to a perhaps large, but nevertheless
finite region of space:

~

0
~

must go to zero at infinity.
Quantum cosmology, on the other hand, deals with the
dynamics of closed universes in superspace. There is no
analogous physical reason why

~

4
~

should go to zero
at the boundary of superspace. Unless very special, pos-
sibly unphysical, boundary conditions are imposed, the
wave function will not in general be square integrable.
The expressions (5.18) and (5.19) are therefore ill defined.
In the absence of a more complete theory of quantum
gravity, there is little we can do about this. However,
note that in the previous section it was possible to evalu-
ate Wigner's function and the canonical transformation
without actually knowing that the WKB wave functions
were approximations to square-integrable wave func-
tions. We shall therefore do the same here. It is possi-
ble that the justification of this may come from con-
structing path-integral versions of (5.18) and (5.19) and
then evaluating them in the semiclassical approximation.
This is very much in line with the recent suggestion of
Hartle, that one should abandon attempts to construct a
quantum theory of gravity using the conventional
machinery of Hilbert space and work instead solely with
the path integral.

Using either (5.18) or (5.19), as in the previous section,
it is straightforward to show that the WKB-type wave
function (5.11) is indeed peaked on the hypersurface in
phase space (5.14). This equation is a set of n first-order
difterential equations for each solution So of the
Hamilton-Jacobi equation, and its solution will therefore
involve n arbitrary parameters. Recall, however, that
the solution to the full set of field equations involved
(2n —1) arbitrary parameters. Now suppose one is
given a set of boundary conditions for the Wheeler-
DeWitt equation. This will select a particular wave
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function +, which will in turn pick out a particular solu-
tion So of the Hamilton- Jacobi equation. This particular
solution 4, therefore, is peaked around an n-parameter
subset of the (2n —1)-parameter general solution to the
field equations. In accordance with the interpretational
scheme for quantum cosmology outlined in the Introduc-
tion, we therefore predict that an observer in the
Universe represented by this minisuperspace model will
perceive it to be described by one of the solutions to the
Einstein field equations satisfying the first integral (5.14).

Finally, note that it has not been necessary to decide
how large the peak in the wave function (or in Wigner's
function) has to be before it is "sufficiently peaked. "
This is because the peak is a 6-function peak in the
WKB approximation. If we were to go beyond this ap-
proximation then the peak would become smeared out
and the question of whether or not the peak is
sufficiently large would arise. However, in the absence
of a more detailed theory of quantum gravity, these min-
isuperspace models can probably not be trusted beyond
the WKB approximation (if at all). The question of the
strength of the peak is therefore pushed out into a re-
gime of which we have a poor understanding, and so
cannot at present be answered.

VI. QUANTUM COSMOLOGY: PERTURBATIONS
ABOUT MINISUPERSPACE

The minisuperspace models have been quite successful
in their description of cosmology. However, their validi-
ty as approximations to a full superspace treatment must
be regarded as questionable, since one is effectively re-
stricting attention to a region of superspace of zero
volume. Although in the models constructed, this re-
striction appeared to be physically reasonable, e.g. , re-
stricting attention to modes one expects to dominate,
one can only test it by comparing the value of the wave
function on this zero volume region of superspace with
its value in the surrounding region of finite volume. In
the case of homogeneous minisuperspace models, for ex-
ample, this can be done by considering inhomogeneous
perturbations. One would hope to find that the wave
functions for the inhomogeneous modes are peaked
around homogeneity, in which case the minisuperspace
approximation seems not unreasonable.

There is a another reason why it is of interest to look
at inhomogeneous perturbations. Although the Universe
we see is homogeneous and isotropic on very large
scales, there are small departures from homogeneity and
isotropy caused by galaxies and other large-scale struc-
tures. These structures are widely believed to have ar-
isen from small perturbations in density in an otherwise
homogeneous universe at early times. In order to study
these perturbations, one needs to consider the inhomo-
geneous modes of the fields.

