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This paper contains a variational formulation of the theory of a perfect fluid composed of mul-

tidimensional objects in space-time of arbitrary dimension; a nonstandard variational principle is
based on the discussion of the Noether identity related to covariance of the Lagrangian under the
action of diffeomorphisms of space-time. The initial-value problem and the boundary conditions
are considered.

I. INTRODUCTION

The perfect Quid of point particles turns out to have
an interesting generalization, proposed and elaborated by
Stachel. ' This is the perfect Quid composed of multidi-
mensional objects. In four-dimensional space-time, the
dimension of the objects can be 0 (point particles), 1

(strings), or 2 (membranes). In view of an already exist-
ing application to the Kaluza-Klein cosmology, the gen-
eric case of (k —1)-dimensional objects in m-dimensional
space-time is considered.

The principal aim of this paper is to formulate a varia-
tional principle for such a Quid. This is achieved in
Secs. II—IV. In Sec. II, I discuss a nonstandard varia-
tional principle useful in the theory of Auids. The start-
ing point of the discussion is the Noether identity related
to the covariance of the Lagrangian under
diffeomorphisms of space-time. To formulate the varia-
tional principle, I use the method of differential
forms; the method seems to play here a more essential
role than for other variational principles described in its
framework. In Sec. III the variational principle is spe-
cialized to the standard case of the perfect Quid of point
particles, k =1. In Sec. IV it is generalized to arbitrary
k.

The remaining part of the paper is devoted to two spe-
cial problems in the theory of Auids composed of mul-
tidimensional objects. In Sec. V, I show that the Auid
equations of motion are evolutionary at least in some im-
portant special cases. In Sec. VI the boundary condi-
tions are examined.

II. THE DIFFEOMORPHIC VARIATIONAL PRINCIPLE

We consider a dynamical system which consists of a
scalar (m —k)-form N (a basic fluid variable called flux)
and a number of 1-forms Pz of arbitrary tensorial type
(auxiliary fields). The Lagrangian m-form is

L =L(N, dN, Q„,DPq, O'),

where D is the covariant exterior derivative determined
by the connection 1-forms co', and 0' are orthonormal
frame 1-forms; the connection is assumed to be metric,

co; +co; =0. The independent variation of L with
respect to N, Pz, 8', and co',

~L = —H R&N+&P„RL "—58'R t, + —,'fico,' Rsj

+an exact form,

=h *L (N, dN, Q „,DP „,0'), (2.1)

for any diff'eomorphism h (h* denotes pullback of the
forms). Taken infinitesimally, this leads to the following
Noether identity:

(Z J B')Dt, —(Z J 0') R t, + —,'(Z J III ) Rsj

+( —1)"dH R(Z J N) HR(Z J dN)—

+( —1)'(Z J P„)RDL"

+(Z JDPg)RL"=0 (2.2)

for an arbitrary vector field Z. Above, O'= —,
'Q' &H~RO"

and Bj zR jg&0 R, 0" denote the torsion and curvature
two-forms, respectively. The second Noether identity
implied by (2.1) (obtained from the boundary terms) will
be useful only in the case when P„are not present and L
does not depend on dÃ:

H R(Z J N)+(Z J N)+(Z J 0') Rt, +Z J L =0 . (2 3)

We look for a stationary point (N, P~ ) of the action
integral J nL among the family of trial fields (N', P'„)
over 0 such that N'=h *X for a diffeomorphism h, on

serves as a definition of the k-form H (later called the
enthalpy k-form), the (m —l)-forms L ", the energy-
momentum (m —1)-forms t, , and the spin (m —1)-forms
SJ

l

We assume that the Lagrangian L is Lorentz invariant
and diffeomorphic covariant. The first assumption will
not be discussed in detail. We mention only that, if P„
are scalars (or if they are not present), this assumption
implies that the spin (m —1)-forms vanish, s, =0, and
the energy-momentum tensor is symmetric: 0, R, t
=0 RI;.J I '

The second assumption is

L(h *N, d(h "N), h *Pq, h *Dgq, h *8')
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the boundary P'„~ &n
——P~ ~ sn and h

~ &n
——id&n .In oth-

er words, the variations of P„are arbitrary (restricted
by the boundary constraints only), whereas the varia-
tions of N are induced by diff'eomorphisms of space-time.
Infinitesimally,

5N=QN=Z JdN+d(Z JN),
z

L =L (N, 8') . (3.1)

