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Density of states for the gravitational field in black-hole topologies
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Using a previously developed formulation of black-hole thermodynamics for a system of finite
size, we show that the partition function of the related canonical ensemble can be used to obtain
the density of states in the microcanonical ensemble. We work with the partition function in a
zero-loop approximation based on classical solutions with fixed boundary data and obtain the cor-
responding density of states by using an inverse Laplace transform. The computation requires the
introduction of a uniformizing variable so that a path can be defined along which the classical ac-
tion of a stable black hole is single valued in the integration over imaginary inverse temperatures.
Although the zero-loop partition function is not a Laplace transform, its inversion integral yield-
ing the density of states is nevertheless well defined, and we show that it is the exact inverse of a
Fourier-Laplace integration over all real energies, positive and negative. We argue that (1) this
need for all positive and negative energies and (2) a constraint on the boundary data for obtaining
the partition function from classical solutions are both consequences of the zero-loop approxima-
tion that should be absent in a complete quantum theory. We also find that the single-valued ac-
tion enables a discussion of negative temperatures for positive mean energies that appear to be
essential for a satisfactory relation between the partition function and the density of states in the
zero-loop approximation. The full significance of this observation must await further study.

I. INTRODUCTION Z (13)= f d [g]exp( fi 'I [g]), —

The association of a temperature with the surface
gravity of a black hole' and an entropy with the area of
its event horizon brought to an end several years of
speculation about the relation between black-hole phys-
ics and thermodynamics and led to the steady develop-
ment of black-hole thermodynamics. Though originally
conceived for black holes in asymptotically flat or de Sit-
ter spaces of infinite extent, this study is formulated
more precisely for black holes in spaces of finite extent.
In particular, it is then possible to give a complete ther-
modynamic description of the canonical ensemble for a
classical black hole in thermal equilibrium at tempera-
ture T =f3 ' with the walls of a spherical box having
finite proper area 3 =4~ro . In this paper, following
earlier work, ' we reexamine the question of determin-
ing the density of states of the microcanonical ensemble
for a black hole in a thermally isolated box containing a
fixed amount of energy E. In fact, in this form the ques-
tion involves slightly inexact terminology. Therefore, we
shall first reformulate the question, then turn a suitable
approximation for the physical description into a well-
defined mathematical problem which we solve, and,
finally, show that there is an interesting regime in which
the mathematical solution has a sensible physical inter-
pretation.

For systems involving the gravitational field, as in any
quantum-field-theoretic treatment of statistical mechan-
ics, a convenient starting point in discussing the canoni-
cal ensemble is the partition function expressed as a Eu-
clidean path integral:

where the sum is over all real Euclidean metrics on man-
ifolds M with fixed boundary BM. We shall consider the
boundary topology S'&S with the S' being a round
metric circle of proper circumference /N and the S a
standard metric sphere of area 3 =4mro . This fixing of
the topology and the metric three-geometry of the
boundary is not only part of the definition of the canoni-
cal ensemble we shall be working with, but is also pre-
cisely the condition ' which ensures that classical solu-
tions are local extrema of the Euclidean action I, a point
that will prove essential in what follows. Because the
partition function can be regarded formally as a Laplace
transform of the density of states, once the partition
function has been calculated by independent means, the
most direct way to obtain the density of states is by us-
ing an inverse Laplace transform:

v(E)= f dPZ(P)exp(PE) .
27Tl —i oo +C

(1.2)

Actually, we shall be working only with a convenient ap-
proximation to the exact partition function (1.1) for
gravitational thermodynamics. Setting aside, to begin
with, the fact that our approximation cannot be a La-
place transform, we nevertheless proceed to evaluate the
inversion integral and to determine the specification of
the Fourier-Laplace transform of which it is an exact in-
verse.

Practical computations of path integrals often involve
reducing the effective number of degrees of freedom in
the integration to some very small number. In one vari-
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—1
lclassicai, stable =/ F (l.4)

where F is the Helmholtz free energy. Although Zp is
determined by the action evaluated at classical solutions,
we nevertheless refer to (1.3) as a semiclassical approxi-
mation, since it does not survive in the classical limit.

In flat-space quantum field theory, the path integral
may include topological distinct gauge-field sectors,
while in the case of gravity it will unavoidably include
manifolds corresponding to different spacetime topolo-
gies. Given the state of uncertainty about how topology
change might be effected in quantum gravity, it seems
necessary for the present that different topological sec-
tors be treated separately. For four-dimensional
Riemannian manifolds, there are two topological invari-
ants expressible as integrals of the curvature: the Euler
characteristic X and the Hirzebruch signature ~. How-
ever, no systematic method is known to obtain all sta-
tionary points of the gravitational action for a specified
topology with fixed boundary. Only through imposing
isometrics is it possible to construct any classical solu-
tions explicitly. For a given topological sector, our at-
tention will be focused on such known classical solu-
tions.