In this and the next section we extend the minisuper-
space formalism of the previous section to include an
infinite number of perturbation modes, thereby probing a
small but nevertheless finite-volume region of the full su-
perspace. For simplicity we shall assume that the min-
isuperspace modes q' are purely gravitational and that

the perturbation modes, which we denote by @, are
matter perturbations. This is not a necessary restriction,
but simplifies the formalism, and is sufficient for the dis-
cussion of this paper. The more general case, in which
some of the q' are matter modes, and the perturbation
modes include gravitational waves, is treated in Ref. 19.
A useful example to bear in mind is the case in which q'
is the scale factor of a Robertson-Walker metric and N
is an inhomogeneous scalar field. The main point of
these two sections is to consider the derivation of the
semiclassical Einstein equations from the Wheeler-
DeWitt equation.

The model will be described by an action I =IG+I~
where IG is the minisuperspace action (5.2) and

IM = fLM(@,q', N)dt . (6.1)

1,b 1 BL

aN

(6.2)

(6.3)

The two new terms on the right-hand side of (6.2) and
(6.3) are equivalent, respectively, to the space-space and
time-time components of the energy-momentum tensor.
The Hamiltonian constraint is

H =N(HG+HM )

f'bp, pb+M U(q)+HM(q', 4, m'g, )
2M

(6.4)

where m.+ is the momentum conjugate to N. Hamilton's
equations yield the phase-space form of (6.2):

(6.5)

The Wheeler-DeWitt equation for the model is

2M
V +M U(q)+HM q', @,—iM V(q', N)

=0, (6 6)

where again V is the Laplacian in the metric f,b, it does
not operate on the perturbation modes @. Equation
(6.6) may be solved in the oscillatory region using a
WKB-type expansion. One writes

+=exp[iM So(q)+iS, (q)+O(M 2)]g(q, +) . (6.7)

Inserting (6.7) into (6.6), one finds that the order-M
terms again yield the Hamilton-Jacobi equation for So,
(5.12). So is taken to be real. The order-M terms, how-

With this additional term, the field equations (5.3) and
(5.5) are modified:

1 d 1 . ~ 1 z . b. z ~b BU 1 fab M

N dt N N
"'

gq M N
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ever, yield

(VSO).(VS, ) ——V' So X —i (VSO) VX+HMX=O,
2

(6.8)

where V denotes 0/Bq ' and the dot product is with
respect to the metric f,b. It is again convenient to in-
troduce the vector

a =(VSO) V,
O'T

(6 9)

the tangent vector to the classical trajectories in minisu-
perspace, where r= JN dt We h. ave a single equation,
(6.8), for X and the complex quantity S, , so there is the
freedom to impose the condition

(X,X)=0,
d7-

where the inner product is defined by

(f,g)= fd+ f*(q,C )g (q, @) .

(6.10)

(6.11)

N ote that the inner product involves an integration over
the matter modes N, but not the gravitational modes q'.
One would expect this to be well defined because the
matter wave functions 7 are in general square integrable
in N. We do not introduce an inner product involving
an integration over the gravitational variables, partly be-
cause we do not need it, but also because it ~ould not be
well defined, since the wave functions will not in general
be square integrable in q' ~

Equation (6.10) implies that

l,g = g, l (6.12)8'T, O'T

that is, (X,iBX/r)r) is real. Taking the inner product of
(6.8) with X, one obtains

(VSO).(VS, ) ——V So — X,i +(X,HMX)=0 .1 2 0

(6.13)

The imaginary part of (6.13) is

( VSO ) V( ImS, ) = —,
' V So, (6.14)

HM+ (ReS, ) X=i. Bg
a~

(6.15)

Ignoring for the moment the term ReS, , (6.15) is a
time-dependent Schrodinger equation along the classical
minisuperspace trajectories. What we have derived from
the Wheeler-DeWitt equation, therefore, is nothing more
than the familiar quantum field theory on a fixed back-

where we have assumed that JIM is Hermitian in the
inner product (6.11). By comparison with (5.13), it fol-
lows that ImS, gives the usual WKB prefactor,
C =exp( —ImS& ), and is unaffected by the perturbations.
Putting (6.14) back into (6.8) one obtains

ground space-time. It is in a perhaps unfamiliar picture,
however, namely, the functional Schrodinger picture.
Numerous derivations of this type have appeared in the
literature. ' ' '