Write N =N'g; and N'= nu ' where u ' is the normalized
velocity, u'u, =1. The scalar Lagrangian (3.1) should
have the form

The most simple and physically relevant case is that of
the perfect fiuid at zero temperature .In this case N is
the only dynamical variable:

and the vector field Z vanishes on the boundary,
Z

~ sn ——0. Therefore, under such variation of N, L =X(n)ri . (3.2)

5L =( —1) dH h (Z J N) Hh —(Z J dN)

+d ' (Z J N) h +(Z J dN) QaN+ BdN

This leads to the following equations of motion:

( —1)"dH 6 (Z J N) Hh (—Z J dN) =0, (2.4)

Using the identity (2.3) it is easy to show that the
energy-momentum tensor of the fluid has the form

ti=(e+p )u~u; —p5J, (3.3)

—p5(1/n) =5(eln ); (3.4)

where e= —X is the energy density in the rest frame and
p is given by the thermodynamical relation

and they should hold for any vector field Z. The left-
hand side of (2.4) is the contribution from the field N to
the identity (2.2). Therefore, if equations resulting from
variations with respect to other fields are satisfied
(L "=0), then Eq. (2.4) is equivalent to the energy-
momentum-conservation equation

Dt, = Q', h t, ,'R'", hs—,, —

where Q, =Q,&
0" and R h,

——R h, 0 are torsion 1-
forms and curvature 1-forms, respectively. If the auxili-
ary fields are scalars (or if they are not present) then the
above equation can be written as

Dt, =0,
where D denotes the Levi-Civita covariant derivative.

The name "fluid variable" associated with N is
motivated by the above equivalence. Notice that we had
to assume that N is a scalar in order to obtain covariant
equations. The degree of the form N is, however, arbi-
trary.

I emphasize that the description of a fluid given here
is Eulerian —the Lagrange coordinates are not used.
The method of variation, however, is close to the varia-
tion of world 1ines present in the Lagrangian description
of a fluid.

In the discussion below we shall use the (m —i)-forms

1
91 ' ' I /1(m i)i

where q, . . . , is completely skew symmetric and deter-
1 m

mined, with respect to orthonormal frames by the condi-
tion g, . . . = 1. For instance, the energy-momentum
tensor t, is defined by the equality t, =g t, and the La-
grangian function X is related to L by L =Xri.

which allows one to ca11 it the enthalpy 1-form.
Equation (2.4) takes on the form

(divN)H, —N~( V, H, —V, H, ) =0, (3.6)

where V; denotes the Levi-Civita covariant derivative.
If e+p &0, this equation implies the continuity equation

dN =(divN)r)=0 . (3.7)

The continuity equation plays a special role from the
point of view of the variational principle under con-
sideration. Since d(h*N)—:h*dN, Eq. (3.7) is a neces-
sary condition for the existence of a stationary point of
the action integral in a given family of trial forms N .
This variational principle is the only one known to the
author which allows one to derive the continuity equa-
tion rather than to postulate it; simultaneously it ex-
plains why the derivation of this equation in other ap-
proaches is not possible. The case e+p =0 is of minor
interest since it implies de/dn =0; i.e., L corresponds to
the cosmological term.

The Lagrangian (3.1) admits a straightforward gen-
eralization to perfect Puids at arbitrary temperature. In
this case, the fluid Lagrangian L depends on two dynam-
ical variables: the fiux N and the specific entropy S (i.e.,
entropy per particle in the rest frame). We require that
the specific entropy be constant along world lines of the
fluld:

dSAN =0 . (3.8)

The Lagrangian which takes into account the con-
straint (3.8) then has the form

therefore it is interpreted as pressure. The 1-form
H =H;0' is given by

e+p
lH= u. ,l

III. THE PERFECT FLUID OF POINT PARTICLES L = e(n, S)ri+kdS—hN . (3.9)

The form N will have now the degree m —1 and will
represent the fiux of particles (baryons). We assume also
that N is spacelike.