For our discussion it is essential to realize that the
usual manifold of flat space at finite temperatures,
S'&&R, with periodically identified Euclidean time, has
Euler characteristic +=0, whereas the regular Euclidean
black hole has topology 5 )&R and 7=2. Thus, al-
though both manifolds have signature ~=0, they belong
to different topological sectors. Since the contribution of
flat space in the 7=0 sector can already be reasonably
well understood (for example, even the one-loop contri-
butions from thermal gravitons can be calculated), em-
phasis to date in gravitational thermodynamics has con-
centrated on the contribution of black holes in the 7=2

able, for example, the integral might then be approxi-
mated by taking a steepest-descent path through the sad-
dle points of the exponent, the latter regarded as a func-
tion of a complexified variable. In path integrals, a sta-
tionary point of the action will become a saddle point for
a path of steepest descent only if the corresponding clas-
sical solution is stable, meaning that its action is a local
minimum, not just a local extremum. In quantum field
theory, the action of the classical solution is usually ig-
nored while integration along a path of steepest descent
is regarded as a one-loop calculation. In the case of
gravity, however, the classical action definitely cannot be
ignored. In fact, for systems far from the Planck regime,
one can argue that the path integral for the partition
function will be entirely dominated by contributions
from the stable classical solutions which comprise the lo-
cal minima of the gravitational action. Dropping even
the one-loop corrections from integration along the
paths of steepest descent, one can than adopt a zero-loop
approximation

Zo(/3) +exp( fl I i i bi )

as an operational starting point for gravitational thermo-
dynamics. Indeed, this has been the basis of a previous
discussion of black-hole thermodynamics, with

(r=0) sector, especially because there are indeed non-
trivial effects at zero loops from the classical action. It
is to this contribution that we now turn.

II. THE CANONECAL ENSEMBLE

The Euclidean action for Einstein gravity is '

gR d4x
16~G M

+ fsM &y(K —ICO)d'x,
8~G

(2. l)

which is stationary for four-metrics g which satisfy the
Einstein equation with fixed three-geometry y on the
boundary BM. For flat space the classical action is zero
while, in quadratic order, fluctuations around this back-
ground give the one-loop contribution of thermal gravi-
tons. This is identical to the familiar result for the
canonical ensemble of radiation in a box and up to small
corrections arising from boundary effects is given by

3
4mro1

2160
(2.2)

The Euclidean black-hole solutions are given by the
Schwarzschild metric

2GM 2 2GM
ds = 1— dc+ 1—

r r

—1

dr +r dA

(2.3)
where r(4GM) ' has period 2sr and dQ is the metric on
the unit two-sphere. The mass M must be chosen to
satisfy the boundary conditions of fixed /3 and ro. These
quantities are related by the Hawking temperature for-
mula, which we express as

/3A

4nr p

2GM
ro

1—2GM
rp

1—
ro rp

1/2

(2.4)

where r+ ——2GM is the gravitational radius of the
Schwarzschild black hole. The action expressed in terms
of these variables is

I = 12nGM —8wMr p 1 — 1—2GM
rp

1/2
1

3vrr+ —4mr+ rp 1 — 1—
G rp

(2.5)

4~ro

/3A 2
(2.6)

When inequality holds, there are two positive solutions
of (2.4) for the mass M. The lighter mass
Mi(/3, ro) & ro(3G) ' is an unstable equilibrium point

Neither I(M, r~) nor the corresponding I(/3, ro) is single
valued, a problem which we treat in the next section.

It is of fundamental importance that real Euclidean
black-hole geometries extremize the action only if the
boundary data ro and /3 satisfy
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while the heavier mass M2(P, rv) & ro(3G) ' is thermo-
dynamically stable for the canonical ensemble defined by
ro and P. In the limit Mz —M, ~0, or M~ro(3G)
the unstable circular photon orbits coincide with the
boundary of the box. The heavier mass black hole has a
positive heat capacity, real energy fluctuations, and a
smaller action than the lighter-mass black hole. In fact,
for

4wrp

Ph' 8
(2.7)

—BlnZp

ap
(E)= (2.8)

G
1 — 1—

rp

the action of the heavier-mass black hole is negative,
leading to a smaller zero-loop free energy than that of
flat space, an observation central to any discussion of
phase transitions in gravitational thermodynamics.