We next consider the derivation of the semiclassical
Einstein equations from the above formalism. This is re-
lated to the choice of ReS, , which is essentially arbi-
trary. The reason for this is that of order M the
Wheeler-DeWitt equation determines only the total
phase in (6.7); thus ReS& may be divided between X and
the background wave function in any way whatsoever.
For example, one may choose ReS

&

——0, which is
equivalent to absorbing it into the phase of +. Hartle,
however, makes the choice

cj (ReS, )+ (HM ) =0, (6.16)
a7-

where the average of H~, (, Hbr ), is defined using the
inner product (6.10) (Ref. 4). When added to the
Hamilton-Jacobi equation (5.12), it yields the semiclassi-
cal Hamilton-Jacobi equation

[V(ReS)]'+M'U+ (,HM )+O(M ') =0, (6.17)
2M

where S =M So+S, +O(M ). This will lead to the
semiclassical Einstein equations, as desired, if one makes
the identificationa, as, a

p, = (ReS) =M + (ReS, ) . (6.18)
Bq' Bq' dq'

A similar derivation was given by Brout et al.
While there does not appear to be anything formally

wrong with this derivation there are a couple of points
about it which are unclear. First, the derivation seems
to depend on a very special choice of ReS], yet we ar-
gued above that ReS& could be chosen at will. Second,
and more importantly, this derivation does not shed any
light on what is perhaps the least understood aspect of
the semiclassical Einstein equations —why does the
metric couple to the average value of the stress tensor
( T„,)'? This is one question that one would hope to get
an answer to by deriving the semiclassical Einstein equa-
tions from the Wheeler-DeWitt equation.

A possible answer is contained in the ideas introduced
in the previous sections concerning correlations in the
wave function. In the case of minisuperspace models, it
was shown that a wave function of the form e' predict-
ed a strong correlation between p and BS/Bq. Here we
have the wave function (6.7) which is similar, but
modified by the perturbation wave function 7. The
question to ask, therefore, is the following: How is the
correlation between p and BS/Bq modified by the pres-
ence of this extra term?

One can attempt to answer this by computing
Wigner's function for the wave function (6.8). We are
trying to understand how the quantum matter field N
couples to an almost-classical gravitational field, de-
scribed by q'. The appropriate Wigner function to con-
sider, therefore, is F(q,p, C&); i.e., we do look for correla-
tions involving p, but we do not look for correlations in-
volving m+, the momentum conjugate to +. The extra
terms that one gets in the computation of Wigner's func-
tion are
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X*(q'——,'u')X(q'+ —,'u') =
~

X(q', @)
~

'+ X*(q')
b

(q') —
b

(q')X(q') +a a+ a

2 aqb aqb

=
~

X(q', @) exp (lnX —lnX*) +El a
2 aq

(6.19)

Here we have assumed that Res& has been absorbed into
Wigner's function has a peak when p, , q', and 4

satisfy the relation

as, i a
p, =M —— (lnX —lnX*) .

aq' 2 aq'
(6.21)

This equation indicates how the correlation (5.14) is
modified by the presence of the matter perturbations.
Note, however, that it involves N explicitly, so one
would not expect to derive the semiclassical Einstein
equations directly from (6.21), because they are indepen-
dent of N. The semiclassical Einstein equations are ob-
tained by replacing the @-dependent term in (6.23) by its
average value; i.e., one considers the expression

, as,
p, =M + g, —i

aq' aq'
(6.22)

Why one should be allowed to replace (6.21) with (6.22)
is, of course, the main question we are addressing, and
we will return to it in the next section. Equation (6.22)
implies

Wigner's function is thus given by

+(p„q', +)=
~

C(q)
i

'
~
X(q, @)

~

'

aso
X5 p, —M + — (lnX —lnX*)

aq' 2 aq'

(6.20)

q' and p, are now related by

p, =M f,&
2

d7
(6.26)

Applying (6.25) to (6.22), one thus finds, at length, that

dp 1
1 a b c+M2fab fab

a aH
2 b cP +

aq
b aq

b

(6.27)

plus terms of order M . This is the desired semiclassi-
cal form of (6.5). The details of this derivation are given
in the Appendix. We have therefore shown that (6.22)
does indeed lead to the semiclassical Einstein equations.