The variation of the Lagrangian (3.9) with respect to the
Lagrange multiplier A, leads to the conservation law
(3.8). The variation, with respect to the specific entropy
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S, gives the equation

n Trt+d(AN) =0, (3.10)

(4.1) be timelike. The second condition is differential; it
is given by the Frobenius theorem

where the temperature T is determined by the thermo-
dynamic identity

5(e/n)= —p5(1/n)+ T5$ .

dN =N R, co

for a certain 1-form co.
We consider now the Lagrangian

(4.3)

The second term in (3.9) does not contribute to the
energy-momentum tensor (3.3). It is an interesting exer-
cise to transform directly Eq. (3.6) with the "enthalpy"
vector given now by

H, = u; —AVS, (3.1 1)

into the standard form

( a+p)u 'V, u, = (5', —u'u, )V;p . (3.12)

Note that (3.10) allows one to determine A, if it is given
on an initial hypersurface transversal to u '.

Note also that the standard variation with respect to
N would lead to vanishing of H, given by (3.11). Al-
though the equations of motion (3.6) or (3.12) would be
satisfied in this case [the continuity equation (3.7) would
have to be imposed], the form of the velocity vector
would exclude rotational motions of the fluid. This is
the so-called Lin difFiculty present in variational deriva-
tions of equations of motion of relativistic and nonrela-
tivistic fluids which use the Eulerian description. ' '
Our method of variation gives an interesting insight into
the origin of this difhculty.

IV. THE PERFECT FLUID OF (k —1)-DIMENSIONAL
OBJECTS IN m-DIMENSIONAL SPACE-TIME

V=[Z:Z J N =OI . (4.1)

There are two conditions which N must satisfy in order
to determine a k-dimensional foliation. The first condi-
tion is algebraic; N has to be simple:

Our aim now is to generalize the notion of the perfect
fluid of particles, k =1, to an arbitrary k. The basic idea
is sketched already in Sec. II. However, if N is an arbi-
trary (m —k)-form and k&1, k&m —1 then the num-
ber of component equations contained in (2.4) is less
than the number of components of N. Worse, in the im-
portant case m =4, k =2 the equations have a nonevolu-
tionary character.

Inspired by a paper by Stachel, I shall apply the vari-
ational principle of Sec. II to a theory of k-dimensional
foliation, in m-dimensional space-time. Such foliation is
a continuum of k-dimensional surfaces or, physically, k-
dimensional world sheets, each sheet representing the set
of events belonging to the history of a (k —1)-
dimensional object.

The foliation will be tangent to the distribution V of
vector fields Z given by the equation

L =L()(N, O')+A, h (N —cot, +, h Ace )

+A~A(dN —N Ace) . (4.4)

N RH&0, (4.5)

this leads to Z J co=0. This implies that co is a linear
combination of the 1-forms co, ; in turn from (4.2) and
(4.3) we obtain

dN=0 . (4.6)

Equation (4.5) is once more a necessary condition for
the existence of a stationary point of this variational
principle. It enables us to interpret physically the (m-
k)-form N. The integral

N,
m —k

represents the number of particles (k =1), strings
(k =2), . . . , membranes (k =m —1) crossing an
(m —k)-dimensional surface 2 „ in space-time. If
X I, is the boundary of an (m —k + 1)-dimensional
surface, X &

——BX I, +, , then the number of objects
coming into X &+& is equal to the number of objects
going out of X &+ &.

j N=O.
ar k+1

The variation, with respect to the Lagrange multipliers
A, and Az, gives the constraints (4.2) and (4.3), respec-
tively. The variation with respect to cu s gives certain re-
strictions on the Lagrange multipliers k i and k2. If
these restrictions and the constraints (4.2) and (4.3) are
satisfied then the k-forms H, = —X, and
H2 =( —1)"+'d A, z

—A.z 6 co satisfy identically the basic
equation (2.4). To prove this statement, observe that the
second and the third terms in (4.4) (denoted L, and L2,
respectively) do not contain the frames O'. Thus the
energy-momentum (m —1)-forms corresponding to the
"Lagrangians" L, and L2 will vanish and the statement
follows from the considerations of Sec. II ~ Therefore,
the equation of motion (2.4) has to be satisfied for H
which originate from the variation of Lo itself:

5LO ———H R, 5N —50'5, t,

If we now take Z which satisfies (4.1) and use the con-
straint (4.3), Eq. (2.4) gives

(Z J co)N hH =0 .