Finally, we note that in the black-hole sector, we have,
from the thermodynamic definitions for the canonical
ensemble, with M =M2 in r+ and with r p fixed,

1/2

ph'
0 =

4~r p

(3.1)

which has already appeared in (2.2), (2.6), and (2.7). Be-
cause the branch cut for the r+ dependence is identical
in the inverse temperature (2.4) and in the action (2.5),
the single new variable

1/2
r+s=i 1—
I p

(3.2)

allows us to express both the action and the inverse tem-
perature as the single-valued functions

4 2

I = [—,'(3g +2/ —1)—ig( 1+/ )]

and

ture become single valued. This is essential in order to
have a well-defined partition function and is also re-
quired for an unambiguous specification of the contour
of integration in our subsequent computation of the den-
sity of states. It will be convenient to replace the inverse
temperature P with the dimensionless quantity

S=P(E ) +InZ, =~
rp

(2.9) o = ig(1—+g') . (3.4)

and

((~E)') = 1 0Zp
z. ap'

2
(31nZp

ap

These forms enable us to integrate over imaginary o.

once we determine how to choose a contour in the com-
plex g plane. We see from (3.2) that for black holes with
real positive mass, g must be imaginary. Condition
(2.13) for stable thermal equilibrium requires g to satisfy

3r+ —1
8wG 2rp

(2.10) I0& ig(—v'3
(3.5)

where r =(GR)'~ is the Planck length. A particularly
important consequence of (2.8) is that

whereas for the unstable stationary point for the gravita-
tional action of a black hole, we have

(E) 1 G(E)
2 rp

(2. 1 1)
1—& —ig(1 .v'3 (3.6)

that is, the Schwarzschild mass is the thermal energy
plus the gravitational self-energy. For systems which
contain a stable black hole we have

1—
v'3

G(E) &1, (2.12)

which determines what we shall refer to as the "physi-
cal" range for the energy of a black hole in a box. Pre
also note for later use that (2.4), (2.6), and the con-
straints for the existence of stable equilibrium, require
r+ to satisfy

2—( &1.
3 rp

(2.13)

III. A SINGLE-VALUED ACTION

In this section we introduce a change of variables in
terms of which both the action and the inverse tempera-

Thus, in particular, one can see from (2.10) that energy
fluctuations are always of the order of the Planck mass
(r~G '), except in the limit r+ ~2ro/3.

The map in (3.4) has two critical points j=+i (3)
We choose the complex o. plane to be cut from the im-
ages of these critical points at o. =+2(27) ' to +co,
respectively. These cuts divide the g plane into three re-
gions as delineated by the thick lines shown in Fig. 1.
The upper and lower regions we denote as regions II and
III, respectively, with the region in between being desig-
nated as region I. The action and the partition function
behave diA'erently in each of these regions. The inverse
map for the imaginary o. axis gives three lines in the
complex g plane, namely, the real g axis in region I, and
in regions II and III the lines given by (=u +iv with

v =1+3u (3.7)

The Re(o. ) &0 sides of these lines are hatched on Fig. 1

in each case. The cut o. plane and a number of details
on it are shown in Fig. 2. In the integral for the density
of states, the integrand is well behaved as o.~+i ~ only
for those cr that are images of points g in region I. It is
precisely this region which maps to the real inverse tern-
peratures of stable black holes; that is, it is only in this
region that we have stable equilibrium with which to
compute the partition function. Therefore, our choice of
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FIG. 1. The complex plane for g=u +iv, the variable in terms of which the action and the inverse temperature become single
valued. This plane has been divided into three regions by the two thick lines, 3U =1+u, which map to cuts in the complex o.

plane (see Fig. 2). The region between these two lines is referred to as region I in the text. The real g axis and the two lines,
U =1+3u, map to the imaginary o. axis. Each of these is shown with hatching on the side corresponding to Re{o.) &0 and an ar-
row pointing in the direction Im(o. )~ —oo (see also Fig. 2). Light extended hatching shows the three regions which map to the
lower half o plane, Im{o) &0.

contour for evaluating the density of states wi11 be the
real g axis.

IV. THK DENSITY OF STATES

GE —1,
"o

and a dimensionless large parameter

4~ro 2

2
rp

(4.1)

(4.2)

As was mentioned in Sec. I, with the usual definition
of the partition function in statistical mechanics, the
number density of states of a system with energy E in an
interval dE can be computed by the inverse Fourier-
Laplace transform (1.2) of the partition function. The
resolution of the square root introduced in the previous
section to make the action and the inverse temperatures
single valued, and the choice of contour we discussed
there, ensure that this integral for v(E) becomes regular
for all finite energies, real or complex. %'e now investi-
gate some pertinent properties of v(E), looking at the
semiclassical regime roar in which a saddle-point ap-
proximation is applicable.

By defining a shifted dimensionless energy variable

we can write the density of states as

v(il, ro)= I dg(1+3/ )exP[A[ ——,'(3g +2/ —1)

iv]g(1+—g )]I .

To obtain a saddle-point approximation to the integral,
we distort the original contour until it becomes (in this
case) a path of steepest descent passing through a saddle
point of the exponent. Our path originates at g= —oc,
passes through a stationary (maximum) point at some
g =go which lies on the imaginary axis, then proceeds
symmetrically to g=+ co. For ri real and Iri ~

&3
we find go

—— i', while —for
~
il

~

~ 3 '~ we have
go= i 3 ' sgn(ri)—.