VII. THE PEAK AT THE SEMICLASSICAL
EINSTEIN EQUATIONS

It remains to be shown that the N-dependent term in
(6.21) can be replaced by its average value, as in (6.22).
This will not be true in general, but we will show that it
is in some situations of interest. Since 7 depends on w,

rather than on all the q', one has

ax
aq'

a7 ax
aq av

(7.1)

Using the Schrodinger equation (6.15) one may see that
our task is then to justify the replacement of the N-
dependent expression

,f"p.pb ———,'M2(VS, )'+ X, i— HMg HMg
(7.2)

+O(M ) . (6.23)

=(VSO) V+ 2 X, i f'—
M2 aqa aq b

(6.25)

Using the Hamilton-Jacobi equation for So, (5.12), and
the Schrodinger equation for X, (6.15), Eq. (6.23) be-
comes

1

2M
f '"p,pb+M U(q)+ (X,HMX)+0 (M ) =0 .

(6.24)

This is the semiclassical version of the Hamiltonian con-
straint (6.4). To obtain the semiclassical version of (6.5),
the remaining Einstein equation in phase space, it is
necessary to consider the time evolution along the trajec-
tories defined by (6.22). The tangent vector is no longer
(6.9), but the slightly modified vector

with its average over @, which is (HM ).
First, one can do this if 7 is an eigenfunction of HM.

For then HMX= (HM )X (and similarly for the complex
conjugate, assuming H~ =HM); hence, (7.2) is equal to
(HM ) exactly. This possibility arises if the background
metric is conformally Oat and the matter field is confor-
mally invariant. In general, however, this will not be the
case, and (7.2) will not be exactly equal to (HM ). The
next question to ask, therefore, is whether (7.2) can in
some sense be close to (H~ ). The distribution of p„
q', and @ is given by Wigner's function (6.20), which
has a 5-function peak on the hypersurface (6.21). The
distribution of q' and N within that hypersurface is then
given by the prefactor of Wigner's function. In particu-
lar, the distribution of N is given, as one would expect,
by

~

X
~

. We can use this expression to calculate the
distribution of the 4-dependent expression (7.2). In ac-
cordance with the interpretation we have been using, if
this distribution is strongly peaked when (7.2) is equal to
its average value, then we predict that the model will
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4(x, r)= g g g f„, (&)QI" (x) .
n=l l=O m = —1

(7.3)

Here, the QI" are eigenfunctions of the Laplacian on the
three-sphere, ' '5:

'EQI" = —(n —1)Q(" (7.4)

For each n, the degeneracy, labeled by l, m, is n (see
Ref. 19 for further details about these harmonics). One
may thus expand the matter Hamiltonian in harmonics,
with the result

H~= &H~= g&H~™
n n lm

n lm

Cj2 2 2+ n fnlm
J nlm

(7.5)

The time-dependent frequency ~„depends on n but not
on the degeneracy labels I, m. This has the consequence
that each Hamiltonian HM is a sum of n identical Ham-
iltonians HM . The natural ansatz to make for the
matter wave function is

X= QX„= Q QX„, (f„, , ) .
n n lm

(7.6)

We will make the reasonable assumption that the bound-
ary conditions do not distinguish between different
values of the degeneracy labels J', m in the wave functions

It follows that for each n we have a set of n sys-
tems with identical Hamiltonians and identical boundary
conditions.

Using (7.5) and (7.6), (7.2) may now be written

:—gh„. (7.7)

evolve according to (6.24), and hence according to the
semiclassical Einstein equations. This, therefore, is the
condition under which the semiclassical Einstein equa-
tions hold —that the distribution of (7.2) is strongly
peaked about its average value. We shall refer to it as
condition C.

One case in which condition C will hold is that in
which one has a large number of identical noninteracting
fields, 4l, . . . , N~, say, obeying identical boundary con-
ditions. For then (7.2) is a quantity of the form (3.24),
with the N, 's represented by the x, 's. It follows fram
the central limit theorem result of Sec. III C that the dis-
tribution of (7.2) is peaked about its average value, for
large N. That condition C holds in this case is essential-
ly the statement that the leading-order 1/N approxima-
tion is equivalent to semiclassical gravity.