Under the assumption

N=co~+& R, . Ace (4.2)
We calculate the energy-momentum tensor. Accord-

ing to the identity (1.3), we have

where co; are linearly independent 1-forms. We assume
also that % is spacelike in order that the distribution Zit, = Hh (Z J N) —Z J L—o .
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Write Lo =Kg; write also

N= 1 11

and

ik

The tensor

(k —1}!
has the form

k —1 u (

H= H;
1

Then, simple algebra leads to

+ N 1 kH gt
J gt t

''
/, Jl J

or, equivalently

I ik —1 H

(4.7)

i gOigO gIig] . . . gk —ligk —1

J J J J

i.e., it projects onto the distribution V given by (4.1).
From (4.10) we get

therefore,

,
X Hi . . . i +X 5,' (4.8)

11 '''1k
Define now the normalized k-velocity u ' and the

scalar n by the relations

where n &0 and

'k
( 1)k —1

1 k

The sign on the right-hand side above expresses the fact
1that u ' " is timelike. The scalar n represents the

number of (particles), strings, . . . , membranes crossing
the unit area of an (m —k)-dimensional surface in the
rest frame (t =const) perpendicular to these objects. We
shall call it concentration.

Because of condition (4.2), n is the only scalar which
can be built out of N. Therefore, we have

Lo(N, 9') =X(n)g,
and varying N with g' fixed, we get

is still the energy density in the rest frame of the fluid
determined by the 1-form g . In contrast with the case
of particles, the rest frame is determined nonuniquely;
there exists a (k —1)-dimensional family of rest frames.
Introducing pressure p =h —e [it is equivalent to (3.4)
owing to (4.9)], we have

t)i =(E+p)qJ —pfil. (4.12)

—e&p &e&0, (4.13)

and they do not depend on the dimensions k and m.
The equation of motion (2.4), because of the continui-

ty equation (4.5), reduces to

(Z JX)hdH =0.
In the component notation it reads

or

in analogy with (3.3}.
The energy density is non-negative in any frame if

e&0 and e+p &0. The flux of energy is timelike or null
in any frame if p & e. So the energetic conditions are

H =( —1) —u,
1 h

kt n

1

g 'R, Rg'
7

N' , +( —1)"kV; H, (4.14)

where h is given by
Making use of the thermodynamical relation (3.4), we
can transform (4.14) into the form

dh= —n
dn

(4.9) (e+p)u ' 'V; u; =(k —I )!(5,' —q')V;p, (4.15)

The energy-momentum tensor (4.8) can now be rewritten
as

(4.10)

The velocity k-form

g1p . . . pgk

analogous to (3.12).
We can add to the flux N some additional dynamical

variables to describe the fluid, in particular, the specific
entropy S in analogy with the case of particles. The
condition (3.8) now means that the specific entropy is
constant along world sheets of the fluid. As in the case
of particles, the constraint (3.8) does not aff'ect the alge-
braic form of the energy-momentum tensor (4.12), but
pressure and energy density will depend now on two pa-
rameters: n and S.

which is simple because of (4.2), after a convenient
choice of the orthonormal frame (0'), can be written as

V. ARE FLUID EQUATIONS EVOLUTIONARYP

u =goy -. - n, gk-' (4. 1 1)
To get some insight into the Cauchy problem for the

equations of motion of a fluid composed of multidimen-
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sional objects, we consider some special cases. We re-
strict our considerations to fluids at zero temperature
and in flat space-t™

An important role in our discussion will play the ther-
modynamic coefficient of proportionality c defined by
the formula

H; , =( —1)" cN,

N'+0 N =0,
N (H —8 Ho)=0,
N (8 H H)+—N~(B H~ O'H ) =0 —.

(5.1)

(5.2)

(5.3)

We notice that multiplying (5.3) by N, we obtain (5.2)
since N ) n is necessarily different from zero. There-
fore, the system of equations can be reduced to (5.1) and
(5.3).

Assume now that N' and 8 N' are given on an initial
hypersurface t =const. Then the time derivatives N
and H are determined by these Cauchy data owing to
(5.1) and (5.3), respectively. The question is whether H
is also determined.

Since we have

n =N'N, ,

the time derivative of H is given by

The alternative definitions of this coefficient are
c =(e+p)ln =(deldn)ln

Although the subject is known, in order to enable
comparisons, we shall first consider the case of ordinary
fluids, k = l. In this case the fluid equations of motion
(4.5) and (2.4), in the component notation, have the form

V;N'=0, NJ(V;H, —V H, )=0.
In Cartesian coordinates (x')=(t, x ), the above equa-
tions read (the overdot denotes time differentiation):

dN =0, dH =0,
in component form:

0, ~N —0 eN, - =0,
9, eH'=0 .