Just as for the partition function (1.1), a zero-order
approximation to the integral (4.3) is given by the value
of the integrand at the saddle point of the exponent [cf.
(1.3)]. A more refined approximation includes contribu-
tions from the dominant part of the exponent in the vi-
cinity of the saddle point. Except when q satisfies

4

(4.4)
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-5

FIG. 2. One sheet for the complex o variable: namely, that corresponding to region I (see text), the central region of the corn-
plex g plane referred to in Fig. 1. This middle sheet has two cuts along the real axis, from 2(27) '~ to + oo and from —2(27)
to —~, the other two sheets each having only one of these cuts. The imaginary axis has the Re(o. ) &0 side hatched and an arrow
pointing in the direction Im(o. )~—oo (see also Fig. 1). The two lines labeled (1) and (2) are the images of the straight lines
Im{g)=+(3) '~ similarly labeled in Fig 1. The. images of two other lines, Im(g}=1.3(3) '~' and —2. 3(3) '~~, are also shown.
Along with line (2) they all pass through the point o. —1.004+0.2136i, though each is on a different sheet.

v(r), ro)- —[2(1—3g )]' exp —(1 —g )o

—
t q ~

&O(X-'"),
v'3

(4.5)

the dominant term in the exponent in (4.3) is quadratic,
and we obtain

of the saddle point, we can obtain for Qll real g an ap-
proximation in terms of Airy functions, ' which always
captures the leading behavior of the integral, even when
(4.4) holds, while passing smoothly between approxima-
tions (4.5) and (4.6). This approximation is given by

2l p 2 a2 2Q 2

v(g, ro)= (1+3/a ) —2igo — Io
3Q3

v(g, r )- (&3
~ g ~

—1)
2f'o 2Q 2

6i go+ I, ,
Q3

(4.8)

Xexp —(&3—2
~

ri
~

)
3&3

—)O(A. ) .v'3

(4.6)

Precisely at
~ g ~

= 3 ', the dominant term is cubic,
giving

2r &rr

«(-,' )

1/3

exp
9

(4.7)

By including the contribution from both the quadratic
and the cubic dependence of the exponent in the vicinity

3
2Q2

Io = exp k ao+
27Q3

2g2/3
2

X A1 4/3/3a,
/

2I, = exp A, ao+
27Q 3

2g2/3
XAi'

4/3

277

f
3a, l.

[

'~'

2n. sgn(a, )

~

3a3A.
~

(4.9)

(4.10)
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oo = ,'—0o—' ,'—0o—' i—rio(1+ Co')+ —,
'

a 2
=—ko +—'+ 3i i)ko & 0,

Qg =3I gp
—

YJ

(4.11)

(4.12)

(4.13)

and go is as given above. In the Appendix we give
infinite-series expressions for v(ri, ro) which are conver-
gent everywhere, but are of practical significance only in
a number of isolated domains of q. The approximations
(4.5) and (4.6) are asymptotic to the respective leading
terms of these series, all of which, when (4.4) holds, fail
to be useful, whereas (4.8) remains valid.

As described in Sec. II, the expectation value of the
energy in a box of radius rp and inverse temperature
P=4vrrpo can be computed from its definition (2.8).
Letting

adequate for the partition function to be well defined and
make physical sense. We also see in (4.6) that for large
negative q, v(i), ro) is again (linearly) exponentially de-
creasing, a point relevant to our discussion of the com-
plete inversion of the above calculation in the next sec-
tion. There we obtain exactly Zo(ro, g) by a Fourier-
Laplace transform of the exact v(g, ro) given by (4.3).
For the present, we content ourselves with a saddle-
point evaluation of Zp by using our saddle-point approx-
imation (4.5) for v(i), ro) in the range

~ q ~

& 3
which includes the entire physical range. We find

rp 1/+3
Z — d q v g, rp exp —k g+ 1 o.

r —1/+3

—exp[~[ —4(3'i)o 2go I)+igH(1+gH )]),
g„(1+g„ ),2

we have in terms of our new energy variable

& i)( „p)) = & g( „g„)) =g, ,

(4.14)

(4.15)

with

+igH) O(k '
) .1

3

(4.18)

(4. 19)

where

I
v'3—&'9o=ikH ——— 1—

fp

1/2

&0. (4.16)

This determines the "physical" range of g in accordance
with (2.12). The exponent of v(i), ro) evaluated at the
mean energy is

2 2
ro ~r
, (1 —i)p')'=

lp rp
(4.17)

This result is the entropy (2.9) of the stable black hole,
as indeed it should be semiclassically. Outside the physi-
cal range, for large positive i), we see from (4.6) that
v(i), ro) is exponentially decreasing, which is more than

and go=igH is the saddle point along the path of in-
tegration. A comparison of (4.18) with (3.3) substituted
in (1.3) demonstrates that we have obtained precisely Zp.
Thus, our adopted-definition and interpretation of v are
consistent.