We next argue that condition C can also hold for the
case in which one has a single matter field. To be
specific, consider the case of a scalar field N(x, r) with a
quadratic potential, in a k = + 1 Robertson-Walker
background, with scale factor a. The standard way to
treat this in quantum cosmology is to expand N in har-
monics on the spatial sections:

oo n —l 1

Each term h„ is then a sum of n terms:

h„=—g1

lm

+
+nlm +nlm

(7.8)

(T &( )T„(x'))=(T&(x))(T„(x')& . (7.9)

This is essentially the requirement that the variance of
the distribution of T„vanishes, and hence that the dis-
tribution of T„, is entirely concentrated at ( T„„).

VIII. SUMMARY AND DISCUSSION

The main point of this paper was to discuss correla-
tions in the wave functions of quantum mechanics and
quantum cosmology and hence, in the latter case, to ex-
tract predictions from the wave function, using an inter-

The important point now, is that as a consequence of the
fact that HMn™ and Xnlm are independent of I, m, h„ is of
the form (3.24) for each n, with N =n and the labels i
identified with the l, m. It follows that for all but the
lower values of n, the distributions of the h„are peaked
about the value (h„). From this we tentatively con-
clude that condition C is satisfied, and thus the semiclas-
sical Einstein equations hold for a single noninteracting
scalar field in a Robertson-Walker background. Wada
reached the same conclusion for the special case in
which the X„& are of the form (3.3) (Ref. 5).

The above argument clearly does not crucially depend
on the details of this particular example. It depends
only on having a large number of identical systems
which in turn depends first, on our assumption about the
boundary conditions and second, on the degeneracy of
the harmonics. This degeneracy is a consequence of the
symmetry of the spatial sections. One would expect,
therefore, that this sort of argument will also apply to
other types of noninteracting matter field in more com-
plicated backgrounds, providing they have a certain
amount of symmetry.

The above conclusion concerning condition C for a
single field is only tentative because the quantities we
have been dealing with, such as (HM ), are formally
divergent. Deductions made about the distribution of
(7.7) given the distribution of the h„are therefore ques-
tionable. These divergences could be difficult to regular-
ize because the formalism we have been using is nonco-
variant. One possible way to proceed, however, might
be to try and express the condition C in terms of the co-
variant quantity T„, the energy-momentum tensor of
the matter field. Standard methods may then be used to
carry out the regularization. When expressed in terms
of T„,condition C would then be something like the re-
quirement that the distribution of T„be strongly
peaked about its average value. We have not found the
precise relationship between this condition and condition
C, however.

Finally, it is of interest to compare this latter condi-
tion with the results of Ford, who considered linearized
gravity about flat space coupled to a massless scalar
field. He showed that the semiclassical Einstein equa-
tions are valid if the state satisfies the condition
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pretation of quantum cosmology of the type proposed by
Geroch, Hartle, and Wada in which one regards a strong
peak as a definite prediction. The main tool with which
this was achieved was Wigner's function, which was
used to identify correlations between coordinates and
momenta. We saw in Sec. III that Wigner's function
proved to be very useful for discussing the emergence of
classical behavior in quantum-mechanical systems. This
is important in the study of scalar field fluctuations in

inflationary universe models.
After a preparatory discussion of WKB wave function

in quantum mechanics in Sec. IV, we turned, In Sec. V,
to WKB wave functions in quantum cosmology. It was
shown that for wave functions of the form Ce ',
Wigner's function is peaked about the hypersurface in

phase space p =as/aq. For a minisuperspace model
with n coordinates q ', a particular solution to the
Wheeler-DeWitt equation is thus peaked around an n-

parameter subset of the (2n —1)-parameter general solu-

tion to the minisuperspace field equations. It is in this

way that boundary conditions for the wave function of
the Universe lead to initial conditions for the classical
field equations. The prediction of a given minisuper-

space model, with given boundary conditions, is there-
fore that an observer living in the Universe it describes
will perceive it to evolve according to one of the solu-
tions contained in the n-parameter subset. This under-
scores the need for boundary conditions on the
Wheeler-DeWitt equation —a completely general solu-
tion to the Wheeler-DeWitt equation will correspond to
the (2n —1)-parameter general solution to the field equa-
tions, so no particular advantage is to be gained by cal-
culating the wave function, except possibly for the loca-
tion of the classically forbidden regions.