In the Cartesian coordinates, the above equations read

eN —8 +No ——0, (5.7)

a.~N~ —a~~N. =0,
eH +(3 eH —=0 .

(5.8)

(5.9)

Equation (5.8) plays the role of a constraint on the ini-
tial data e N' and 0 e N'. This constraint is conserved
in time; i.e. , its time derivative vanishes due to (5.7).

Similar to the case of the fluid composed of point par-
ticles, the time derivatives e N and e H are deter-
mined by the initial data [due to (5.7) and (5.9), respec-
tively] and we inquire whether eNO is also determined.
Since in the case of membranes we have

the time derivative of eH is

o . o 1 dceH =ceN —— eN (eNoeN +eN eN ),
n dn

and we have to solve for e N the equation

(alternatively p=ve), conditions (5.6) give —e&p &@.
Since the energetic conditions already ™ply—e &p & e,
conditions (5.6) are weak indeed; they exclude only the
case of the cosmological constant, p& —e.

As the second case, we consider a fluid composed of
membranes, k =m —1. In this case, it is convenient to
use the duals eN' and eH, of the flux (m —1)-vector
and the enthalpy (m —1)-covector, respectively, in order
to write the equations of motion

( —1) H =cN + — N (NON +N N~);

therefore, we have to solve for N ~ the equations
c —— (eN ) eN =Cauchy data.1 dc pp '

p

n dn
(5.10)

c5 + — N N N ~=Cauchy data .1 dc
n dn

(5.4)

Their solution is unique, if the corresponding deter-
minant does not vanish:

c c+— N N &0.1 dc
n dn

(5.5)

dcc &0 and &0
dn

be satisfied.
For the equation of state given by a power law,

E=pn ', p=const ~ 0, v=const

(5.6)

Since c )0 because of the energetic conditions (4.13), in
order to satisfy this requirement for arbitrary N N & 0,
it is necessary and sufficient that the conditions

The solution is unique for arbitrary (eN ) )0, if the
conditions (5.6) hold. The initial-value problem leads
therefore to the same restrictions as in the case of the
fluid of point particles.

As a third case, we consider a fluid composed of
strings (k =2). For this case, the condition of simplicity
(4.2) becomes essential. This condition complicates the
considerations; to simplify them we consider the case of
four-dimensional space-time only.

The component form of the equations of motion for
the fluid composed of strings is

V.Nv=0,

N (VkH~+V~Hk, +V, H~q)=0.

In four dimensions, it is convenient to use the tradi-
tional vector notation. Let N =(N ) and
M=( ,'e ~'N") be the —three-dimensional vectors; then
the above equations have the form
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N+VXM=O,

V N=O,

(5.11)

(5.12)

M (cM) —M [VX(cN)]=0 . (5.14)

Moreover, the simplicity condition (4.2) gives the restric-
tion

N M=O. (5.15)

NX(cM) —NX [VX(cN)]+M[V (cM)]=0 . (5.13)

tion g =0 and such that for y & 0 we have a fluid and for

y & 0 we have a vacuum. Across the hypersurface X the
matter quantities can be discontinuous. We require,
however, that the basic equations of motion Dt; =0 and
dN=O be satisfied in the sense of distributions. These
differentials in the sense of distributions are'

dX =dy h N ~z5(g)+a regular part,

Dr, =debt, I+5(y)+a regular part,

Let us note that multiplying (5.13) by MX, we get (5.14)
multiplied by the vector N; since N&0 [see (5.17)
below], it means that (5.14) can be dropped.

The Cauchy data are now N, M, 8 N, and 0 M sub-
ject to the constraints (5.12) and (5.15). Note that (5.12)
is conserved in time due to (5.11). Because of (5.11), N
is determined by the initial data. The component of M
parallel to N can be expressed by the initial data, if we
consider the equation

dyRN
i x ——0,

dqvht;
i
~=0 .

(6.1)

(6.2)

In the equations below we shall omit the symbol ~z.
The component form of the junction conditions is

1 kV 0 (6.3)

and the above requirement leads to the junction condi-
tions:

N M+N. M=O, (5.16)

=N —M (5.17)

we have to solve for the time derivative of the orthogo-
nal component Mj, the equation

1 dcNX cM —— M(M M) =Cauchy data,
n dn

analogous to (5.4) and (5.10). An alternative form of this
equation is

cMj —— M~(M~ M~)=Cauchy data .1 dc
n dn

The corresponding 2&(2 determinant should be different
from zero:

1 dc
c c —— M~ Mj &0.

n dn
(5.18)

Since Mj.M~) 0 is otherwise arbitrary, the condition
(5.18) leads to exactly the same restrictions as in the
cases of point particles and membranes.