V. AN INTEGRAL TRANSFORM
DERIVED FROM ITS INVERSE

To determine the precise way in which the partition
function Zo(r, (H ) can be given in terms of our comput-
ed v(i), ro), we go back to the definition (4.3) of v as an
integral and try to establish an identity between Zo and
the Fourier-Laplace transform of v. For gH correspond-
ing to a stable black hole (0& i(H &—3 '

), consider

rp
Z, (rp, gH ) = di) v(g, ro)exp[ —k(g+1) ]o

G
2

ro=2 f dye f dg(1+/ )exp(A, [ ——,'(3/4+2/2 —1)—i)[cr+ig(1+(2)][), (5.1)

where @=+1. Z+ corresponds to the usual Laplace transform of v. For g varying along the real axis and for cr cor-
responding to gH in the physical domain, we have

Re[o+ig(1+/ )])0, (5.2)

and the order of integration can be interchanged in Z+ [similarly for g varying along the line Im(g)= —3 ' ]. Al-
ternatively, for g varying along the line Im(g)=3 ~, which is also a valid distortion of the contour for obtaining

(g,vr ), woe have

Re[o.+i/(1+/ )] & 0, (5.3)

and the order of integration can only be interchanged for Z . An example using a particular value of gH is shown in

Fig. 3. We then have

27Tl —oo —ie1/+ 3

1 3
exp[A[ ——'(3g +2/ —I)+if(1+/ )] j—io. +g(1+/ )

(5.4)
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FICx. 3. The complex g plane (g=u +iu). For the particular value gH 0 9i ——(3) . '~2, o =1.971{27) '~~, the order of integration
of g and q can be inverted for Z+ in the shaded region, and in the unshaded region it can be inverted for Z (see text). On the
boundary both inversions are possible; the t) integration for Zo becomes a 5 function and the g integration is then immediate. For
a & 2(27) ' neither of the boundary curves above the real axis cut the imaginary axis [they pinch off around gH =i (3) '~ ] so in-

version of the order of integration becomes impossible.

We have introduced Z because numerical work
showed us that we can never expect Z+ and Zo to be
identical, and Z shows us how to correct for the
difFerence. In the double integral (5.1) for Z, we were
free to move the path of integration from Im(g)=0 to
Im(g)=3 '~ without changing the result. However, in
moving the contour in the single-integral expression
(5.4), we see that we pick up a contribution from the
residue of the isolated single 'pole of the integrand at
/=AH; the other poles do not contribute. This residue is
exactly Zo, which we are seeking, as it should be. Thus
we have

ro
Zo=Z+ —Z = d'g v(g p'p)exp[ —A(g+ 1)o j6

(5.5)
with 0& —ig& &3 ' . We have found unambiguously
the transform, by the inverse of which v had originally
been calculated. We refer to Zo and v as being related
by a Fourier-Laplace transform (5.5) and its inverse (4.3).
Once we have this result, we can see how to derive it
more directly by changing the order of integration along
the line Re[cr+ig(1+/ )]=0 and obtaining from the g
integral a 6 function: 5(g(1+/ ) —icr).

The method we have used gives more than we have
obtained so far. With the contour for Z+ moved to the

2
(5.7)

We now turn to examine the contribution of the nega-
tive energy tail, that is, of Z, to the total partition
function. Thus, consider

~o 'lc
Zo ' dg v(g, ro)exp[ —A.(g+ 1)c7 j . (5.g)

When

—)O(A. '~ ),1

3
(5.9)

this is approximated by

line Im(g)= —3 '~, we see that our result actually
holds for the extended domain

1

3
—&'0H & ~—V3

(5.6)

By a careful analysis of the integrand, and by using the
principal value for integrals when the pole lies on a con-
tour, we can also show that our result applies at the end
points i gH =+3 —' . Furthermore, by considering all
those complex values of gH to which our method is appl-
icable, we find that our result holds in the entire strip
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-Zo '(3'"2v'Fry/X) ' J d
I

ri I
(

I
ri

I

—3 '") '"exp
~C 3v'3

(5.10)

=Zo '(48rr A. )
' exp. A, —' —o 1—

9 j (
2 g 3/2 4 g$g —1/2)exp( gpss )+ g (~$3g3)1/2erfc[(gfig)1/2] }

(5.1 1)

where

1

3

26= ——o. .
33/3

(5.12)

The result (5.11) can be approximated as

' 5/2 2

31/43/ k3/2
V'3

2
33/'3

1
exp —A, —+i gHV'3

3 1
+14H

5

3~3
—CH

1+ 9c
3

2
v'3

——4H (5.13)

when

1—+igH )O(A, ' ),v'3 (5.14)

and as

3 '1/2 (5.15)

when

1—+igH «O(k '
) .