The extension of minisuperspace models to the full su-

perspace was considered in Secs. VI and VII. It was

shown that, to first order, the wave function Ce' 7 is

peaked around the minisuperspace trajectories with
Hamilton-Jacobi function S, with X evolving according
to the Schrodinger equation along these trajectories. It
is in this way that quantum field theory in a classical
curved space-time background emerges from quantum
cosmology. The main point of this section was to con-
sider the derivation of the semiclassical Einstein equa-
tions from the Wheeler-DeWitt equation. This was done

by asking how the correlation p =OS/Bq is modified by
the presence of the matter perturbations N. It was

found that the correlation was modified by a term which

depended on N explicitly, as one would expect. If this
term, (7.2), was replaced by its average value, then the
semiclassical Einstein equations followed. A condition
under which this could be done was derived. It is essen-

tially the requirement that the distribution of T„ is

peaked about its average value. It was argued that this
condition holds for the case of a large number of identi-

cal noninteracting fields, and also for the case of a single

noninteracting field subject to certain restrictions. Some
of these conclusions are only tentative since we did not
discuss the regularization of divergent quantities. This is

currently under investigation.
In the Introduction, we discussed the Everett interpre-
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APPENDIX: DERIVATION OF KQ. (6.27)

In this appendix we give the details of the derivation
of Eq. (6.27).

Applying (6.25) to (6.22), one obtains

dp, d aso a~ „as
=M y, —i, f"

d 7 aq aq aq q

BX+ Xdr '
aq

(A 1)

Using (5.12) the first term in (Al) becomes

as, as,' aq' aq'

The third term in (Al) is

aU
aq'

(A2)

tation of quantum mechanics. This, as already noted, is
a formulation of quantum mechanics designed to deal
with correlations internal to an isolated system. In par-
ticular, it was designed to describe correlations in an iso-
lated system consisting of an observer and an observed
subsystem, i.e., to describe the process of measurement
in a fully quantum-mechanical manner without having
to assume an external observer obeying classical physics,
and without having to invoke the collapse of the wave
function. In this paper, however, we made no mention
of the act of observation in quantum cosmology. A
proper treatment ought to include this; one ought to
consider models of the Uoiverse which include models of
observing apparatus interacting with the rest of the
Universe. One could then ask questions about the corre-
lations between the states of the observing apparatus and
the state of the rest of the Universe.

Models involving observers would clearly be more
complicated than those we have been considering here.
What we have attempted to do here is off'er an interpre-
tation of the wave functions for the models that current-
ly exist in the literature which do not involve observers.
The assumption is that if one were to introduce an ob-
serving apparatus into these models, then providing it
did not disturb the system very much, one would still
find correlations of the form (5.14), say. In a sense, the
perturbation modes may be regarded as "measuring" the
minisuperspace background. In the classical regime,
they respond as if on the classical trajectory p =as/aq,
yet to lowest order, do not affect the background. It
would be of interest to develop these ideas further and
study the measurement process in quantum cosmology,
in the spirit of the Everett interpretation of quantum
mechanics.
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BX . B1 . 0 BX

aq' '
~ aq'

From the definition of r, (6.9),

(A3)

d7.
fbc M2 2 ~ . c)X 0as, as,

b

Inserting (A2) and (A5) into (Al), one obtains

a ax
07 Qq

bC 0 C) Bg
aq" aq' aq' , aU BII

Bq' 3q' (A6)

So' aqb aq'
a ax

t)q
' t)r

8 Sof bC

aqbOq' aq'
(A4)

Inserting (A4) into (A3) and using the Schrodinger equa-
tion for X, (A3) becomes

Pa pBU
Z~'' "' aq.+M aII

Bq'

(A7)

Using the expression (6.22) for p, , (A6) may now be
written

BS
X X + f'Xt

a g bg a '
g c

asofb,
6 ~ '

g c (A5)

where we have neglected terms of order M . Using the
metric to raise the indices on the momenta, and after
some rearrangement, one obtains the desired semiclassi-
cal form of (6.5), (6.27).
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