The above discussion shows that from the point of
view of the initial-value problem there is no essential
difference between fIuids of point particles, strings, and
membranes. It is expected that in the case of arbitrary k
and rn the initia1-value problem is we11 posed under con-
ditions (5.6).

VI. THE JUNCTION CONDITIONS

obtained by differentiation of (5.15). [Notice that (5.15)
is equivalent to (5.16) under the condition that (5.15) is
imposed only as a constraint on the initial data. ] The
component of (cM) orthogonal to N is expressed, due
to (5.13), by the initial data. The question is still wheth-
er the component Mj of M orthogonal to N can be ex-
pressed by the Cauchy data.

Since now we have

t,'V, g=(E+p )q~V;y —pV;g=O . (6.4)

Assuming that N does not vanish on the boundary,
the condition (6.1) or (6.3) implies that the gradient Vg
is orthogonal to the distribution V given by (4.1). In
turn, it implies that world sheets tangent to the distribu-
tion V are contained in the hypersurface X. Thus the
hypersurface X is built out of the (m —k —1)-parameter
family of world sheets. It means that q'V, g=O. There-
fore, because of (6.4), pressure p vanishes on the bound-
ary p =0. This case is standard.

On the boundary, the flux X can change its character
from spacelike to null. In such a situation, condition
(4.5) is not satisfied and the continuity equation does not
follow. Although its archetypal form (4.3) should hold,
it may not imply (6.1) since the form co may itself con-
tain 5(y). Equation (6.2) remains as a single boundary
condition.

We represent the limiting value of eX as y~ —0 in
the form

+N=&R O' R, . P 0

where all 1-forms in the above decomposition are or-
thogonal, v is null, and 0', . . . , 0" ' are spacelike with
square equal to —1. We require that the energy-
momentum tensor be finite as g~ —0. This amounts to
two conditions,

t' =c~'~ —p6'

The boundary condition (6.1) is now

CK (K;Vg) —pV +=0

e+p ~c =finite and p ~finite,
n

and gives the following boundary form of the energy-
momentum tensor:

This section is an extension of an Appendix in Ref. 2.
We consider a hypersurface X given locally by the equa-

The case c =0 is trivial since then p =0 and the energy-
momentum tensor vanishes on the boundary. If c&0,
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v;V'y=0 . (6.5)

Remembering that the equation

T(X)= f Z:Z'V, &p =0 I

determines the distribution of vector spaces tangent to
the boundary X, the following three types of solutions of
Eq. (6.5) are possible.

(1) The vector V"y is proportional to tc'. It follows
that VC. T(X). Therefore, as in the standard case, it im-
plies that world sheets on the boundary are contained in
X. In contrast with the standard case both X and V (on
the boundary) are null. It means that the objects on the
boundary move with the speed of light and the boundary
of the Quid itself moves with the speed of light.

(2) The vector V'y is spacelike and orthogonal to V,

VplV. This case cannot happen for the membranes,
k&m —l. In this case still V& T(X) so the world

the above equation implies that pressure vanishes on the
boundary, p =0, as in the standard case and, moreover, -

we obtain the equation

sheets are contained in the boundary X. The hypersur-
face X is timelike and V on the boundary is null. It
means that the objects on the boundary move with the
speed of light, whereas the speed of the boundary itself is
less. The boundary might be static.

(3) V'p=(V'y)t, +(V'y)t, where (V'y) t, is spacelike and
belongs to V, whereas (Vy)t belongs to the orthogonal
complement of V in the space orthogonal to the null vec-
tor ~' and may vanish. This case cannot happen for par-
ticles k~1. In this case the vector (V&p)t is not tangent
to X. Therefore, dim[VAT(X)]=k —1 and the
(k —1)-dimensional objects can have a (k —2)-
dimensional boundary moving on the timelife hypersur-
face X with the speed of light. This type of behavior is
well known in the special case of open strings. For ob-
jects with a boundary this case has to happen necessari-
ly.

These three cases exhaust all possibilities.
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