3
(5.16)

VI. DISCUSSION

In the last four sections we have been considering
black-hole thermodynamics, by which we mean thermo-
dynamics based on stable classical black-hole solutions
of the Einstein equation and derived as a zero-order ap-
proximation to a full quantum theory of gravitational
thermodynamics for fields of black-hole topology

From the definition of g, the contribution of the
negative-energy tail is formed by taking q, =1. It is ex-
ponentially small in (5.13). However, at gH

——i 3

corresponding to the limiting temperature of a stable
configuration, the exponential factor vanishes [see (5.15)]
and the contribution is relatively large, that is,
O(r ro '). In a similar fashion, by changing the signs
of gH and o everywhere in our result, but not that of 21, ,

we find that the contribution of the positive-energy tail,
from +q, to + op, is also exponentially small except at
gH

—— i 3 ' —. Semiclassically, this behavior is entirely
acceptable, although it is indicative of macroscopic
quantum effects in the limit

~

i jH ~

~3 ' . A conse-
quence of these effects can be seen by examining (2.10);
although energy fluctuations are typically of the order of
the Planck mass, they receive a very large amplification
as the limiting temperature for stability is approached.

I

R &S . To discuss further black-hole thermodynamics
in the wider context of gravitational thermodynamics,
we select for particular attention three aspects of our re-
sults: (1) the exponential tails of v(21, ro ) at large positive
and negative energies; (2) the constraints on the range of
o for the existence of classical solutions; (3) the possibili-
ty for a discussion of negative temperature.

The need for all negative energies in the relation be-
tween a partition function and the underlying density of
states is not uncommon in classical thermodynamics. A
simple example arises when the binomial distribution of
occupation numbers of a finite spin system is replaced by
a Gaussian approximation which has tails to both + oo

and —~. One is also familiar with a barrier, usually at
p=0, restricting the domain of definition of a partition
function. In black-hole thermodynamics, precisely be-
cause we have exponential decay for v(g, ro) at large
positive and negative energies, we have only a strip for
o. , marked by two barriers, neither of which is at zero.
This is in contrast with the original constraint (2.6)
which was concerned only with real positive o. in this
strip. W'ith the extension to negative o. provided by
(5.7), discussion of negative temperatures becomes possi-
ble. Negative temperatures are hotter and have greater
positive mean energies than occurs for any positive tem-
perature. "' In black-hole thermodynamics, negative
temperatures arise on the second sheet, corresponding to
Re(g) &0, of the square root in a red-shift factor for p in
(2.4). These states are in accord with the constraint
(2.13) because of the double-valued dependence of
r r +oon g.

—1

The possibility of discussing negative temperatures is a
demonstrable property of the single-valued action (3.3),
although it was not a property of the original derivation
of Zo from classical solutions. On the other hand, the
original constraint on cr in (2.6) was introduced through
the dependence on stable classical solutions, but would
not be expected to apply in a full quantum theory. The
linear exponential tails in v are intimately related to the
constraints (5.7) placed on tr and we shall argue below
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I,cc=y x 2x(/3 —/3o)—, (6.1)

and define the partition function

Z(Po)= f dx exp[ I,cr(/3, x)] . —
0

An exact evaluation of the partition function yields

Z(/3)= [exp[y (/3o —/3) ]]erfc[—y '(/3o —/3)] .
2y

(6.2)

(6.3)

that these tails would not be an essential feature of the
full theory. However, we already know from (4.18) that
some energies outside the "physical" range (2.12) are
certainly necessary in black-hole thermodynamics in or-
der to establish even an approximate relation between
Z0 and v. This additional range of energies corresponds
exactly to the range of mean energies for allowable sys-
tems at negative temperature. Thus, negative tempera-
ture arises in a natural and consistent way for the
single-valued action of black-hole thermodynamics, al-
though our treatment does not indicate how a state of
the gravitational field at negative temperature should be
prepared. In any event, the usefulness of our result will
also depend on how a black hole at negative temperature
could be brought into thermal contact with a system
that may include matter at positive temperature.

We remarked in the Introduction that Z0 is not a La-
place transform. This is because, unlike a Laplace trans-
form, Zo is bounded for

~

Re(o )
~

& 2(27) ' but not in
a right half-plane Re(cr) &cro for any cro We s.hall now
show that two aspects of black-hole thermodynamics
which we have mentioned above are consequences of
this: namely, (1) the exponential tails of (vg, r )oand (2)
the restriction

~

Re(c7)
~

& 2(27) ' . These conse-
quences are not peculiar to gravity. In order to under-
stand better the general context in which they arise, we
consider two simple examples. We imagine that these
examples result from reducing some path integral to an
integration over a single degree of freedom, leading to an
effective action for the remaining variable. Because we
propose no specific physical models for the examples, we
take all variables to be dimensionless.

Let us first consider an effective action

ary point at

xo=y '«o —/3» (6.7)

which is always a global minimum for the action. How-
ever, this point lies in the domain of definition of x only
if

/3&/3o . (6.8)

Therefore, we have a restriction on the range of P for
which the approximation

Zo ——exp[y (/3o —P) ] (6.9)

is valid. As in our discussion of the black hole, Zp is

not a Laplace transform. Nevertheless, the inversion in-
tegral is well defined. We obtain

vo(E)= —exp( —,'y E +/3+—),
2&~

(6.10)

which differs from the exact result only by a constant
factor. However, to construct Zp from vp, we must in-
tegrate over the whole energy range ( —oo, oo ), which
gives

Zo(/3) = f dE vo(E)exp( /3E), — (6.11)

Z, (/3) = exp[y (/3o —/3) ],
y

(6.12)

whose inversion would lead to the exact expression (6.5)
for v(E), but a Fourier-Laplace integral is still required
to recover Z] from it.

In our second example we take

as can be most readily seen by the method we used in
the previous section. Although /3 was restricted so that
we could obtain the zero-loop approximation (6.9), rela-
tion (6.11) can be used in the entire complex /3 plane as
the relation (6.7) between /3 and xo is single valued. In
this particular example, we can easily perform a "one-
loop" approximation, by which we mean, expand the
effective action through quadratic order around x0 and
then use a saddle-point approximation to the integral.
We obtain

The density of states I,cc= —,'y x —x (/3 —/3o),2 3 (6.13)

v(E) = f d/3Z(/3)exp(PE)
27Tl —/ oo +c

(6.4)

is most easily computed by using (6.2) and changing the
order of integration. We find

v(E)= —,'exp( —,'y E +/3oE), — (6.5)

from which we can reconstruct the partition function by
the usual Laplace integral

Z(/3) = f dE v(E)exp( /3E)—
0

= f dx exp[ —y x +2x(/3o —/3)] . (6.6)
0

Alternatively, we could have started with the zero-loop
approximation. The effective action has a single station-

from which we can obtain the exact partition function as
in (6.2). From this we can evaluate the density of states
as in the previous example to find

v(E)=exp( —,'y E +PoE), — (6.14)

which again leads back to the original partition function
by a Laplace transform as in (6.6). Alternatively, for the
zero-loop approximation, we begin by noting that the
effective action has two stationary points

xo ——+—(/3o —/3)
~1/2

y
(6.15)

These occur at real xo only if P&Po as in the previous
example. In this case, the positive stationary point is al-
ways a minimum of the action and we obtain
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Zo(P) =exp (Po —P)
. 3r

(6.16)

which cannot be a Laplace transform. Here, the parti-
tion function does not become single valued until we in-
troduce the uniformizing variable

path integral definition of the partition function of gravi-
tational thermodynamics in the relevant topological sec-
tor. The zero-loop approximation, depending for its va-
lidity on the existence of stable classical solutions, has
introduced this constraint.

(p p)1/2 (6.17)
VII. CONCLUSION

The complex p plane must be cut along the positive real
axis from po to ao, which corresponds to the entire
imaginary axis for g. As in the case of the black hole,
we choose the p sheet associated with the thermodynam-
ically stable classical solution —here, the minimum point
of the action —which is equivalent to requiring
Re(g) &0. We then obtain

2/3 ' 2/3 4/3

vo(E) =2
2 2

Ai E
2

—Ai' E
4/3

XexP( ——,'y E +PoE) . (6.18)

For large r we can obtain the leading behaviors to be
compared, respectively, with (4.5), (4.6), and (4.7):

E 1/2
vo(E)- — exP( ,'y E +P—oE—), E &O(y ),

v'7r

(6.19)

vo(E) —(4v'~y
~

E
~

/
) 'exP(PoE), —E &0(y ),

(6.20)

2'"r'"
vo(E)—,E =0 .31/31(i)'

3

(6.21)

These expressions correspond to saddle-point approxi-
mations to vo(E) in each case. As before, a Fourier-
Laplace transform (6.11) is required to reconstruct Zo,
but now this is possible only when P &Po.

From the second example, we see that a critical point
in the uniformizing transformation leads to linear ex-
ponential tails in vo(E). This indicates that part of the
range of E is not to be included in the Laplace transform
for the exact partition function. Similarly, we see that
the restriction on p is another artifact of the approxima-
tion. It does not apply to the exact results.

From these observations we can draw some con-
clusions about our study of the black hole. First, al-
though v(g, ro ) has linear exponential tails for

~ g ~

&&3 ', these are consequences of the zero-loop
approximation. Thus we deduce that the energy in grav-
itational thermodynamics in the black-hole topological
sector is actually bounded above and below; however,
our first example indicates that the information we have
used so far is insufficient for us to decide where the exact
bounds lie. Second, although black-hole thermodynam-
ics requires for its existence a restriction on the bound-
ary data p and ro, this restriction does not apply to the

In the development of black-hole thermodynamics, the
introduction of a finite radius for the system turned out
to be a very important refinement, as was the corre-
sponding realization that thermodynamic stability occurs
only for the larger black hole whenever the boundary
data p and ro indeed permit any such classical solution.
With an infinite box only the unstable black hole has a
finite mass, and this fact has been a source of difficulty
in earlier discussions. When classical stability allows a
black hole to occupy a finite box, black-hole thermo-
dynamics exists, in every essential way equivalent to any
classical thermodynamical theory. Contrary to previous
belief, there is, in fact, a we11-defined canonical ensemb1e.
We have used its partition function to obtain a similarly
well-defined density of states for the corresponding
microcanonical ensemble. From this, we have argued
that for quantum-gravitational thermodynamics in the
black-hole topological sector, energy will be bounded
from above and belo~. The restriction on o. required for
the existence of stable classical solutions does not apply
to the exact partition function as defined by a path in-
tegral over a11 relevant metrics. Our treatment would
seem to be entirely in accord with classical thermo-
dynamics and its derivation from quantum-statistical
mechanics.

We have found that negative temperature arises in a
natural and consistent way once the action for black-
hole thermodynamics has been made single valued. Pos-
sible physical implications of this must await further
study.
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APPENDIX: EXACT EXPRESSIONS
FOR THE DENSITY OF STATES v( g, r o )

We shall obtain exact expansions for (gv, r )boy com-
puting higher terms in the saddle-point approximation in
a particular way. We start with the contour chosen as a
straight line passing through the saddle point, which
gives

2rp
v(vl, ro)= J dg(1+3(o+6/op+3/ )

Xexp[A(ao a2$ +ia3$'———,'g )],
(A 1)

where A, ,ao, az, a3 are defined in (4.2) and (4.11)—(4.13)
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and go is the saddle point:

go = —i ri for v'3

0o=
1

v'3

(A2)

v(ri, ro) =—3rp
3/4 2

2 Q2

3A,
exp A, Qp+

6

Xg( —1)
m =—0

I (3m ——,')
[ ( 2

)
3 /2g 1 /2 2

]
m

3(2m )!

We evaluate the integral exactly by expanding the ex-
ponential of the cubic term as a power series and using
the relation

2X
+D1/2 —3m 2 3

1/2

(AS)

exp

=21 (p + —,')D ~~+, /z)(y)exp(y /4), p HZ, (A3)

(A4)

Since only even terms in the expansion will contribute to
the integral, we find a single sum:

where D is a parabolic cylinder function. ' '
For

~ g & 3 ' we can substitute for go in the
coefficients and integrate by parts to obtain

2ro dg 2 3v(q, ro) =- exp[A( ao —aug +ia, g

7A.
exP D1/224

(A6)

Although the series is convergent, successive early terms
all become comparable for az &O(A. '), which corre-
sponds to the condition (4.4), and the sum is no longer
useful ~

For
~ g ~

) 3 ', we have 1+ 3go =0, and we can
again integrate by parts to obtain

When (4.5) is valid, it is given by the leading behavior of
the first term in this series. Only the first term survives
for a 3

——0, and this gives the exact result at g =0:
' 1/4 1/2

6
v(0, ro) =—v'2

6

v(g, ro)= — f dg(4/+3/ )exp[A(ao —a~/ +ia&g ——', g )] .
Q3A

(A7)

Now only odd terms from the expansion of the cubic term in the exponent will contribute to the integral, and there is
a separate series for each term in the coefficient of the exponential, giving

12rp
v(g, ro) =-

pa 3A,

3/4
Q 2

exp A, ap+--
6

( —1) I (3m —
—,')

3

' 1/2

6rp

Ra k 3~

1/4
Q 2

exp A, a 0+ 6

( —1) I (3m + —,
'

)

(2 1)i [ T~
& ] D —1/2 —3m u2

m=1 m— 3

1/2

When (4.6) is valid the dominant behavior comes from
the first term in the first series, of which (4.6) is the lead-
ing approximation. For a3 ——0 only the first term in
each series survives and we obtain an exact result at

~ g ~

=v 3 which, by use of the recurrence relation [see
(A10)] for D (y), becomes

3/4
rp 3 8A,

v( v'3, r o ) =
Ak 2'" 3

(AS) term by term as a power series in k, as can be seen
by further use of the recurrence relation:

yD (y) D+, (y)+qD— , (y) =0 . (A10)

D (y) -y ~exp( —
—,'y'), q &&y ~ oo, (Al 1)

The relation of the approximations (4.5) and (4.6) to the
leading behavior in the series (A5) and (A8) can be estab-
lished by the use of the asymptotic result

)& exp —D

' 1/2

(A9)

The result (A8) is again not useful for az &O(A, '), but
for a~ exactly zero, i.e.,

~
ri

i

=3 ', it is identical with

whereas convergence of the series depends on

~—
2

—q/2
(y) - exp[ —y(q —-')'"],

I ( —,'(1+q)) 2

y ((q~ ao
2 (A12)
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